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FOREWORD 

ADVANCES IN CHEMISTRY SERIES was founded in 1949 by the 
American Chemical Society as an outlet for symposia and 
collections of data in special areas of topical interest that could 
not be accommodated in the Society's journals. It provides a 
medium for symposia that would otherwise be fragmented, 
their papers distributed among several journals or not pub­
lished at all. Papers are reviewed critically according to ACS 
editorial standards and receive the careful attention and proc­
essing characteristic of ACS publications. Volumes in the 
ADVANCES IN CHEMISTRY SERIES maintain the integrity of the 
symposia on which they are based; however, verbatim repro­
ductions of previously published papers are not accepted. 
Papers may include reports of research as well as reviews since 
symposia may embrace both types of presentation. 
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PREFACE 

T H E MOLECULAR THEORY OF LIQUIDS AND DENSE GASES is currently in the 

midst of a healthy period of growth and expansion. Much of the activity 
in the area has been instigated by the wide-spread availability of high­
speed digital computers coupled with significant advances in a number 
of experimental methods for measuring fluid properties and exploring 
fluid-phase behavior. The computer has not only provided the means 
for generating quantitative results for problems defying analytic solution, 
but it also has enabled direct simulation of molecular behavior in fluids 
via techniques known as Monte Carlo, molecular dynamics, and Brownian 
dynamics. Important experimental advances include high-flux nuclear 
reactors and pulsed-neutron sources for determining a variety of static 
and dynamic fluid properties; lasers for extracting information on dynamic 
relaxation processes; improved molecular beams for ascertaining details 
of intermolecular pair potential functions; and ellipsometry for probing 
fluid interfaces. These various computer simulation and experimental 
methods are providing molecular theorists, as never before, with a wealth 
of data to be digested, organized, interpreted, and made predictable. 

Numerous theoretical tools have been developed in attempts to cope 
with the profusion of simulation and experimental data. The more suc­
cessful theoretical developments include integral equations for molecular 
distribution functions, perturbation and variational theories, analytic 
expressions for the thermodynamic properties of the hard-sphere and 
Lennard-Jones fluids, and improved forms for intermolecular potential 
energy functions. The success of the molecular approach to the study 
of fluid behavior is indicated by the fact that many of these theoretical 
advances are replacing empiricisms in engineering design and process 
analysis computations. Furthermore, molecular-based corresponding states 
and conformal solution theories are now widely used by the engineering 
community. 

Thus, the molecular-based study of fluids is a multidisciplinary 
endeavor that involves chemists, physicists, and engineers. This volume 
reflects the breadth of the endeavor as indicated by the variety of phe­
nomena under investigation, the diversity of scientists and engineers 
involved in the research, and the internationally recognized importance 
of the problems to be solved. In this collection of papers, we have 
emphasized, with some exceptions, static properties at the expense of 
dynamic properties, because substantially more progress has been made 
in resolving difficulties in the theory of static properties. The only con-
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straints we have placed on the authors are to insist that results take 
priority over methodology and that the papers present a juxtaposition of 
two from the following triad: theory, experiment, and computer simula­
tion. We hope this collection of papers communicates to the research 
specialist, the curious nonspecialist, and the practicing engineer the 
recent progress made towards a more complete explanation of fluid-
phase behavior. 

J. M. H A I L E 

Cornell University 
Ithaca, NY 14853 

G . A . MANSOORI 

University of Illinois at Chicago 
Chicago, IL 60680 

November 29, 1982 
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1 
Molecular Study of Fluids: A Historical 
Survey 

G. A. MANSOORI 
University of Illinois at Chicago, Department of Chemical Engineering, 
Chicago, IL 60680 

J. M. HAILE 
Clemson University, Department of Chemical Engineering, Clemson, SC 29631 

This introductory chapter traces the development of the 
molecular theory of fluids as it has evolved over roughly 
the last 200 years. Many of the modern variations of mo­
lecular theory applied to fluids originated in the last quarter 
of the 1800s with the contributions of van der Waals; this 
chapter is organized to reflect that fact. The overview of 
present day techniques presented here includes brief dis­
cussions of theoretical, experimental, and computer simu­
lation methods. The intent is to provide some historical 
perspective for the remainder of this volume. 

T H E OBJECTIVE OF T H E STUDY OF FLUIDS from a molecular basis is to 
develop means for accurately predicting thermophysical properties 

and local structure in fluid systems. The thermophysical properties of 
interest include thermodynamic properties, transport properties, and 
phase equilibrium behavior. Local structure in fluids is measured by 
spatial and temporal distribution functions; in general, these distribution 
functions are proportional to the probability of finding molecules at par­
ticular points in the fluid at particular times. To attain the desired pre­
dictive capability, molecular theories usually start from a few well-defined 
characteristics of the constituent molecules. These characteristics typi­
cally include the geometric structure of individual molecules; the nature 
of forces acting among different molecules (i.e., intermolecular potential 
energy functions); and the nature of forces acting among sites on indi­
vidual molecules (i.e., intramolecular potential energy functions). 

In recent years, the molecular-based study of fluids has been mo­
tivated not only by scientific demands to improve on existing knowledge, 
but also by practical demands from increasingly sophisticated industry. 
Hence, developments in molecular theory are serving as a foundation 
for engineering design calculations in a growing number of industrial 

0065-2393/83/0204-0001/$07.75/0 
© 1983 American Chemical Society 
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2 MOLECULAR-BASED STUDY OF FLUIDS 

situations in which fluids are the primary media for transporting matter 
and energy and for supporting chemical reactions. 

Throughout this book, fluid refers collectively to the liquid and 
gaseous states of matter, including those states in the region of the phase 
diagram above the critical temperature and critical pressure. The dis­
tinctions between gases and liquids and between liquids and solids are 
not so easy to put into words as one might think. It should suffice to say 
that by gas we mean a substance whose volume increases continuously 
and indefinitely as the system pressure is reduced isothermally. In con­
trast, a liquid is a substance whose volume does not change continuously, 
without limit, if the system pressure is either increased or decreased 
isothermally. Further, a liquid is an equilibrium state of matter and, 
therefore, is distinct from an amorphous solid. Figure 1 gives a repre­
sentation of the three phases. 

Figure 1. Macroscopic and microscopic descriptions of solid, liquid, and 
gas phases. 

The center is a schematic pressure-density diagram for a pure substance. The solid 
lines represent two-phase equilibria between pairs of the three basic states: solid, liquid, 
and gas. The broken line represents the critical isotherm, which goes through a point 
of inflection at the gas-liquid critical point. The inserts are schematic representations 
of computer simulation results for each of the three basic states. Each insert shows a 
typical packing configuration for the spherical molecules at one instant of time and 
typical molecular trajectories for a period of time. The left insert represents the gas 
phase, which is characterized by low density and long, straight-line trajectories occa­
sionally interrupted by binary collisions. The solid phase, represented in the right insert, 
exhibits high density and close packing of the molecules, which are essentially confined 
to fixed sites. The central insert represents the dense fluid and liquid states, which have 
features, on the molecular level, between the extremes represented by solid and gas. 

(Reproduced with permission from Kef. 149. Copyright 1981, Scientific American.) 
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1. MANSOORI AND HAILE Historical Survey 3 

In this chapter we survey many of the significant developments in 
the evolution of molecular theory applied to fluids. The goal here is to 
provide background and perspective that will, to some extent, give con­
text to the various chapters of this volume. Because of the central im­
portance of the work of van der Waals, we have organized the presen­
tation into three major sections: 

1. The era before van der Waals 
2. The contributions of van der Waals 
3. The era after van der Waals 

In the hundred years or so since van der Waals, progress toward a 
comprehensive molecular theory of fluids has been propelled by the 
interaction of theory, laboratory experiment, and, more recently, com­
puter simulation. Each of these three modi operandi is addressed in the 
discussion of the era after van der Waals. 

The scope of this survey chapter is necessarily restricted. Although 
intramolecular and intermolecular potential energy functions are usually 
taken as known in molecular-based studies of fluids, the measurement 
of such potentials and development of realistic model potentials is a 
complex undertaking. We do not discuss studies of potential functions, 
per se, other than to describe a basic pair potential in Figure 2. The 
chapter by Murthy et al. in this volume and other literature (1-3) deal 
with that subject in more detail. There are approaches toward prediction 
of physical properties in which detailed knowledge of potential functions 
is avoided; Kerley's contribution to this book is one such approach. 

More generally, the scope of this introductory chapter is limited to 
prominent developments in the study of static properties of fluids. The 
study of dynamic properties—transport properties, relaxation proc­
esses—is an important and active area of current research. In this volume, 
the chapter by Kiefer and Visscher presents an original attack on one of 
the many problems in that area. Other publications focus on the de­
scription of dynamic properties of fluids (4-6). 

We have, in this introductory chapter, sacrificed thoroughness in 
documentation in favor of an educational tone directed toward those 
readers who are uninitiated in the mysteries of fluid state physics. We 
hope those experts who do not find their work directly referenced here 
will be able to find such citations in other chapters of this volume. In 
any event, a thorough discussion of the historical development and recent 
progress toward a complete molecular theory of fluids would be a veri­
table feast compared to the meager aperitif presented here. 

The Era Before van der Waals 

Aside from a fairly superficial discussion of forces in fluids by Isaac 
Newton in his Principia Mathematica near the end of the 17th Century 
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4 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 2. Intermolecular potential functions. 
A schematic intermolecular potential energy function is shown for two spherically 

symmetric molecules, separated by a distance r. For separations r < rm , the net force 
acting on the molecules is repulsive and arises primarily from overlap of electron clouds. 
For r > rm , the net force is attractive and is primarily due to induction of temporary 
dipoles via momentary distortion of the electron clouds. In general, a number of ex­
perimental techniques are required to determine the full potential curve shown here. 
These techniques include: high (A) and low (B) temperature measurements of second 
virial coefficients, high (D) and low (C) temperature measurements of dilute gas vis­
cosities, and molecular beam experiments (B and E). The letters (A-E) indicate the 
approximate portion of the potential curve that is most sensitive to the corresponding 
experiment. In addition, solid-state properties may be used to check values of the po­
tential parameters e and cr determined from other experiments and to estimate the 
magnitude of multi-body interactions, as opposed to the purely two-body potentials 

described in this figure (3). 

(7), there was little important experimental or theoretical work done on 
dense fluids until the early 1800s. In 1808 Pierre Simon Laplace pub­
lished the first book of his multivolume treatise, Mecanique Celeste, 
which contained a description of fluid equilibrium and fluid motion (8). 
In a supplement to the treatise, Laplace developed a theory of capillary 
phenomena that would influence many later workers, including van der 
Waals. 

Early Motivation for the Study of Fluids. There were several rea­
sons for the early research on fluids at moderate to high densities. A 
primary motivation was to demonstrate that any substance would, under 
the proper conditions of temperature and pressure, exist in any of the 
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1. MANSOORI AND HAILE Historical Survey 5 

three states of matter—solid, liquid, and gas. This had been conjectured 
much earlier than 1800; John Dalton was merely repeating the conjecture 
when in 1807 he included the following statements in his formulation of 
the atomic theory (9): 

There are three distinctions in the kinds of bodies, or 
three states . . . ; namely, those which are marked by the terms 
elastic fluids, liquids, and solids. A very familiar instance is 
exhibited to us in water, . . . which, in certain circumstances, 
is capable of assuming all the three states. 

A second motivation was the study of deviations from ideal gas 
behavior. The combined laws of Charles, Boyle, and Gay-Lussac pro­
duced an ideal gas equation of state of the form 

PV/T = R (1) 

in which P is the absolute pressure exerted by a gas of specific volume 
V at absolute temperature T, and R is a constant. There was considerable 
interest in determining whether Equation 1 applied to all gases and in 
discovering the range of conditions of state over which Equation 1 was 
valid. 

A third motivation was the accumulation of indirect evidence for 
the existence of intermolecular forces in matter. Again, Dalton had reached 
very clear ideas on this subject, as indicated by his conclusion (10) that 

The constitution of a liquid, as water, must then be con­
ceived to be that of an aggregate of particles, exercising in a 
most powerful manner the forces of attraction and repulsion, 
but nearly in an equal degree. 

Early Work to 1850. The experimental challenge in research on 
fluids in the nineteenth century was to liquefy all substances that were 
known to be gaseous near ambient temperature and atmospheric pres­
sure. It is not known who first discovered that gases could be liquefied 
by a combination of cooling and compression, but the Dutch chemist 
van Marum was probably the first to knowingly liquefy a substance—it 
happened to be ammonia—liquefied in the latter part of the eighteenth 
century (JJ, 12). By 1800, several gases had been liquefied; Michael 
Faraday has given a historical review of much of that early work up until 
1823 (13). 

In the years 1822-23 Charles Cagniard de la Tour reported (14-16) 
his observations of what we now call the gas-liquid critical point. Ca­
gniard de la Tour was not attempting to liquefy gases; rather, he was 
approaching the problem from the opposite direction by vaporizing liq-
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6 MOLECULAR-BASED STUDY OF FLUIDS 

uids in a sealed tube. He found that above a certain temperature, a liquid 
could be completely vaporized in an enclosed container. Although largely 
neglected, this discovery was of crucial importance to both the practical 
problem of gas liquefaction and the more abstract problem of developing 
a molecular theory of fluids. 

In 1823 Sir Humphrey Davy and Faraday reported the temperatures 
and pressures at which several gases could be liquefied (17). Their studies 
included chlorine, ammonia, hydrogen sulfide, hydrochloric acid, and a 
number of other substances. Subsequently, Faraday undertook his well-
known work on electricity and electrolyte solutions, but in the early 
1840s he sought relief from that intense labor by returning to the problem 
of gas liquefaction. He reported successful liquefaction of a number of 
gases (18), reaching temperatures of about -90 °C and pressures of 50 
atm. However, he was unable to liquefy hydrogen, oxygen, nitrogen, 
carbon monoxide, methane, and nitric oxide. These became known as 
"permanent" gases and, over the next decade or so, many researchers 
made serious, though unsuccessful, attempts to liquefy them. Prominent 
among those attempts was the work of Natterer, who, it is reported (19-
22), applied pressures of as much as 3000 atm., but at room temperature. 

Faraday himself did no further work on the problem, but he was 
familiar with Cagniard de la Tour's discovery and understood its impli­
cations. Thus, in 1845 we find Faraday writing (18): 

Again, that beautiful condition which Cagniard de la Tour 
has made known, and which comes on with liquids at a certain 
heat, may have its point of temperature for some of the bodies 
to be experimented with, as oxygen, hydrogen, nitrogen, etc., 
below that belonging to the bath of carbonic acid and ether; 
and in that case, no pressure which any apparatus could bear 
would be able to bring them into the liquid or solid state. 

Faraday's published papers on gas liquefaction have been assembled into 
a little volume by the Alembic Club of Edinburgh (23). 

In 1850 Pierre Eugene Marcelin Berthelot performed an experiment 
that demonstrated the presence of cohesive forces in liquids. The ex­
periment involved sealing a liquid in a glass tube and heating the system 
until the liquid expanded, filling the tube. The tube was then cooled, 
producing tensions of as much as 50 atm. before the liquid collapsed. 
Two decades later, van der Waals incorporated the idea of cohesive forces 
into his equation of state. 

Heidelberg, 1851-61. During the 1850s, while fruitless efforts were 
being made to liquefy the "permanent" gases, a collaboration between 
Robert Bunsen and Gustav Kirchhoff at Heidelberg culminated in 1859 
with the development of spectroscopy—an analytical technique that was 
to have far-reaching impact on much of science, including the study of 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

01



1. MANSOORI AND HAILE Historical Survey 7 

fluids. Almost immediately, Kirchhoff turned the spectroscope towards 
the sun and identified a number of elements in the solar spectrum. In 
the mid-1860s Janssen (24) and Lockyer (25) performed spectral analyses 
of the solar atmosphere and identified a new element that Lockyer named 
helium. A popularized account of the Bunsen-Kirchhoff discoveries has 
been given by Gingerich (26). 

During the period 1859-60 the Russian chemist Dmitri Ivanovich 
Mendeleev was visiting Bunsen and Kirchhoff at Heidelberg. Mendeleev 
established a small laboratory of his own there and studied capillary 
phenomena of fluids, deviations from ideal gas behavior, and thermal 
expansion of liquids (27-30). In 1860, Mendeleev was studying surface 
tensions of liquids when he rediscovered the gas-liquid critical point— 
which he called the "absolute boiling point" (31). This discovery con­
firmed the earlier work of Cagniard de la Tour and was repeated a year 
later by Andrews. While in residence at Heidelberg, Mendeleev at­
tended a conference in Karlsruhe that directed his thinking along the 
path to the periodic table. 

The Era of Andrews and van der Waals, 1861-73 

Thomas Andrews was trained as a medical doctor and had practiced 
medicine before assuming a position as professor of chemistry in Belfast. 
Andrews had begun his research on fluids by attempting to liquefy the 
permanent gases. Failing at this, he turned, in 1861, to carbon dioxide. 
He found that at temperatures below 31 °C, carbon dioxide could be 
liquefied by applying sufficient pressure. However, above 31 °C lique­
faction would not occur at any pressure. Andrews hypothesized that such 
a state existed for all fluids and called it the critical point. His experiments 
were first made public in the 1863 edition of W. A. Miller's textbook 
(32). In 1869 Andrews gave the Royal Society's Bakerian lecture, which 
he entitled "On the continuity of the gaseous and liquid states of matter" 
(33-35). 

During the years 1862-72 a young Dutchman, Johannes Diderik 
van der Waals, was engaged in his doctoral work at Leiden. His research 
on fluids was a theoretical study based on Maxwell's kinetic theory of 
gases and Laplace's studies of capillary phenomena. On learning of An­
drews's identification of the critical point, van der Waals resolved that 
his theory should account for the behavior of fluids both above and below 
the critical point. By accepting the molecular hypothesis, including the 
ideas that molecules are of finite size and exert forces on one another, 
van der Waals arrived at his celebrated equation of state (36) 

P = RT/(V-b) - a/V2 (2) 

Here, a and b are parameters characteristic of a particular fluid. Param-
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8 MOLECULAR-BASED STUDY OF FLUIDS 

eter a measures the attractive forces among the molecules, and parameter 
b measures the molecular volume. This equation of state unified the 
experimental knowledge of 1875, for it not only accounted for deviations 
from the ideal gas law, Equation 1, but also predicted gas-liquid equi­
librium and the existence of a critical point. Further, van der Waals 
concluded that critical phenomena result from a balance of contributions 
from short-range repulsive forces and long-range attractive forces acting 
between molecules. This conclusion is perfectly valid today, and we now 
know that the a/V2 term in Equation 2 is the rigorous consequence of 
assuming weak attractive forces acting at long range (37, 38). 

Surprisingly enough, the qualitative accuracy of Equation 2 extends 
far beyond the experimental knowledge of the 1870s, for by extending 
it to mixtures, van der Waals and others (39, 40) have predicted a wealth 
of phase equilibrium behavior. For example, van der Waals used Equa­
tion 2 to predict the possibility of phase separations in binary mixtures 
above the critical point. This is gas-gas equilibrium, so-called, and its 
existence was experimentally verified in 1940 (41). Gas-gas equilibrium 
is discussed in the chapter by Deiters in this book. A general classification 
scheme for fluid phase equilibria, originally based on solutions of Equa­
tion 2 for mixtures, is discussed in the chapter by Shing and Gubbins. 
Though qualitatively correct, the van der Waals equation is quantitatively 
inaccurate in the high density regions of the phase diagram. In industrial 
situations, it has been supplanted by more reliable, albeit more com­
plicated, equations of state. 

In addition to the equation of state, Equation 2, van der Waals 
developed the principle of corresponding states. This principle hypoth­
esizes that the functional relations among pressure, temperature, and 
volume are the same for all fluids, and hence the phase diagrams for all 
fluids can be made to coincide by a proper scaling of P, T, and V. 
Physically, the critical point is the "corresponding" state among all fluids, 
so the scaling can be accomplished by using the critical values P c, T c , 
and Vc. A graphic interpretation of the idea of corresponding states is 
presented in Figure 3. 

The thesis of J. D. van der Waals "On the Continuity of the Liquid 
and Gaseous States," was published in 1873. In 1910 he was awarded 
the Nobel prize for his work on fluids. In his Nobel lecture, van der 
Waals referred to the importance of a molecular approach to fluids in 
the following way (42): 

It will be perfectly clear that in all my studies I was quite 
convinced of the real existence of molecules, that I never re­
garded them as a figment of my imagination, nor even as mere 
centres of force effects. I considered them to be the actual 
bodies . . . . When I began my studies I had the feeling that 
I was almost alone in holding that view. And when, as occurred 
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1. MANSOORI AND HAILE Historical Survey 9 

Figure 3. Corresponding states. Top, parts (a) and (b) show the micro­
scopic explanation of corresponding states. Bottom, parts (c) and (d) show 

use of this concept. 
In (a), the intermolecular potential energy functions of two pure substances a and 

(3 have the same functional form but different values of the parameters e and a. Thus, 
these two potential curves may be made to coincide by plotting in reduced quantities, 
U * = U/e and r* = r/a, as is done in (b). The utility of the corresponding states idea 
is illustrated in (c) and (d). In (c), the phase diagrams of substances a and 0 occupy 
different regions of pressure-density space. However, the diagrams can be made to 
coincide by plotting in reduced quantities, as in (d). The reduction may be done either 

in terms of potential parameters, as shown here, or in terms of critical properties. 

already in my 1873 treatise, I determined their number in one 
gram-mol, their size and the nature of their action, I was 
strengthened in my opinion, yet still there often arose within 
me the question whether in the final analysis a molecule is a 
figment of the imagination, and the entire molecular theory 
too. And now I do not think it any exaggeration to state that 
the real existence of molecules is universally assumed by phys­
icists . Many of those who opposed it most have ultimately been 
won over, and my theory may have been a contributory factor. 
And precisely this, I feel, is a step forward. 
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10 MOLECULAR-BASED STUDY OF FLUIDS 

The Era After van der Waals 

Molecular Theories. B A C K G R O U N D W O R K , 1873-1905. Even 
though the van der Waals equation of state, Equation 2, does not tell us 
much about microscopic structure in dense fluids, it represents the first 
successful interpretation of macroscopic fluid properties in terms of mo­
lecular quantities. Thus, by 1873 a reasonably accurate theoretical de­
scription of fluids was available before the practical requirements of sci­
ence and engineering demanded it. During the remaining years of the 
nineteenth century, two gifted theorists—Boltzmann and Gibbs—estab­
lished the foundations of statistical mechanics, the bridge that connects 
molecular behavior with macroscopic fluid properties. 

Ludwig Boltzmann set out to obtain a molecular interpretation of 
the second law of thermodynamics. That work culminated in a demon­
stration that the second law has a statistical character (personified as 
Maxwell's demon). During the course of his work, Boltzmann accom­
plished a number of other objectives. These included a rigorous proof 
of Clerk Maxwell's kinetic theory of gases; development of many of the 
fundamental concepts of statistical mechanics, such as phase space, er-
godic systems, and the H-theorem; and a derivation of the Boltzmann 
transport equation. His work on fluids is summarized in Vorlesungen 
iiber Gastheorie, for which there is an English translation by Brush (43). 

Boltzmann was as much interested in the philosophy of science, 
metaphysics, as he was in ordinary physics, which he called orthophysics. 
Thus, he was involved in arguments raging at the time as to whether 
molecules actually exist or are merely models of nature. By 1895, Boltz­
mann was satisfied that the kinetic theory of gases verifies the atomic 
theory (44): 

But this theory (the kinetic theory) agrees in so many 
respects with the facts, that we can hardly doubt that in gases 
certain entities, the number and size of which can roughly be 
determined, fly about pell-mell. 

J. Willard Gibbs was the preeminent American scientist of the nine­
teenth century, though this fact was not immediately recognized. Gibbs 
earned a Ph.D. in 1863 from the Sheffield Scientific School of Yale 
University for his thesis, "On the Form of the Teeth of Wheels in Spur 
Gearing," a decidedly practical problem. He also invented and patented 
a railway car brake and invented a governor for steam engines (45). It is 
interesting that two of the theoreticians with the most fertile minds of 
the last hundred years—Gibbs and Einstein—should both have served 
apprenticeships in such practical, mechanical environments as provided 
by gears, brakes, and patent offices. From 1866 to 1869 Gibbs traveled 
in Europe, absorbing the leading scientific ideas of the time. During 
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1. MANSOORI AND HAILE Historical Survey 11 

1868-69 he visited Heidelberg, where he was influenced by Helmholtz 
and Kirchhoff. 

From 1871 until his death in 1903 Gibbs served as professor of 
mathematical physics at Yale. From 1876 to 1878 he published his mag­
num opus, "On the Equilibrium of Heterogeneous Substances," which 
appeared in the obscure journal, Transactions of the Connecticut Acad­
emy (46, 47). With this one work, Gibbs single-handedly established the 
field of fluid phase equilibrium and solved many of its important prob­
lems. Among other things, the work included the criteria for phase equi­
librium, the Gibbs adsorption equation for concentration in fluid inter­
faces, and the celebrated phase rule. The work is a monumental 
achievement in classical thermodynamics; all its results are deduced solely 
from the first and second laws of thermodynamics. Following publication 
of that work, Gibbs turned to a study of the molecular explanations 
underlying his classical thermodynamic results. The product of this fur­
ther study was the first textbook in statistical mechanics, published in 
1902 (48). 

By the turn of the century, several empirical and semiempirical 
equations of state, in addition to Equations 1 and 2, were in use. Prom­
inent among them were various forms of the virial equation of state. The 
virial equation is a Taylors expansion of the compressibility factor Z = 
PV/RT in density, p, about that for an ideal gas (Z = 1), 

Z = 1 + Bp + Cp 2 + Dp 3 + . . . (3) 

where B, C, etc., are the virial coefficients, e.g., 

B = \^\ (4) 

Kamerlingh Onnes (49, 50) in 1901 was one of the first to write down a 
form of Equation 3, and it was Onnes who suggested the name virial 
coefficients. A summary of the historical development of the virial equa­
tion has been given by Spurling and Mason (51). 

M O D E R N APPROACHES. For a number of years, the virial equation 
of state was treated as an empirical expression; values of the coefficients 
were estimated by fitting to experimental data. In the 1930s, Joseph 
Mayer (52, 53) showed that the virial equation has a rigorous derivation 
in statistical mechanics and, further, that the coefficients are related to 
intermolecular forces in an appealing way. Thus, the second virial coef­
ficient, B, is related only to two-body interactions, the third, C, only to 
two-body and three-body interactions, and so forth. The virial equation 
has, therefore, assumed importance as both a practical tool and an en-
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12 MOLECULAR-BASED STUDY OF FLUIDS 

lightening statement on the theory of macroscopic and microscopic prop­
erty relations. Consequently, the problems of, at least, thermodynamic 
properties of imperfect gases can be considered to be solved. 

Unfortunately, the virial equation fails to converge at liquid den­
sities, so new attacks have had to be formulated for a statistical mechanical 
description of the liquid state. A survey of this work is given in Reference 
152. In the brief summary here, we divide these approaches into (1) 
interpretive techniques, (2) predictive techniques, and (3) perturbation 
and variational techniques. 

Interpretive Approaches. Interpretive approaches to the molec­
ular theory of fluids begin with an approximate description of microscopic 
structure in fluids, as shown in Figure 4. These approaches are called 
lattice theories because the liquid structure is customarily assumed to 
resemble the regular lattice structure of crystalline solids (54, 55). As­
sumptions regarding structure must be guided both by physical reality 
and by the ability to calculate thermodynamic properties of the substance 
under consideration. For crystalline solids, these requirements are har­
monious because solids are known to have regular structures that are 
disturbed only slightly by thermal motion. Such regular and more or 
less static structures lead to a statistical mechanical partition function 
that can be used for calculations of thermodynamic properties. Liquids, 
however, offer a serious challenge to the viability of interpretive ap­
proaches because liquid structure is continually changing and can be 
visualized only on an instantaneous basis. To account for this physical 
reality in liquids, a static average over the instantaneous structure may 
be used. Such an approach may lead to a satisfactory lattice theory for 
liquids. Advanced lattice theories of the liquid state require complicated 
combinatorial mathematics to achieve realistic models of liquid structure 
(55). 

Predictive Approaches. Predictive statistical mechanical tech­
niques place initial emphasis on the process by which the intermolecular 
forces determine the structure, in the hope that a correct mathematical 
description of this process will lead to equations whose solutions describe 
the actual liquid structure (37, 38, 56-58). Theories of this class are often 
called distribution function theories, because the resulting equations 
involve molecular distribution functions that specify the probability of 
finding sets of molecules in particular statistical mechanical configura­
tions. The measurement of local structure in fluids via molecular distri­
bution functions was introduced by John Kirkwood in the mid-1930s (59). 
The definition of such functions was motivated by the discovery in the 
1920s that X-ray diffraction could be used to obtain the radial distribution 
function g(r) in atomic fluids. The function g(r) is a measure of the prob­
ability of finding two atomic centers separated by a distance r. One of 
the earlier and best experimental papers that describes the measurement 
of g(r) is an extensive one on argon (60). 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

01



1. MANSOORI AND HAILE Historical Survey 13 

r 

Figure 4. Local structure in matter. 
Local structure may he characterized by a pair distribution function g(r) that is 

related to the probability of finding pairs of molecules separated by distances r. The 
limiting values of g(r) with distance and density are illustrated here. At short range, g(r) 
vanishes because of excluded volume effects; at long range, g(r) goes to unity because 
g(r) is normalized by the bulk density. At low densities there is essentially no local 
structure in the fluid and g(r) quickly assumes its long range limit. In crystalline solids, 
structure persists to larger r, and g(r) is a series of Gaussian functions, corresponding 
to molecular vibrations about lattice sites. At liquid densities, the fluid exhibits short 
range structure similar to the solid and long range disorder characteristic of the gas 

phase. 

Three distribution function theories, the Yvon-Bogoliubov-Born-
Green-Kirkwood (YBBGK), Percus-Yevick (PY), and hypernetted chain 
(HNC) theories, are the basis for the various theories now available in 
the predictive class. These three theories have rather different origins, 
and each requires specific initial assumptions to produce tractable results. 
It is generally conceded that the PY theory is capable of predicting 
thermodynamic properties of liquids and vapors more accurately than 
the other two theories. The YBBGK theory does, however, possess unique 
features, such as the ability to predict qualitatively a freezing transition. 
Overall, these theories are deemed sufficient for predicting properties 
of atomic fluids such as argon. 

For molecular liquids, mathematical solution of the distribution 
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14 MOLECULAR-BASED STUDY OF FLUIDS 

function theories is more complicated than for atomic fluids. In the H N C 
theory for molecular fluids, simplifications can be obtained by expanding 
a logarithmic term; this leads to the linearized (LHNC) and the quadratic 
(QHNC) versions of the theory (61, 62). The L H N C theory turns out to 
be equivalent to another theory of molecular fluids called the generalized 
mean field theory (63). In general, L H N C and Q H N C are capable of 
predicting properties of dipolar and quadrupolar fluids. Such develop­
ments in the predictive approach have produced analytic results that are 
of both scientific and industrial importance (58, 64). 

Perturbation and Variational Approaches. These theories arise from 
expansions of the free energy, or partition function, of a substance about 
a relatively simple reference substance for which analytic molecular ther­
modynamic relations are in hand (58, 65-71). The reference system could 
be a fluid whose molecules interact with a simple potential function and 
whose properties have been obtained from interpretive or prediction 
theories or from computer simulation. This is precisely the motivation 
for the work on hard convex bodies presented by Boublik later in this 
book. 

The basis of perturbation and variational theories is an idea that can 
be traced back to the van der Waals equation of state, Equation 2. 
According to this idea, repulsive intermolecular forces are the dominant 
effect in determining the structure in dense fluids, while attractive forces 
play only a minor role in determining structure. Attractive forces are 
largely responsible for maintaining the stability of liquids at high den­
sities. 

The successful perturbation and variational theories usually expand 
about reference fluids whose intermolecular forces are repulsive only. 
However, there are several exceptions to this general observation. One 
is the case of associating molecular fluids (those with hydrogen bonding) 
for which attractive forces among the molecules are so large that they 
compete with repulsive forces in determining structure (72). Another 
exception is the case of fused salts. In fused salts the attractive charge-
charge interactions produce a local structure known as charge layering 
(73). 

If we consider Equation 2, the van der Waals equation of state, as 
the first perturbation theory for fluids, then the next advance occurred 
in the early 1950s when Zwanzig (74) introduced a perturbation theory 
for atomic fluids and Pople (75) made an analogous development for 
molecular fluids. Further progress was not made until the 1960s, when 
computer simulation data became available for simple model fluids that 
could serve as references in the theoretical expansions. Perturbation and 
variational theories have been quite successful in predicting thermody­
namic properties of gases, liquids, and solids, and there remain broad 
prospects for extending these approaches to various kinds of fluid sys­
tems. 
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1. MANSOORI AND HAILE Historical Survey 15 

In this book, the chapter by Henderson summarizes the develop­
ment of perturbation theories for atomic fluids. In the chapters by Kohler 
and Quirke and by Smith and Nezbeda perturbation theories are applied 
to problems posed by molecular fluids. In the chapter by Singh and 
Shukla these ideas are extended to mixtures of molecular fluids. 

Variational theories offer at least one unique feature among molec­
ular theories for fluids. This feature is the prediction of the melting 
transition or melting curve (65, 66). Applications of the variational ap­
proach are discussed in detail in the chapter by Kerley. 

F L U I D INTERFACIAL P H E N O M E N A . The interfacial regions between 
bulk phases of matter (e.g., liquid-vapor, solid-liquid, and liquid-liquid 
regions) have posed fascinating and challenging problems for both the­
orists and experimentalists. A meaningful description of such interfaces 
is much more difficult to attain than description of bulk phases because 
of the nonhomogeneous, anisotropic nature of the interfacial region. Study 
of interfacial phenomena is of practical importance, for example, in at­
tempting to promote mass and energy transfer across phase boundaries, 
in catalysis, in lubrication, and in fuel cell technologies. The primary 
problems to be solved include (1) descriptions of relations between in­
terfacial properties, such as surface tension, and molecular distribution 
functions; and (2) prediction of species adsorption in the interfacial region. 

The historical development of theories for interfacial properties largely 
parallels that for bulk fluids. Thus, as mentioned earlier, Laplace worked 
on a theory of capillary phenomena in the early 1800s (8). J. D. van der 
Waals developed a theory of fluid interfaces that was published in 1893 
but that has only recently been translated into English, by Rowlinson 
(76). Gibbs also studied interfacial phenomena; he developed much of 
the classical thermodynamics of interfaces and showed how the interfacial 
tension is affected by adsorption of species in the interface (46, 47). 

Modern theories for describing fluid interfaces include an updating 
of the van der Waals theory (77), distribution function theories initiated 
by Kirkwood and Buff (78, 79), and perturbation theories for atomic (80) 
and molecular (81-83) fluids. Recently, ellipsometry has been used to 
measure experimentally the microscopic adsorption of material in a liq­
uid-liquid interface (84). Extensive reviews of work on interfacial prob­
lems are available (85-88) and a new work on fluid interfaces (153) is a 
valuable addition to the literature. The chapter by Fischer in this book 
deals with vapor-liquid interfaces while the chapter by Henderson ad­
dresses the wall-ionic fluid problem. Figure 5 provides an example of 
the application of computer simulation to problems of interfacial phe­
nomena. 

Experimental Techniques. In the 19th Century, conjectural re­
lations between microscopic and macroscopic phenomena in fluids were 
largely based on inferences from measurements of macroscopic proper­
ties. With the development of sophisticated experimental methods has 
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16 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 5. Nonuniform fluids. 
This figure shows one configuration from a molecular dynamics simulation of a 

liquid droplet, in vacuo, initially formed from 138 spherical molecules. The intermo­
lecular interactions in this simulation were modeled by a Lennard-Jones 6-12 potential 

function. The temperature of the droplet, in reduced units, was kT/e = 0.71 (150). 

come the ability to probe more directly the molecular-scale nature of 
matter. In this superficial review, we discuss available experimental 
methods in the following three categories: 

1. Thermodynamic property measurements, such as pres­
sure-volume-temperature (PVT) experiments, calorimet-
ric methods, and phase equilibrium studies 

2. Radiation scattering experiments, including Raman and 
Rayleigh light scattering, X-ray diffraction, and neutron 
scattering 

3. Molecular relaxation processes, such as transport, dielec­
tric relaxation, ionic diffusion, and migration 

Through the van der Waals era, measurement of bulk fluid ther­
modynamic properties (particularly PVT experiments, calorimetry, and 
phase equilibrium studies) was the primary means of gleaning information 
on the molecular nature of fluids. The prominent experimentalists of the 
last hundred years include Dewar, who invented the vacuum insulated 
bottle and first liquefied air and hydrogen in large quantities (89); Ramsay, 
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1. MANSOORI AND HAILE Historical Survey 17 

who, in collaboration with Lord Rayleigh, discovered argon and went on 
to discover the other noble gases—krypton, neon, and xenon (90-92); 
and Kamerlingh Onnes, who first liquefied helium and explored the 
behavior of matter at temperatures near absolute zero (93-96). The tra­
dition of high quality experimental work at Leiden under Kamerlingh 
Onnes was continued by Michels. Giauque performed a number of ac­
curate experiments to test the validity of the third law of thermodynamics 
(97). In the first half of the 20th Century several prominent experimen­
talists resided in the U.S.; these include: Beattie at Massachusetts In­
stitute of Technology, Bridgman (98) at Harvard, Dodge at Yale, Kurata 
at Kansas State, and Sage and Lacey at California Institute of Technology. 
For an abbreviated historical summary, see Reference 99. 

Today, the study of thermodynamic properties and phase diagrams 
under conditions of extreme pressures and temperatures remains of im­
portance both for satisfying industrial needs and for investigating inter­
molecular forces (100, 101). In this book, the chapter by Deiters reports 
on recent experimental PVT and phase equilibrium results and illustrates 
how such data help support theoretical developments. Often the infi­
nitely dilute region of mixture phase diagrams is neglected in the mo­
lecular study of fluids; in this volume, Jonah assesses the importance of 
infinitely dilute solutions. 

Traditional exploration of intermolecular forces in terms of ther­
mophysical properties was carried out only indirectly; that is, assumed 
forms for intermolecular pair potentials were fitted to experimental data 
such as sfecond virial coefficients and viscosities. Recently, Smith and co­
workers (3, 102, 103) have devised methods for directly inverting mac­
roscopic property data to obtain the pair potential in atomic fluids. Fur­
ther, recent studies of short-range intermolecular forces have been car­
ried out under extreme pressures by imparting shock waves to the fluid 
(104). 

Direct experimental study of molecular phenomena in fluids now 
primarily relies upon radiation scattering methods, particularly light, X-
ray, and neutron diffraction. The basic theoretical analysis of light scat­
tered from a sample was first performed by Lord Rayleigh in 1871 (105). 
Since the wavelength of visible light is two to three orders of magnitude 
larger than the intermolecular spacing at liquid densities, light scattering 
is unable to provide details of local structure in liquids (106). However, 
in the region of the critical point of both pure fluids and mixtures, spatial 
c&rrelations become long range, and therefore light scattering is widely 
used in the study of critical phenomena (106). Further, methods are 
under development for using depolarized light scattering to probe local 
orientational structure in fluids (107-109). 

From the time of Roentgen in the 1890s (110), there was interest 
in developing a method for using X-ray diffraction to analyze the mo-
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18 MOLECULAR-BASED STUDY OF FLUIDS 

lecular structure of matter. By 1915 Debye (111) and Ehrenfest (112) 
were aware of how this could be done, and in the 1930s Menke and 
Debye (113) introduced X-ray diffraction as a viable quantitative tech­
nique for measuring local structure in fluids. The method may also be 
used to deduce forms for the intermolecular pair potential in simple 
fluids (114). Today, X-ray diffraction is widely used to study atomic and 
molecular fluids, fluid mixtures, and liquid metals (115,116). A simplified 
description of the method is given in Figure 6. For a recent discussion 
of local structure in fluids, see Reference 151. 

Neutron scattering is a more recent method, which probes both the 
static and the dynamic structure in fluids. It is, therefore, a more powerful 
experiment than X-ray diffraction, which is limited to determination of 
static structure. Results from neutron scattering experiments are more 
expensive to obtain and more difficult to analyze than are X-ray diffraction 
results. The classic book on the neutron diffraction method is that by 
Bacon (117); several more up-to-date reviews on the methods (118-120) 

Figure 6. Measurement of local structure. 
A simplified schematic diagram is shown of an X-ray or neutron diffraction exper­

iment for measuring local structure in fluids. An X-ray or neutron source, (a) provides 
an incident beam of radiation that is collimated and made monochromatic (b). The beam 
is then directed onto the fluid sample (c). One measures the intensity of the scattered 
radiation (d) with detectors (e) as a function of the diffraction angle 6. The measured 
intensity 1(8) is normalized with respect to an appropriate reference and corrected for 
a variety of secondary effects, such as background radiation, absorption, multiple scat­
tering, ana inelastic scattering. The normalized, corrected intensity produces the static 
structure factor S(q), where q = (4TT/\) sin (Q/2), and X is the wavelength of the incident 

beam. The Fourier transform of S(q) yields the pair distribution function g(r) (151). 
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1. MANSOORI AND HAILE Historical Survey 19 

and applications (J21, 122) are available. Egelstaff and coworkers have 
recently constructed a sensitive neutron diffractometer and used it in 
studies of structure and intermolecular potentials in gases (123-125). 

The general method in molecular relaxation studies is to apply a 
stress to the fluid and measure the time required for the fluid to come 
into equilibrium with the stress. Alternatively, the stress is applied and 
then removed, and the time needed for the fluid to relax back to equi­
librium is measured. In dielectric relaxation studies, the stress is an 
applied electric field; in measurements of diffusion coefficients, it is a 
gradient in concentration; for viscosity, it is a shear stress, and so forth. 
Such relaxation studies have not proven as fruitful as the static property 
measurements mentioned above. It seems likely that further advances 
in the fundamental theory of nonequilibrium processes will be necessary 
before a more detailed description of molecular motions can be extracted 
from experiment. 

Computer Simulation. IMPORTANCE. In some ways, molecular 
theory attains its highest degree of conceptualization in the simulation 
of matter on digital computers. These simulations use individual particles 
as the basic entity under study, and a collection of several hundred or 
a few thousand particles comprises the system to be simulated. To define 
the system properly, one must specify four items: 

1. The structure of the individual particles 
2. The state of the system; e.g., the number of particles per 

unit volume of system, the number of particles present of 
a particular species, the average kinetic energy of the par­
ticles 

3. The nature of forces acting among the particles 
4. The nature of the interaction of the system with its sur­

roundings 

The simulation then determines how the system behaves under 
these four basic constraints. Typically, the system behavior is measured 
by monitoring the particle positions and various properties that depend 
on those positions. In some simulations, various time derivatives of the 
positions and related quantities are also evaluated. Depending on the 
particular nature of the particles and their relation with the environment, 
as embodied in the four attributes cited above, the simulation may evoke 
an interpretation as any of a variety of physical situations. Examples 
include such interpretations as molecules in a beaker of water, atoms on 
a polyethylene molecule, molecules on a two-dimensional surface, ions 
in a high energy plasma, or stellar material forming a galaxy. The book 
by Hockney and Eastwood gives an overview of many of these applica­
tions of computer simulation (J26). 

Much of the importance of computer simulation stems from its in-
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20 MOLECULAR-BASED STUDY OF FLUIDS 

teraction with and stimulation of theoretical and experimental work. In 
comparisons of theoretical and simulation results, simulation plays the 
role of experiment with the object of ascertaining the adequacy of a 
proposed theory under conditions that can be met in both the theory 
and the simulation. In this way certain ambiguities that may arise in 
comparisons of theory and experiment can be avoided. An example is 
the study of bulk fluids, in which the same intermolecular force law can 
be adopted in both theory and experiment, removing the force law as 
an unknown in testing the theory. Much work has been performed using 
simulation in this way and one often sees simulation referred to as a 
computer experiment (127-131). 

An alternative use of simulation is the comparison of experiment 
and simulation in which one attempts to mimic nature as closely as 
possible. Using bulk fluid studies again as an example, consider the 
problem of determining the form of an intermolecular potential function 
for a particular fluid. A form for the potential is chosen, the simulation 
is performed, and properties obtained from the simulation are compared 
with laboratory results for the real fluid. At this point, a trial-and-error 
approach is adopted in which one alternately modifies the potential func­
tion and performs further simulation. In this case, the simulation becomes 
an extension of theoretical modeling and probably should not be inter­
preted as an experiment (72). Because of the importance of water, ex­
tensive efforts have been made to mimic water accurately by computer 
simulation. In this volume, the chapters by Rossky and Hirata and by 
Beveridge et al. report on recent advances in the study of water via 
simulation-experiment comparisons. 

This modeling aspect of simulation assumes a larger role than merely 
an attempt to approximate nature. As in most modeling studies, simu­
lations in this vein enable one to probe how changes in particular aspects 
of the model affect the overall system behavior. For example, studies 
may be performed to discover the effects of modifying interparticle and 
intraparticle forces; system temperature, pressure, or composition; or 
the strength or character of the system's interaction with its surroundings. 
The chapter by Szczepanski and Maitland in this book is an illustration 
of this type of work. Such studies have suggested fruitful lines of inquiry 
for further work by both theorists and experimentalists. 

M E T H O D S A N D APPLICATIONS. The application of computer simu­
lation to the study of fluids has its origins in the mid-1950s at certain 
U.S. national laboratories. The first simulation method to be applied to 
fluids was the Monte Carlo technique, which appeared in 1953 (132), 
followed by the molecular dynamics technique in 1959 (133). Monte Carlo 
embraces the ensemble averaging concepts of Gibbs (48) and is an ad­
aptation of the standard Monte Carlo method for evaluating multidi­
mensional integrals. The basis of the method is the realization of ensem-
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ble averages for properties of interest from a Markov chain of particle 
positions generated for a single system. Wood has given a description of 
the basic Monte Carlo method (134); a more recent collection of appli­
cations of the method is also available (135). 

The molecular dynamics method is based on the kinetic theory of 
Maxwell (136) and Boltzmann (43) and involves the determination of 
particle positions by numerically solving the coupled equations of motion 
given by Newton's laws. The paper by Hoover et al. in this book sum­
marizes the historical development and current applications of molecular 
dynamics. More detailed descriptions of the method are also available 
(127, 131, 137-139). 

Since the early 1960s, Monte Carlo and molecular dynamics have 
been applied to systems of increasing complexity. From fluids composed 
of hard spheres, methods have evolved to deal with soft spheres, rigid 
linear molecules, rigid nonlinear polyatomics, and flexible polyatomic 
molecules. 

In addition to the ability to simulate complicated molecules, meth­
ods have been devised to simulate various system boundary conditions. 
Examples include gas-liquid and solid-fluid interfaces, as well as moving 
boundaries that give rise to shear or compression of the fluid. The growing 
number of problems that can be attacked with simulation has been ac­
companied by increasing availability of inexpensive, powerful computers. 
The result is that a large number of researchers are engaged in a variety 
of very different simulation studies. A catalog of applications of simulation 
to 1976 has been given by Wood and Erpenbeck (140). 

In addition to the evolution of methods for simulating particular 
physical systems, efforts have been made to improve the computing 
efficiency of the methods. The results of such efforts usually involve some 
hybrid of Monte Carlo and molecular dynamics that is particularly useful 
for a specific class of problems. These hybrid methods encompass a 
spectrum from the purely random motion occurring in Monte Carlo to 
the purely deterministic motion in molecular dynamics. Such a spectrum 
is depicted in Figure 7 (141). There is not space here to discuss all of 
these variations on the computer simulation theme; however, the Brown-
ian dynamics method should be mentioned as of growing importance in 
the study of large molecules. In this book, the chapter by Evans gives 
a description of the method, and in the chapter by Weber et al. the 
method of Brownian dynamics is applied to polyethylene. 

Review papers are available describing the application of computer 
simulation to the following problems: fluids composed of hard-core mol­
ecules (138), dynamic properties of monatomic liquids (142), equilibrium 
properties of fluids composed of linear molecules (143), water (72), polar 
fluids (144), supercooled liquids and solid-liquid phase transitions (145, 
146), dynamics of protein molecules (147), and intermolecular spectros-
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22 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 7. Relative degree of determinism in various simulation methods. 
Key: M M C , Metropolis Monte Carlo; FBMC, force-biased Monte Carlo; ISD, im­

pulsive stochastic dynamics; BD, Brownian dynamics; GLD, general Langevin dynamics; 
and MD, molecular dynamics (141). 

copy (148). In the present volume, Shing and Gubbins review the com­
puter simulation methods that have been devised for determining the 
free energy in pure fluids and mixtures. 

Conclusion 

The study of liquids and dense gases has a long history; as with most 
such endeavors, this history is one of problems recognized, encountered, 
and often overcome. Progress in the study of fluids met an impasse in 
the first half of the twentieth century when formal theoretical advances 
were far ahead of the calculational and experimental methods of the day. 
However, the power and availability of the digital computer has rectified 
that situation. 

In addition to the important advances made possible by the simu­
lation methods discussed in the previous section, the computer makes 
other contributions to fluid research. For example, the computer has 
made possible the numerical solution of complicated, nonlinear integro-
differential equations and evaluation of the multidimensional integrals 
that seem to be mainstays of molecular theory. Further, the computer 
has assumed an important role in controlling experimental devices, as 
well as in gathering and analyzing experimental data. There is some 
concern that the impasse of the first half of the 1900s may be reversed 
in the last quarter of the century, with the amount and detail of data 
provided by computer simulation and computer controlled laboratory 
experiments far outstripping the immediate ability of theory to organize 
and interpret that data. 

In any event, the field of fluid state physics is today flowering in 
richness and diversity. As the seeds of recent successes spread to related 
fields, we expect to see continued growth in the fundamental study of 
fluids and in the application of the newly acquired knowledge to problems 
of both industrial and academic concern. 
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2 
Historical Development and Recent 
Applications of Molecular Dynamics 
Simulation 

WILLIAM G. HOOVER, A. J. C. LADD, and V. N. HOOVER 
University of California, Davis, CA 95616 

The development of molecular dynamics is traced from Ga­
lileo's day to present day computation. Several applications 
are described. These indicate the broad scope of present 
day molecular dynamics: location of phase equilibria, char­
acterization of both linear and nonlinear transport prob­
lems, simulation of solid-phase plastic flow, and simulation 
of fluid-phase shock waves. 

M OLECULAR DYNAMICS IS T H E STUDY of molecules in motion under 
the influence of intermolecular forces. The first studies of molecular 

motion were applied mainly to gases, because gases, in which particles 
move about freely, were easiest to investigate. Although it was realized 
even before 1900 that the same treatment could, in principle, be applied 
to liquids and solids, these did not become important subjects of mo­
lecular dynamics until the advent of fast computers. A complete historical 
review can be found in Reference 1. 

As a separate field, molecular dynamics is barely 100 years old, 
dating from Maxwell's and Boltzmann's introduction of statistical methods 
to study large numbers of particles. But its origins go back to the be­
ginning of true scientific endeavor by Galileo nearly 400 years ago. Galileo 
Galilei (1564-1642) was the first to experiment systematically with moving 
objects, finding laws for velocity and acceleration. Around the same time, 
Johannes Kepler (1571-1630) labored to formulate the laws of planetary 
motion. Isaac Newton (1642-1727) combined and generalized the dis­
coveries of Galileo and Kepler to show that the force acting on falling 
objects on earth and on celestial objects was the same, that of gravity. 
Newton also developed calculus—the mathematical machinery needed 
to describe, through his laws of motion, a complete mechanical view of 
the universe. His precise treatment of mechanical phenomena has had 
an overwhelming impact and a validity unchallenged until quantum me­
chanics and relativity theory arrived in this century. 

0065-2393/83/0204-0029$06.00/0 
© 1983 American Chemical Society 
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30 MOLECULAR-BASED STUDY OF FLUIDS 

Eighteenth century scientists generalized and applied Newton's laws. 
Two Swiss colleagues, Leonhard Euler (1707-80) and Daniel Bernoulli 
(1700-82), fruitfully combined mathematics with mechanics. Euler con­
ceived the principal formulas of fluid dynamics. He formulated the equa­
tions of motion for simplified macroscopic fluid models. Bernoulli de­
veloped macroscopic models for fluids and solids that included wave 
motion. 

Near mid-eighteenth century, Euler's protege, Joseph Lagrange 
(1736-1813), produced a general variational description of Newtonian 
mechanics which became known as Lagrangian or analytical mechanics. 
A more general formulation of mechanics, which was later seen to un­
derlie quantum mechanics, was embodied in 1834 in Hamilton's "prin­
ciple of least action/' William Rowan Hamilton (1805-65), child prodigy 
in languages as well as mathematics, generalized Newton's equations into 
a form in which particle paths can be represented as minimal paths, and 
from which Lagrangian and Newtonian mechanics follow logically. Ham­
ilton's principle grew out of an analogy with his main research in optics, 
which is related to modern wave mechanics. 

The dynamical studies that resulted from Newton's work emphasized 
both celestial motion and that of tangible earthly matter. Eighteenth 
century experimenters formulated the gas laws to describe their obser­
vations on the relations between pressure and volume, and later tem­
perature, of gases. Extension of the macroscopic laws of motion to the 
molecular level came much later, in spite of the fact that particle theories 
of matter go back to suggestions by Leucippus, Democritus, and Epicurus 
around 400 B.C. (Greek atomos means indivisible). But Aristotle, for 
whom metaphysics, not the objective world, was basic reality, rejected 
the atomic notion. His prestige caused the particle idea to be suppressed 
during long centuries of Aristotelian supremacy. By the seventeenth 
century, the idea hesitantly reappeared. Newton cautiously assumed a 
corpuscular view of matter, but avoided detailing it; his ideas of inertia, 
momentum and gravity did not depend on the ultimate division of matter. 

The first to relate experimental gas law results to a dynamical theory 
involving motion of gas particles was Daniel Bernoulli. Bernoulli showed 
mathematically that gas pressure comes from the impact of minute gas 
particles against a surface. At the time, this original kinetic theory had 
astonishingly little effect on scientific thought. Bernoulli's theory was too 
advanced for his time and could not be accepted until more was learned 
about the nature of heat and the nature of particles themselves. 

Heat was a puzzling phenomenon to early scientists. Was it a sub­
stance or was it motion? Orthodox opinion dating from the Greeks held 
it to be a distinct material. But Francis Bacon (1561-1626) claimed, "Heat 
itself, its essence and quiddity, is Motion and nothing else." In Newton's 
time, Robert Hooke (1635-1703) concluded that "heat is nothing but a 
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2. HOOVER ET AL. Molecular Dynamics Simulation 31 

brisk agitation of the insensible parts of an object." But the eighteenth 
century, dominated by the concept of heat as a measurable quantity, 
rejected the vague idea of heat as motion, even after Bernoulli gave it 
mathematical precision in 1738 in his kinetic theory. The continuing 
official viewpoint into the nineteenth century regarded heat as a tangible 
fluid substance transferred from hot to cold objects, to which the name 
caloric was given in 1787 by Antoine Lavoisier (1743-94). Doubts were 
cast over the caloric theory by Benjamin Thompson, Count Rumford 
(1753-1814), an ingenious American turned European, whose observa­
tions on heat appearing in the process of boring cannons convinced him 
by 1804 that heat is vibratory particle motion. His ideas were taken 
further by the German physician Julius Mayer (1814-78), who in 1842 
suggested the general principle of conservation and equivalence of all 
forms of energy. Within a year, Mayer's radical proposal was verified by 
careful experiments on the mechanical equivalent of heat performed by 
James Prescott Joule (1818-89) in his Scottish brewery laboratory. 

The concept that heat and work were equivalent manifestations of 
energy formed the basis for the science of thermodynamics, and is stated 
in its first law. The principle underlying the second law appeared in the 
1824 memoir of Sadi Carnot describing his work on efficiency of steam 
engines. But not until 1852 did William Thomson, later Lord Kelvin 
(1824-1907), formally proclaim the "universal tendency in nature to the 
dissipation of mechanical energy." Thomson's dissipation principle was 
given its modern focus in 1865 when Rudolf Clausius (1822-79) devised 
the word entropy for describing the irretrievable degradation of all forms 
of energy into heat. 

The law of increasing entropy, by introducing a one-way direction 
to the workings of nature, was a major jolt to the mechanistic Newtonian 
system, which apparently could run just as well backwards as forwards. 
The reversibility of Newton's equations is only apparent, not real, be­
cause the equations are mathematically unstable for strongly coupled 
degrees of freedom. This means that a small change in initial conditions 
leads to catastrophic changes in subsequent particle trajectories; the nu­
merical precision required to reverse trajectories grows exponentially 
with elapsed time. Any tiny fluctuation, as is always found in real systems, 
suffices to introduce mathematically irreversible behavior. 

While macroscopic thermodynamics studied heat and energy, mi­
croscopic particle motion was clarified early in the nineteenth century 
through chemistry. Direct contact with then-hypothetical particles being 
impossible, it was left to chemists to establish atoms by examining chem­
ical combinations of various substances. John Dalton's studies of com­
bining ratios in compounds resulted in the law of multiple proportions. 
Gay-Lussac in France also investigated chemical reactions. Neither made 
a distinction between atoms and molecules. It was the task of Amadeo 
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32 MOLECULAR-BASED STUDY OF FLUIDS 

Avogadro (1776-1856) to show, in 1811, that the ultimate atoms combine 
into divisible molecules (molecule means little masses in Latin). The 
discovery in 1827—not then understood—by biologist Robert Brown 
(1773-1858) of the continual agitated motion of particles viewed through 
a microscope later gave strong support to the atomic-molecular theory, 
by explaining Brownian motion as a result of molecular bombardment. 
At the end of the nineteenth century, Paul Langevin (1872-1946), in his 
work on molecular structure, helped link Brownian motion to kinetic 
theory. 

The chemical concept of molecular structure joined with the ther­
modynamic notion of heat to advance kinetic theory. Joule went on from 
his heat-work measurements to calculate in 1848 the average velocity 
that molecules must have to produce an observed pressure by impact 
on a container—Bernoulli's work was being vindicated. About 10 years 
later, Clausius described a model of elastic spheres colliding and studied 
gas diffusion. Lord Kelvin, early a supporter of Carnot, Joule, and Clau­
sius, used his prestige to establish kinetic theory. James Clerk Maxwell 
(1831-79), best known for electromagnetic discoveries, had an equally 
great influence on kinetic theory by his idea of average velocity of gas 
molecules within a sample, with actual velocities being distributed prob­
abilistically. 

If to Maxwell goes the credit for first applying probability to kinetic 
theory, the development of Maxwell's idea and its relation to thermo­
dynamics was the achievement of Ludwig Boltzmann (1844-1906). Boltz­
mann stated the law of increasing entropy in terms of the tendency for 
molecular motion to become more random or disordered. Boltzmann 
attempted to justify Maxwell's hypothesis by relating statistics and en­
tropy by means of his H-theorem. His work was the real start of statistical 
mechanics, which, by applying probability to molecular motion, avoids 
the need to follow the time development of particle trajectories. 

In 1873 J. D. van der Waals (1837-1923) in Holland included in 
kinetic theory actual sizes of molecules and introduced intermolecular 
forces. His work showed that kinetic theory could explain not only prop­
erties of gases, but also the transition between gas and liquid. By the 
turn of the century, J. Willard Gibbs (1839-1903) had constructed a 
general statistical mechanical method applicable to all three states of 
matter. In 1916, solutions to Maxwell's transfer equations were given by 
Sydney Chapman (1888-1970). In the following year, David Enskog (1884-
1947) similarly solved the Boltzmann equation describing the dynamical 
evolution of gases. This double solution made it possible to compare 
kinetic theory with viscous flow and heat conduction experiments and 
also predicted thermal diffusion, later found experimentally. 

Just after the turn of the century, Max Planck (1858-1947) introduced 
his revolutionary quantum hypothesis, showing that energy levels (in 
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2. HOOVER ET AL. Molecular Dynamics Simulation 33 

electric oscillators) were quantized, or limited to discrete values that are 
multiples of a definite quantum of energy. That natural phenomena do 
actually proceed by jumps and not continuously as envisioned by New­
ton's mechanics and its tool, calculus, was a blow even to Planck. His 
discontinuity hypothesis was initially viewed with suspicion. Einstein's 
explanation of the photoelectric effect finally helped quantum theory gain 
acceptance as an abstract system explaining discrepancies between New­
ton's laws and observed reality. Although conceptually closer to reality 
than classical mechanics, quantum mechanics, through the uncertainty 
principle, adds enormous calculational difficulties to treating real ma­
terials. Consequently, in statistical mechanics and in molecular dynamics, 
classical Newtonian mechanics remains a functional tool, actively used 
to this day. 

Equations of Motion and Forces 

Kinetic theory, armed with statistical averaging techniques that make 
it feasible to treat large numbers of particles, provides the theoretical 
basis for the actual calculations of molecular motion undertaken by mo­
lecular dynamics. These molecular dynamics calculations consist of series 
of "snapshots" of particle coordinates and momenta that closely satisfy 
microscopic equations of motion. For many years such intricate studies 
involved too much calculation to permit meaningful results, but nearly 
40 years ago computing technology became sufficiently advanced to be 
applied fruitfully to many-body systems. At about this time, progress 
changed from the sort of individual endeavor of previous centuries to 
organized team work, resulting from the changeover to computer aided 
scientific activity. 

The early molecular dynamics calculations were carried out at the 
University of California's Los Alamos and Livermore laboratories, where 
computers became available as a fringe benefit of weapons work. Mod­
elled on celestial mechanics, with molecules represented by mass points 
interacting with central forces, these calculations led to rapid advances 
in both equilibrium and nonequilibrium systems (2, 3). Computational 
teamwork tested the validity of the equilibrium statistical mechanics of 
Gibbs, and the kinetic theory of Boltzmann and Maxwell. The computer 
results showed that Boltzmann's equation does correctly describe the 
approach to equilibrium and that the equation of state derived from 
statistical Monte Carlo averaging agrees with that found by dynamical 
time-averaging (4, 5). 

The more recent proliferation of molecular dynamics calculations to 
dozens of institutions makes it impossible and even undesirable to present 
a comprehensive review of developments. The enormous increase pro­
duced some welcome duplications and verifications of results as well as 
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34 MOLECULAR-BASED STUDY OF FLUIDS 

less welcome computations of questionable value. The growth of low-
cost computing has so facilitated calculation that it has become simpler 
to calculate than to understand the theory underlying the numbers. Even 
a very slow machine can readily produce too much output for a competent 
investigator to explain. Thus the most relevant advances in software are 
those that speed assimilation of computed information. Particularly val­
uable are stereoscopic plotting routines, contour plotters, and automatic 
movie-making devices. These features greatly reduce the amount of the 
researcher's time necessary for interpretation. 

Definite accomplishments of recent calculations include a complete 
description of the equilibrium fluid and solid phases for particles inter­
acting with the argonlike Lennard-Jones interparticle potential (inverse 
6th power attraction and inverse 12th power repulsion) (6-8), the de­
velopment of increasingly accurate liquid-phase perturbation theories (9, 
10), based on hard-sphere, computer generated properties that closely 
reproduce these equilibrium properties, and new methods for measuring 
thermodynamic and transport properties as functions of volume and en­
ergy for a wide range of force laws. 

The simplest force-law models of Boltzmann and van der Waals 
viewed particles as hard spheres or billiard balls with mutual attractions 
added to explain gas-liquid coexistence. Empirical "force laws" describe 
the mutual interaction of molecules as a function of their relative ori­
entation and separation. Solid-phase calculations emphasize force-law 
derivatives and were instrumental in developing the many analytic "po­
tentials" (integrated forces) used in the last 30 years. 

Two distinct kinds of extensions have been made from the early 
mass-point calculations (11-14). First, bigger polyatomic molecules have 
been treated, although such calculations take one or two orders of mag­
nitude longer than atomic ones. Second, the microscopic effects of mac­
roscopic thermodynamic heat and work have been included by incor­
porating temperature and strain-rate constraints in the equations of motion 
(15, 16). 

The most straightforward approach to polyatomic problems, treating 
each molecule as an aggregate of mass points interacting with its neigh­
bors through central forces, is not physically realistic. Intramolecular 
angle-dependent and multipolar forces are required to study even rel­
atively simple dynamical problems. Evans simulated the dynamics of 
benzene molecule collisions (17), while Helfand and Weber (18, 19) 
studied the torsional motions of long aliphatic carbon chains (see Figures 
1 and 2). The successful treatment of polyatomic molecules such as ben­
zene as rigid bodies by Evans resurrected interest in Hamilton's qua­
ternions, angular analogs of vectors which are dynamically better behaved 
than Euler's angles. 

Following the motion of large molecules made up of dozens of atoms 
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2. HOOVER ET AL. Molecular Dynamics Simulation 35 

Figure 1. Stereo views of a 200-atom aliphatic carbon chain. (Repro­
duced with permission from Ref. 18. Copyright 1980, American Institute 

of Physics.) 

taxes even large computers and has led to the use of approximate sta­
tistical models, based on Langevin's ideas, for simulating the interaction 
of such molecules with the surrounding medium. Langevin originally 
used statistical interactions to explain Brown's observations on moving 
pollen grains. The postulated and largely unknown random forces can 
be assigned in many ways—producing either the velocities or the ac­
celerations characteristic of a certain temperature, for instance. Because 
the choice influences final nonequilibrium results, complete calculations 
are essential to validate these ad hoc models. 

Validation is becoming more difficult. Polyatomic simulations are 
today moving rapidly toward increased realism (see Figure 3) at the cost 
of complexity and kinematic indeterminacy. The latter loss, inherent in 
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36 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 2. Conformation of a lipid monolayer. (Reproduced with per­
mission from Ref. 14. Copyright 1980, Nature.) 

random forces, complicates numerical verification because reversibility 
of the equations of motion and conservation of energy and momentum 
can no longer be used to test solutions. 

The complexity introduced into polyatomic deterministic simulation 
by the wide range of time scales between slow conformational degrees 
of freedom and fast bond oscillations may be reduced if a new method 
suggested by Pechukas proves feasible. Because details of the bond os­
cillations are ordinarily of little interest, Pechukas has treated these as 
sources and sinks of energy to be added to a rigid-bond Hamiltonian. 
This added energy varies with molecular conformation to conserve the 
action of the oscillating modes. Including the extra energy leads to exact 
equations of motion for the conformational degrees of freedom in the 
adiabatic (high-frequency) limit. The obstacle to practical use of this 
method has so far been the difficulty of separating the conformational 
and vibrational degrees of freedom. 

On a microscopic scale, molecular dynamics measures temperature 
by averaging kinetic energy. Gradual temperature changes can be im­
posed by continuously scaling the momenta of the particles during dy­
namical calculations, thereby adding or subtracting heat energy from the 
simulation. Gradual adiabatic changes can similarly vary the energy by 
performing pressure-volume work in a way consistent with the first law 
of thermodynamics. Both momentum scaling and adiabatic coordinate 
scaling have been successfully incorporated in microscopic equations of 
motion. 
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Figure 3. Time exposure of a solid-fluid interface. (Reproduced with 
permission from Ref. 22. Copyright 1980, American Institute of Physics.) 

Application to Phase Equilibrium 

The rough corresponding states similarity among phase diagrams of 
widely varying substances suggests that even very simple interparticle-
force models can explain the qualitative properties of real matter. The 
classical calculations of Alder, Wainwright, and Wood, based on hard-
sphere, square-well, and Lennard-Jones force laws, justified this expec­
tation by reproducing, qualitatively, the solid-fluid melting line and gas-
liquid-solid triple-point equilibria found in real systems (20). 

A few phase diagrams that include quantum corrections have been 
calculated. Hansen's plasma calculations in France (21) and the ongoing 
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38 MOLECULAR-BASED STUDY OF FLUIDS 

calculations of Ceperley and Alder at Livermore on the absolute zero 
phase diagrams of boson and fermion systems represent the present limit 
of numerical quantum statistical mechanics. These equilibrium quantum 
calculations are much more time consuming and intricate than the cor­
responding classical ones. They can be carried out only at low temper­
ature, where the ground state is important, or at temperatures high 
enough for perturbation theory to be applied to the classical theory. 
Rigorous quantum calculations cannot yet deal with the complications 
involved in intermediate-temperature or time-dependent systems. 

Some early Lennard-Jones and square-well calculations encoun­
tered two-phase liquid-vapor states. These states were qualitatively in­
teresting to see, but were quantitatively difficult to analyze, simply be­
cause interfacial boundaries are relatively thick on an atomic scale. Cape, 
Ladd, and Woodcock (22, 23) have used simulations of equilibrating 
phases, both at the triple point and along the melting line, as primary 
means of locating equilibrium pressures and temperatures and deter­
mining interfacial properties. Such calculations require many particles 
(as many as 7680 were used) and care in choosing initial conditions. Now, 
approximate equilibria are first obtained using smaller systems. Several 
similar small systems are then grouped to make a large compound system 
for further examination. The "time exposure" of a solid-fluid interface 
shown in Figure 3 indicates the detail obtainable in surface morphology. 

The coexisting-phase properties obtained by these direct equilibra­
tions are consistent with earlier triple-point thermodynamic predictions 
based on single-phase free-energy simulations with far fewer particles. 
This is only one of many examples in which self-consistency between 
two or more approaches has confirmed the accuracy of computer gen­
erated data in regions where rigorous theory gives little a priori guidance. 
Nonequilibrium effects are important to the direct simulation of coex­
isting phases because the equilibration of large phases is controlled by 
heat diffusion. The computational difficulty due to heat diffusion can be 
sidestepped by carrying out the molecular dynamics isothermally (15, 
24). If Newton's equation of motion, p = F, has added to the right side 
a momentum dependent force — £p, then the constant-temperature 
constraint d/diXp2 = 0 can be identically satisfied by choosing £ = S F 
• p/2 p • p. The resulting trajectories conserve kinetic energy and provide 
an example of what we call nonequilibrium molecular dynamics, in which 
the equations of motion are modified to satisfy desirable constraints, at 
the expense of energy conservation. 

Application to Fluid Transport 

The conceptually simplest nonequilibrium situations involve linear 
flows of mass, momentum, and energy proportional to the corresponding 
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2. HOOVER ET AL. Molecular Dynamics Simulation 39 

gradients of chemical potential, velocity, and temperature. These simple 
prototype flows form a convenient bridge between the well understood 
statistical mechanics, which can describe linear transport by dynamical 
perturbation theory, and the largely undeveloped theory of nonequilib­
rium nonlinear flows. 

Viscosity, principally shear viscosity (the response of stress to changes 
in shape), dominates nonequilibrium flows, determining whether these 
are turbulent or laminar. Three different molecular dynamics methods 
have been used to compute the coefficient of shear viscosity. To dem­
onstrate the simplest type of shear deformation, suppose that the fluid's 
x velocity component is proportional to the y coordinate, 8 = dujdy. 
Such a deformation can be described using Hamiltonian mechanics. The 
so-called "Doll's Tensor" Hamiltonian, 

was inferred from the corresponding equations of motion (25), 

which reproduced exactly the desired macroscopic flow field and also led 
to the macroscopic energy conservation relation between Pxy and the 
strain rate e. The shear viscosity r\ can also be obtained by applying 
Green-Kubo linear response theory to the nonequilibrium Hamiltonian 
in the limit of vanishing strain rate e, with the result that Pxy = —-ne 
where T] is the shear viscosity 

Thus, the time-averaged decay of equilibrium pressure fluctuations can 
be used to give estimates of transport coefficients (26). Holian has recently 
shown (27) that for finite systems the two viscosities just described can 
differ. Computer simulations suggest that the number dependence is 
reduced by using the Doll's Tensor approach. 

The linear-response approach has been followed more literally and 
less formally by Jacucci and coworkers (28) who actually applied a finite 
but still very small perturbation. Then the difference between the two 
slightly different dynamical many-body trajectories—one perturbed and 
the other unperturbed—was followed in time, and the resulting stress 
differences used to estimate the viscosity coefficient. The nonlinear re­
sponse to the same form of perturbation has been studied too, through 
the steady state that develops with a large and continual isothermal rate 
of shear (29). 

q = (pirn) + q • V u and p = F - Vu • p 
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40 MOLECULAR-BASED STUDY OF FLUIDS 

These three methods for determining viscosity agree fairly well with 
each other and with real viscosity measurements. They agree also in 
predicting a shear-thinning decrease in viscosity with increasing fre­
quency or strain rate (30). The viscosity decrease is not well understood, 
exceeding, by orders of magnitude, predictions based on the correspond­
ing mode-uncoupling theories. 

Analogous calculations for bulk viscosity (the irreversible response 
of stress to changes in volume) require the periodic adiabatic dilation 
and compression of space simultaneously with the molecular dynamics 
calculations. These calculations reveal a variation of viscosity with dilation 
frequency stronger than theoretical predictions and evidently quite un­
related to the experimental frequency dependence (31, 32)—which ap­
parently diverges as co" 5 / 2 at low frequency. The computer results have 
pointed out the need to revise the 1926 Chapman-Enskog bulk viscosity 
theory, which overpredicts bulk viscosity by nearly an order of magnitude 
under some conditions and which also fails to explain either of the low-
frequency bulk viscosities observed in laboratory or computer experi­
ments. Ultrasonic data suggest a very strong frequency dependence of 
the moderate-density bulk viscosity, but Hickman and Hoover, applying 
nonequilibrium molecular dynamics to that problem, found considerably 
smaller values for frequencies large enough and system sizes small enough 
for computer simulation. 

Most computer flow simulations are necessarily nonlinear, so that 
the pressure-tensor perturbations caused by the deformations can be 
distinguished from background thermal fluctuations. The nonlinearity 
has interesting consequences. A system undergoing adiabatic compres­
sion, for instance, deviates in its pressure by a bulk viscous term pro­
portional to the strain rate. The virial theorem has been used (16) to 
show that along with this pressure shift there is a corresponding tem­
perature shift, so that the strain-rate-caused deviations of P(T, V) and 
P(E, V) from the equilibrium pressure are not the same. 

Nonlinear effects are sometimes controversial. The coupling of heat 
flow with rotation is an example. According to Boltzmann's low-density 
kinetic theory, Coriolis's accelerations in rotating systems can prevent 
heat flow from paralleling the temperature gradient. On the other hand, 
certain formal approaches to macroscopic continuum mechanics rule out 
such violations of Fourier's law (33). The direction of the heat flow was 
studied using nonequilibrium molecular dynamics (34). A dense, two-
dimensional fluid, constrained to rotate at constant angular velocity in 
the presence of a temperature gradient, developed a heat flux in good 
agreement with the predictions of Boltzmann's kinetic theory. 

The same adiabatic perturbation to the Hamiltonian used to shear 
fluids is being used to study dislocation motion in solids (see Figure 4). 
Imperfect solids are plastically strained at relatively high amplitudes and 
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2. HOOVER ET AL. Molecular Dynamics Simulation 41 

Figure 4. Periodic plastic flow, an application of adiabatic nonequili­
brium molecular dynamics. (Reproduced with permission from Ref. 35. 
Copyright 1980, Metallurgical Society of the American Institute of Me­

chanical Engineers.) 

gigahertz frequencies (35). By including the constant-temperature re­
striction, these solid-phase studies conform to fluid studies, showing an 
increase of shear stress with density and strain rate, and a decrease with 
temperature and system size (30). Results of such calculations can be 
compared with corresponding continuum mechanics calculations and used 
in macroscopic plasticity and fracture simulations. In these material fail­
ure simulations, dislocations act as point particles obeying equations of 
motion deduced from atomistic simulations. This work will eventually 
lead to improved constitutive descriptions of plastic flow in solids. The 
Doll's Tensor (Xqp) Hamiltonian has been applied to crystal structure 
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42 MOLECULAR-BASED STUDY OF FLUIDS 

stability studies too, by treating the pressure tensor as the independent 
variable, which governs the time-varying strain-rate tensor (36). 

Today there is a need for critical evaluation of different possible 
definitions of nonequilibrium nonlinear coefficients. Work now in prog­
ress, both on the theory of nonlinear flows and on their simulation, will 
lead to major advances in understanding rheological problems. 

Application to Fluid Shock Wave Structure 

Slow heating and deformation could be described by equilibrium 
molecular dynamics, but in a case involving extremely rapid heating and 
deformation, such as a shock or detonation wave (37), when large changes 
occur in the time of only one atomic vibration, equilibrium simulations 
are inappropriate. Macroscopic heating usually occurs by conduction or 
convection from the boundary, whereas microscopic systems can easily 
be "heated" homogeneously throughout. Likewise, the homogeneous 
microscopic deformations associated with the Doll's Tensor Hamiltonian 
H = Heq + Xqp:\/u are more naturally replaced by shock deformation 
on a macroscopic scale. 

Fast shock wave compression can be simulated by inhomogeneously 
shrinking one space dimension in a microscopic molecular dynamics sim­
ulation (see Figure 5). Laboratory shockwave studies have been under­
taken in liquids, solids, and gases for years. These experiments, plus 
additional recent work on the structure of gas-phase shockwaves, have 
been particularly valuable in obtaining equation of state information under 
extreme conditions at pressures up to tens of megabars. The structure 
of weak—and therefore broad—shockwaves in solids has also been stud­
ied experimentally and used to refine constitutive flow models. Through 
computer simulations, fluid shock waves are fairly well understood, and 
some progress has been made in simulating the much more complex 
solid phase shock waves. 

The computer shock wave, in which cold material is suddenly com­
pressed adiabatically and in the absence of nearby boundaries to high 
pressure, is an ideal nonequilibrium problem because the walls that 
complicate both simulation and analysis are absent. Theoretical treatment 
of even the low-density Boltzmann limit is incomplete, so that computer 
simulations of dense fluid shock waves very far from equilibrium are 
challenging tests for macroscopic theories. 

A 4800-particle molecular dynamics simulation was used to generate 
shock wave profiles corresponding to shock compression of liquid argon 
to nearly twice its normal density (37). The resulting stress and tem­
perature profiles, shown in Figure 6, agreed surprisingly well with Na-
vier-Stokes continuum theory, a linear theory in which the transport 
coefficients are assumed to be independent of the velocity or temperature 
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44 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 6. Profile of a strong, dense-fluid shock wave. For liquid argon, 
such a shock wave heats the fluid from the triple point to 1 eV in one 
atomic vibration time. For argon, the distance scale shown covers about 
6 A. The points were generated with nonequilibrium molecular dynamics. 
The smooth curves are solutions of the Navier-Stokes equations. (Repro­
duced with permission from Ref. 37. Copyright 1980, American Institute 

of Physics.) 
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2. HOOVER ET AL. Molecular Dynamics Simulation 45 

gradients. This good agreement suggests that shockwave experiments 
could be used to define slowly varying nonlinear transport coefficients. 

By appending chemical reactions to simulations including viscosity 
and conduction, the related problem of detonation wave structure can 
be studied. It is difficult for molecular dynamics to deliver the realism 
required in applications, because most real detonations are dominated 
by the effects of impurities. Nevertheless, models of simple liquid-phase 
detonations should be useful for exploring the region where chemistry 
is coupled with thermal and viscous effects. Except in the cases of rare-
gas excitation reactions, simulations including chemistry require the de­
velopment of potential surfaces for polyatomic molecules. 

The natural high-pressure periodic boundary conditions have seldom 
been used in potential-surface calculations, but there is presently a tre­
mendous effort devoted to representing zero-pressure polyatomic po­
tential surfaces and incorporating these surfaces into molecular calcula­
tions. The success of these efforts should lead to an understanding of 
polyatomic systems on a par with today's quantitative understanding of 
simple fluids and solids. 

Acknowledgment 

The authors are pleased to acknowledge support of this work by the 
Army Research Office, Research Triangle Park, NC. 

Literature Cited 

1. Brush, S. G. "Kinetic Theory"; Pergamon: New York, Vols. 1-3, pp. 1956-
1972. 

2. Fermi, E.; Pasta, J. G.; Ulam, S. M. "Studies of Nonlinear Problems", 
LASL Report LA-1940, 1955. 

3. Tuck, J. L.; Menzel, M. T. Advan. Math. 1972, 9, 399. 
4. Alder, B. J.; Wainwright, T. E. Proc. IUPAP Symp. Transp. Processes 

Statist. Mech. 1956, 97. 
5. Metropolis, M.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; 

Teller, E. J. Chem. Phys. 1953, 21, 1087. 
6. Ree, F. H. J. Chem. Phys. 1980, 73, 5401. 
7. Levesque, D.; Verlet, L. Phys. Rev. 1969, 182, 307. 
8. Hansen, J. P. Phys. Rev. 1970, 2A, 221. 
9. Mansoori, G. A.; Canfield, F. B. J. Chem. Phys. 1969, 51, 4958. 

10. Barker, J. A.; Henderson, D. Rev. Mod. Phys. 1976, 48, 587. 
11. Helfand, E. J. Chem. Phys. 1978, 69, 1010. 
12. Fixman, M. Proc. Nat. Acad. Sci. 1974, 71, 3050. 
13. Gottlieb, M.; Bird, R. B. J. Chem. Phys. 1976, 65, 1467. 
14. Kox, A. J.; Michels, J. P. J.; Wiegel, F. W. Nature 1980, 287, 317. 
15. Evans, D. J. Mol. Phys. 1979, 37, 1745. 
16. Hoover, W. G.; Evans, D. J.; Hickman, R. B.; Ladd, A. J. C.; Ashurst, W. 

T.; Moran, B. Phys. Rev. A 1980, 22, 1690. 
17. Evans, D. J. Mol. Phys. 1977, 34, 317. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

02



46 MOLECULAR-BASED STUDY OF FLUIDS 

18. Weber, T. A.; Helfand, E. J. Chem. Phys. 1979, 71, 4760. 
19. Weber, T. A.; Helfand, E. J. Chem. Phys. 1980, 72, 4014. 
20. Wood, W. W. In "The Physics of Simple Liquids", Temperley, H. N. V.; 

Rowlinson, J. R.; Rushbrooke, G. S. Eds.; North Holland: Amsterdam, 
1968; p. 115. 

21. Hansen, J. P.; McDonald, I. R. Phys. Rev. 1981, 23A, 2041. 
22. Cape, J. N.; Woodcock, L. V. J. Chem. Phys. 1980, 73, 2420. 
23. Ladd, A. J. C.; Woodcock, L. V. Chem. Phys. Lett. 1977, 51, 155. 
24. Ashurst, W. T., Ph.D. Dissertation, University of California at Davis-Liv-

ermore, 1974. 
25. Hoover, W. G.; Ladd, A. J. C.; Hickman, R. B.; Holian, B. L. Phys. Rev. 

1980, 21A, 1756. 
26. Levesque, D.; Verlet, L.; Kürkijarvi, J. Phys. Rev. 1973, 7A, 1690. 
27. Holian, B. L., unpublished data. 
28. Ciccotti, G.; Jacucci, G. Phys. Rev. Lett. 1975, 35, 789. 
29. Evans, D. J. J. Stat. Phys. 1980, 22, 81. 
30. Heyes, D. M.; Kim, J. J.; Montrose, C. J.; Litovitz, T. A. J. Chem. Phys. 

1980, 73, 3987. 
31. Cowan, J. A.; Ward, P. W. Can. J. Phys. 1973, 51, 2219. 
32. Cowan, J. A.; Ball, R. N. Can. J. Phys. 1980, 58, 74. 
33. Jou, D.; Rubi, J. M. J. Non-Equilib. Thermodyn. 1980, 5, 125. 
34. Hoover, W. G.; Moran, B.; More, R. M.; Ladd, A. J. C. Phys. Rev. 1981, 

24A, 2109. 
35. Hoover, W. G.; Ladd, A. J. C.; Hoover, N. E. Proc. AIMETMS; Fall 

Meeting, Pittsburgh, 1980. 
36. Parrinello, M.; Rahman, A. Phys. Rev. Lett. 1980, 45, 1196. 
37. Holian, B. L.; Hoover, W. G.; Moran, B.; Straub, G. K. Phys. Rev. 1980, 

22A, 2798. 

RECEIVED for review January 27, 1982. ACCEPTED for publication September 
9, 1982. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

02



3 
Perturbation Theory, Ionic Fluids, and 
the Electric Double Layer 

DOUGLAS HENDERSON 
IBM Research Laboratory, San Jose, CA 95193 

The properties of many fluids can be regarded as those of 
a simpler fluid (usually a hard-sphere fluid) plus some cor­
rections. Perturbation theory, which is based on this idea, 
is reviewed briefly. Many earlier approaches, such as the 
virial series and the van der Waals theory, can be regarded 
as special cases of perturbation theory. Perturbation theory 
is applied to ionic fluids and is found to be useful provided 
that the coulomb potential is resummed. It is useful to re­
structure the perturbation expansion so that the mean 
spherical approximation is the leading term in the series. 
Finally, perturbation theory is applied to electrified inter­
faces, where results similar to those of the mean spherical 
approximation are obtained using simple arguments. 

P ERTURBATION THEORY HAS B E E N , at the very least, one of the most 
significant developments in the theory of liquids during the past two 

decades. Perturbation theory combines accurate results for the ther­
modynamic properties with a pleasing physical picture and relatively 
straightforward numerical calculations. In particular, perturbation theory 
avoids the often frustrating convergence problems characteristic of the 
iterative procedures used in the numerical solution of integral equations 
arising from, for example, the hypernetted chain equation. 

Although it is only recently that the power of perturbation theory 
has been fully appreciated, perturbation theories have a venerable his­
tory. The van der Waals theory of dense gases and liquids is an early 
form of perturbation theory. The van der Waals theory is not surveyed 
here because the connection between it and perturbation has been pointed 
out previously (I). The virial expansion of a dense gas is another early 
form of perturbation theory. 

In this chapter, perturbation theory is briefly reviewed with an 
emphasis on pointing out its generality. Its application to electrolytes is 
considered. The chapter concludes with an application of perturbation 
theory to an interfacial problem, the electric double layer. 

U55 16th St. N. W. 
Washington. 0. C. 20036 

7.25/0 
Society 
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48 MOLECULAR-BASED STUDY OF FLUIDS 

Perturbation Theory 

Our starting point is the free energy, 

A = -kT In j exp {-(30}^ . . . drN 

+ terms independent of the density (1) 

where (3 = 1/fcT, T is the temperature, and 0(r x . . . rN) is the potential 
energy of the N molecules whose centers of mass are at r x . . . rN. 

For simplicity, assume that the potential energy is pairwise additive 

(2) 

where r(j = \rt - rj. 
Hence, the free energy becomes 

A = -kT \ n eir^dr, . . . drN + 
J i<j 

(3) 

where 

e(rft) = exp{- M^)} (4) 

Further, assume that e(r^) depends upon a parameter 7, i.e., 

e(r) = e(y,r) (5) 

which is small enough so that the free energy can be expanded as a series 
in 7 

7 = 0 
+ v 2 dy2 + . . (6) 

7 = 0 

where A 0 is the known free energy of the system when 7 = 0 (the 
unperturbed or reference system). 

Thus, 

p ̂  = ~lp2 \g(12) ̂ (12) dridr2 (7) 
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3. H E N D E R S O N Perturbation Theory 49 

and 

- | P2 / g(12) eyy(l2) drxdr2 

- p 3 j g(123) ey(12) e7(12) dr,dr2drz 

-\p4j [g(1234) - g(12) g(34)]e7(12) e7(34) 

X drxdr%drzdr^ (8) 

where p = N/V (V is the volume) 

ey = e 1 de/d7 (9) 

and 

fc^ = e~l d2e/dy2 (10) 

The functions g(l . . . h) are the /i-body distribution functions. In the 
limit 7 = 0, they are the distribution functions of the reference fluid. 

Equation 8 is valid only in the canonical ensemble. An extra term 
must be added to obtain results that are valid for an infinite system. 
However, this correction term is not relevant for our discussion here. 
We refer to the review of Barker and Henderson (2) for details. 

Equation 8 is often difficult to use. An approximation, due to Barker 
and Henderson (2), which is often useful, is 

where h(12) = g(12) - 1. Although approximate, Equation 11 is applicable 
to an infinite system. 

The higher order terms involve many integrals. For some applica-

- p 3 g(12) g(23) ey(12) ey(23) h(\3) drl(lr2dr3 

x [2/i(13)/i(24) + 4/i(13)/*(14)/i(24) 

+ /i(13)/i(14)/i(23)/i(24)] dr2dr3dr4 (ID 
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50 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

tions the ring diagrams are the most important. If only the ring diagrams 
for the third- and fourth-order terms are displayed, 

0 = - P 3 / ^( 1 2) <M 1 3 ) e,( 2 3) g ( 1 2 3 ) dridr2dr3 + . . . (12) 

and 

d4A f 
p a y = ~PJ e^(12) ^ ( 1 3 ) e ^ m e ^ M ) g ( 1 2 3 4 ) 

X dr1dr2dr3dr4 + . . . (13) 

In general, there are three functional dependences of e(y;r) on 7 
that have been considered. For references see Barker and Henderson 
(2). The first is 

e(y;r) = exp {-(3[u0(r) + yu^r)]} (14) 

where u0(r) is the pair potential of the reference system. Hence 

ey(r) = -p U l ( r ) (15) 

and 

eyy(r) = [pu(r)]2 (16) 

This case is useful when the perturbation energy, ux(r) = u(r) — u0(r), 
is small. 

In some applications, u^r) is large and positive. For such applications 
ey(r), given by Equation 15, is not small. Then it may be more appropriate 
to use 

e(y;r) = e0(r) + 7^o(r)/1(r) (17) 

where 

e0(r) = exp{-(Wr)} (18) 

and 

Mr) = exp{-pM l(r)} - 1 (19) 
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3. H E N D E R S O N Perturbation Theory 51 

In Equations 18 and 19, u0(r) is the reference pair potential and w1(r) = 
u(r) — u0(r). For this case 

ey(r) = /,(r) (20) 

and 

e„(r) = 0 (21) 

Even if uY(r) is large and positive, ey(r) is bounded. In principle, this 
approach could be used with large and negative perturbations. However, 
for this situation ey(r) would then be very large and this approach would 
be of limited value. 

A third procedure, also applicable to potentials that are large and 
positive, is based upon 

e(y;r) = exp j -0t*( d + ^ - ^ J [ (22) 

An expansion based upon Equation 22 is an expansion in an inverse 
steepness parameter about a hard-sphere reference fluid, where d is the 
hard-sphere diameter. Expansions based upon Equation 22 are useful 
when u(r) is large, negative, and steep. For this case, 

ey(r) = &u'(d + ! L ^ ) e ( 7 ; r ) (23) 

A perturbation theory for a given system is developed by making 
choices as to what is an appropriate reference fluid and which of the 
above three procedures is to be used. Other choices besides the three 
above are possible. These are just the ones that have been used. 

Virial Expansion 

The simplest reference fluid is the perfect gas, where g(l . . . h) = 
1. If we use the perfect gas as a reference fluid, then the perturbation 
is the entire potential. Obviously, the w-expansion of Equations 14-16 
is inappropriate. It is better to use the/-expansion of Equations 19-21. 
The first-order term is easily evaluated. For a perfect-gas reference fluid, 
Equation 11 is free of approximation. The first term in Equation 11 
vanishes because eyy(r) = 0. The other two terms vanish because, in the 
limit 7 = 0, h(r) = 0. For similar reasons only the ring diagrams con-
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52 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

tribute to the third- and fourth-order terms. Hence, 

(A - A 0) 1 f 
~ M i - = " 2 p J / l 2 d r 2 

" £ P2 |/l2/l3/23 ^ 2 ^ 3 

- ^ P3 J V 1 2 / 1 3 / 2 4 / 3 4 dr2dr3dr4 + . . . (24) 

where / 1 2 =/(r 1 2) = exp {- M^u)} - 1. 
If the terms in Equation 24 are grouped by the power of p rather 

than by the number of/-functions, Equation 24 is the virial expansion 
of A. We will not use Equation 24. Our purpose is to point out that the 
virial expansion can be regarded as the simplest form of a perturbation 
theory. Another reason for writing down Equation 24 is that it bears a 
striking similarity to the perturbation expansions which we will use for 
ionic solutions. 

Lattice Gas 

Another simple application of perturbation theory is gained by con­
sidering the lattice gas in which the N molecules are restricted to L lattice 
sites. For this system 

u(r) = 
00 r = 0 

- e r = nnd (25) 
0 otherwise 

where nnd means nearest neighbor distance. 
The unperturbed system is a lattice gas of noninteracting molecules, 

subject only to the restriction that only one molecule can occupy a lattice 
site. Thus 

A0/NkT = In x + ^—^ In (1 - x) (26) 

where x = N/L plays the role of the density. 
Because the perturbation potential is small and negative, the u-

expansion of Equations 14-16 can be used. The g(l . . . h) terms of the 
unperturbed system are equal to unity when all the molecules occupy 
different sites, and are zero otherwise. For such a reference fluid, Equa­
tion 11 is valid. 
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3. H E N D E R S O N Perturbation Theory 53 

To evaluate the terms in the perturbation expansion we note that, 
in the limit 7 = (3e = 0, h(12) is zero unless molecules 1 and 2 are on 
the same site and 1̂ (12) g(12) is zero unless molecules 1 and 2 are nearest 
neighbors. If z is the number of nearest neighbors of the lattice 

d(A/MT) 
d(0e) 

and 

1 d2(A/NkT) 

= ~\xz (27) 
pe = o 

2 d((3e)2 

0 6 = 0 

x(l - xfz (28) 

In contrast to many of the other examples we will consider here, 
diagrams in addition to the ring diagram given in Equation 12 contribute 
to the third-order term. Nonetheless, it is of interest to display the result. 
It is 

1 d3(A/MT) 
6 d((3e)3 

= ~ x(l - xf(l - 2xfz - I x%l - xf £ (29) 
0 e = O 1 2 6 

where £ is the total number of triangles of nearest neighbors that can be 
formed on the lattice, divided by N. 

The first-order term is the result of the van der Waals theory. To 
this order, the perturbation contribution changes the energy of the lattice 
gas without changes in entropy or structure. The higher order terms give 
the effects on the free energy of changes in structure resulting from the 
perturbation. 

These higher order terms become small at high densities where L 
~ N. This is because the lattice is nearly fully occupied, and rearrange­
ments in structure are difficult since only one molecule can occupy a 
lattice site. This means that at high densities the perturbation expansion 
will converge rapidly even if (3e is not small. This is a very important 
observation. It is true for many other systems and is one of the main 
reasons why perturbation theory is so useful. 

At lower densities, the perturbation expansion converges slowly. 
Thus, if the expansion is to be used in the neighborhood of the critical 
point, many terms are needed. For the lattice gas, these terms can be 
obtained fairly easily. For other systems this is not true, and so it is only 
for the lattice gas that critical point properties can be examined. This is 
one reason why the lattice gas is of such great interest. 
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Simple Liquids 

For a simple liquid consisting of spherical molecules with a steep 
repulsion curve, an appropriate reference potential is the positive part 
of the potential. Thus, using the w-expansion 

where A 0 and g0(r) are the free energy and radial distribution function 
of the reference fluid, and a is the value of r for which u(r) = 0. 

The integral in Equation 30 is very nearly independent of density 
and temperature. Thus, to a good approximation, the first-order term 
has the lattice gas form given in Equation 27. The second-order term is 
also similar to the lattice gas result, Equation 28; in particular, it is small 
at high densities. 

Because the reference potential is steep, the higher order terms will 
be small at high densities, just as was the case for the lattice gas. Even 
with just the first-order term, the perturbation series gives good results 
at high densities. With two terms, excellent results are obtained at high 
densities. Even at lower densities the results are quite good. 

Despite these results, the perturbation theory outlined above is not 
very practical because, in the above form, A 0 , g0(r), and the higher order 
distribution functions must be determined by computer simulations for 
every state that is considered. One might as well perform the computer 
simulations directly for the actual system. 

The step that makes perturbation theory practical for simple liquids 
is the replacement of A 0 and g0(r) by the hard-sphere A H S and gHS(r). 
Using Equation 23 for 0 ^ r ^ a, Barker and Henderson (3) showed 
that 

A - A ( 

NkT 
o = 2-rrpp u(r) go(r) r2dr + . . . (30) 

A HS (31) 

and 

gHs(r) (32) 

if the hard sphere diameter (d) is chosen by 

(33) 

Since the thermodynamic properties and distribution functions of hard 
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3. H E N D E R S O N Perturbation Theory 55 

spheres are well known, perturbation theory becomes a simple and ac­
curate theory of liquids. 

Perturbation theory also leads to a simple picture of a liquid. At 
high densities, where the molecules are packed close together, the liquid 
molecules behave much as gas molecules at the same density. The main 
contribution of the perturbation is to provide the potential well in which 
the molecules move. 

Results for a fluid whose potential is given by the Lennard-Jones 
interaction 

u(r) = 4e (34) 

have been given earlier (I, 2). Perturbation theory results for mixtures 
of liquids are also available (2). 

Charged Hard Spheres 

A system of charged hard spheres, where 

v [ z(Zj e2/sr r > a 

is a useful model ionic fluid. In Equation 35, z{e is the charge of an ion 
of species f, e is the dielectric constant of the solvent, which is taken to 
be a dielectric continuum, and a is the diameter of the hard spheres. 

Let us apply perturbation theory to this system. Using the u-ex-
pansion with a hard-sphere reference fluid 

= ~ \ PP 2 x* / ",(12) g0(12) dr2+ . . . (36) 

where A 0 and g0(r) are the free energy and radial distribution function 
for hard spheres of diameter a. Because of charge neutrality 

2 W = 0 (37) 

where xt — Nt/N (Nt is the number of hard spheres with charge zte), the 
first-order term in Equation 36 vanishes. 

To the second-order term, only the first term in Equation 8 con­
tributes. The other terms vanish because of charge neutrality. Likewise, 
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56 MOLECULAR-BASED STUDY OF FLUIDS 

in the third-order term only the ring diagram is nonzero. Thus 

4 ^ = - - R2, 
NkT 4 „ \ P 2 P 2 / "§(12) g0(12) dr2 

+ I P V 2 W f «#(12) ««(13) ujk(23) X g0(123) <M»3 + . . . 

(38) 

We see that the cancellation that leads to small values of the higher order 
perturbation terms at high densities is not present for this system. The 
perturbation series will converge more slowly. 

Let us restrict our attention to the case of a two-component system 
where z = \zx\ = \z2\. Equation 38 becomes 

A - A 0 _ K 4 J g0(12) 
r2 

fgoO 
J r? NkT 64TT2P * , 1 2 

+ ^ r r | — ( 3 9 ) 
384TT3P J r^r^r^ 

where K is the Debye screening length and is defined by 

6 

Equation 39 is our starting point. A quick inspection shows that each 
integral is divergent because of the long range of the coulomb potential. 
To get anything useful we must sum the divergent terms. 

It is convenient to rewrite Equation 39 as 

A - A 0 

NkT 
= f f J _ _ f dr^_ + 1 * 2 

64lT2p Jri2>a [r 1 2 6lT Jn,>cx T^V^ J T 1 2 

64ir2p Jr12><T r\2 

+ ^ ! _ f s a « L i i * A + . . . (4i, 
384TT3P Jry>a r12r13r23 

Each of the terms in the first integral is divergent. All integrations are 
outside the cores (i.e., r 0 > a). However, to evaluate the first integral, 
let us extend the range of the integrations to include all r{j > 0. No error 
is introduced since we have merely added and subtracted the regions 0 
< r 0 < a. The first integral is called a ring or chain sum since the terms 
are simple ring diagrams consisting of repeated convolutions of \lrir 
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3. H E N D E R S O N Perturbation Theory 57 

In principle, we could sum the integrand of the first term in Equation 
41. However, the sum is complex. It is much easier to rewrite this term 
as 

+ . . . _2 I { 0l. J^l f d r * + J dr2 

*r12>o \ r 1 2 6TT Jr„>o r 1 3 r 2 3 " ' j r 1 2 

Jo 6K' 2 |_Jri2>o [ r 1 2 6TT Jn/>o r13r23 J r 1 2_ 

= 2 f [ f ( ^ _ ^ f + . . . ] dIl 
J O Jri2>0 [ r 1 2 4TT Jrij>0 f^f^ J f"12 

rfK'2 (42) 

dr* 

Thus, defining ^(r) as 

%rl2) = — - £ I 
r 1 2 4TT Jry>o r13r23 

and taking the Fourier transform 

cg(fc) = f r%(r) sin fcr 
K Jo 

we have 

4TTK2 

fc2 + K 2 

Hence 

<€(r12) = K2 

'12 

Therefore, 

Jn2>o [r 1 2 6TT Jr(,>o r13r23 J r 1 2 

= 8ir | O K ' 2 |̂  | O < T K V 

= 16ir P K ' 2 die' = ^ K 3 

Jo 3 

(43) 

(44) 

(45) 

(46) 

(47) 
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58 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

Substitution of Equation 47 into 41 gives the Stell-Lebowitz (SL) 
series (4) 

^ = - i £ - P - + • •• < 4 8» 

Retaining only the first term gives the Debye-Huckel (DH) theory 
(5). Of course, Debye and Huckel did not obtain their theory in this 
manner. Except for exceedingly small K, the D H theory gives poor re­
sults. 

The SL corrections to the D H approximation converge very slowly. 
The corrections can only be evaluated using approximate Pade sum­
mation methods. Rather than use their procedure, we shall use a more 
powerful scheme. We have derived the SL expansion from perturbation 
theory. Stell and Lebowitz did not use this method but obtained their 
series in a more direct manner. Although the method given here is less 
direct, it indicates how improvements may be made. The integrations 
in the SL expansion are over all space (rtJ > 0). This is natural in their 
series. However, in the original perturbation expansion, the integrations 
are over r(j > o\ This suggests that improved results might be obtained 
by taking the integrals for the region 0 < r{j < cr and combining them 
with the K 3 term. Thus 

A 0 

NkT 12irp 
1 - -4 K(T + -4 K 2 a 2 — 7 K V + 

4 4 8 

- £ h ° i r ) d r + • • • ( 4 9 ) 

At first sight, K3(1 - 3KO-/4 + 3K2CT2/4 - 7K3CT3/8 + . . .) seems to be 
an unpromising combination; it is, in fact, (2T)3 (1 + 3Ta/2) where K 
and T are related by 

K = 2T(1 + IV) (50) 

We note that 2T ^ K. Expanding 

2 4 

Thus, 
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3. H E N D E R S O N Perturbation Theory 59 

Retaining only the first term gives the mean spherical approximation 
(MSA) (6, 7). 

As is seen in Figure 1, the first (MSA) term gives fairly good agree­
ment with computer simulations (8-10). In principle, Equation 52 gives 
a series of corrections to the MSA. At low concentrations, where K is 
small, the corrections are negligible. At higher concentrations the con­
vergence is fairly poor and a Pade summation is required. 

Henderson and Blum (IJ) have suggested changing the expansion 
parameter from K to 2T. They obtain 

A - A 0 

NkT 
(2T)3(1 + 3Ta/2) (2T)4 

12irp 16TTP 
h0(r)dr + (53) 

The higher order terms in this expansion are given by Henderson and 
Blum. Since 2T ^ K , this series of corrections to the MSA is better 
behaved. In fact, the corrections are negligible at normal ionic concen-

0.25 0.50 0.75 1.00 

C o n c e n t r a t i o n (m/l) 

Figure 1. Internal energy of a 2:2 model ionic solution. Conditions, cr = 
4.2 A; e = 78.358; and T = 298.16 K. Key: o, computer simulation values 
of van Megen and Snook (10); computer simulation values ofValleau 

et al. (8, 9); and —, MSA results. 
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60 MOLECULAR-BASED STUDY OF FLUIDS 

trations. At the densities characteristic of fused salts, the correction terms 
would make an appreciable contribution. 

At low concentrations, the correction terms, given in Equations 52 
and 53, are not the most important corrections to the MSA result. This 
is because there is, in the fourth-order term, the contribution 

AA 
NkT = - } 8 P4P 2 / <4 (r)go(r)dr (54) 

Expressions analogous to this appear in every even-order perturbation 
term. 

The above integral converges because r~ 4 goes to zero sufficiently 
quickly to prevent a divergence. However, since the series in Equation 
53 works well at higher densities, the contribution of this (J4 term must 
disappear at these higher densities due to some cancellation with terms 
which are higher order in the density. Hence, even though a resum-
mation is not forced upon us to prevent a divergence, a resummation is 
desirable as it approximates this cancellation. The effect of the resum­
mation in Equations 42 to 46 is to replace 

Ml(r) = (55) 
er 

by 

5 l ( r ) = ( 5 6 ) 

Further, the effect of the combination of the core terms is to replace 
e~Krlr by the appropriate MSA expression. To a good approximation this 
is e - K ( r _ C T ) /r. Thus, we can add the approximate correction term 

AA -NkT 2 P ? XiXj I n ? 2 (2n)! er 

,2 

e -K(r-cr) g0(12)dr2 (57) 

Equation 57 is correct at low concentrations where K — » 0. At higher 
concentrations where K is appreciable, this correction term is ad hoc, 
but does become small. Correction terms similar to Equation 57 have 
been considered by many authors (12). 

Perturbation theory provides a reasonably good theory of the model 
ionic fluid given by Equation 35. The main deficiency is the primitive 
model of the solvent. The solvent appears only through the dielectric 
constant e. What is needed is a more realistic treatment of the solvent. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

03



3. H E N D E R S O N Perturbation Theory 61 

Dipolar Hard Spheres 

A model of a solvent that is an interesting system to which to apply 
perturbation theory is the dipolar hard-sphere fluid, for which the pair 
potential (which is a function of orientation as well as position) is 

where £ll and i l 2 are variables specifying the orientation of molecules 1 
and 2, (x is the dipole moment 

and (Li and f 1 2 are unit vectors. 
Before considering this system of hard spheres with embedded point 

dipoles, a few general comments about the application of perturbation 
theory to molecules with nonspherical pair potentials are in order. Non-
spherical molecules are a more complex system than the simple spherical 
systems discussed so far. The dipolar hard spheres considered here are 
an especially simple system because the hard core is spherical. The 
u-expansion is appropriate and everything proceeds in a reasonably 
straightforward manner. For more complex systems, where the core is 
nonspherical, the situation can be more complex. If a spherical reference 
system is used then some of the perturbation energy may be large and 
positive. If so, a w-expansion is inappropriate and an/-expansion is pref­
erable, at least for the regions where the perturbation is large and pos­
itive. However, the penalty we pay is that in the region where Ui(r9Cl) 
is negative, /(r,ft) can be very large, which might result in convergence 
problems. Ideally one would like a nonspherical reference fluid. Should 
such a reference fluid be available, perturbation theory might be more 
widely useful for nonspherical potentials. Expressions for the free energy 
of many fluids consisting of nonspherical molecules are available (2). 
However, there are no expressions presently available for g(r,fl) for such 
systems. 

Fortunately, such problems need not concern us when considering 
dipolar hard spheres. Using the u-expansion 

r < a 
r > a 

(58) 

D(12) = 3(Ai • r12) (fe • f 1 2) - iii • U (59) 

A=A0+ 2 ((V)"A 
(60) 

n = l 

where A 0 is the free energy of hard spheres of diameter a 

NkT 
A, (61) 
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62 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

and uf(12) is the pair potential divided by |x2. The angular integral in 
Equation 61 is zero. Hence AY = 0. After performing the angular in­
tegrations 

A2/NkT = - | p | r-%(r)dr (62) 

and 

where 

A3/NkT = ^ P2 / "123go(123) dr2dr3 

1 + 3 cos 0i cos 02 cos 03 

"123 = ; r3 (64) 
V r i 2 r l 3 r 2 3 / 

(63) 

and r{j and 0{ are the sides and interior angles of a triangle formed by 
molecules 1, 2, and 3. 

We see that these expressions for dipolar hard spheres are quite 
similar to the virial expansion and to the expressions for charged hard 
spheres. Only the ring diagram survives in the third-order term. In fact, 
if we took only the diagrams that contribute to the virial expansion and 
then expanded in powers of (3 we would obtain Equations 38 and 
60-63. 

The integral in Equation 62 is easily evaluated. Barker et al. (13) 
have calculated the integral in Equation 63. As is seen in Figure 2, the 
free energy series obtained from Equation 60 converges very slowly. The 
perturbation terms seem to alternate in sign. Rushbrooke et al. (14) have 
employed the Pade sum 

and found it to be in good agreement with computer simulations (15). 
This is shown in Figure 2. 

There is some indirect evidence (15) from computer simulations that 
the terms in the perturbation sum, Equation 60, are negligible for n > 
4. Hecht et al. (16) have obtained formal expressions for A 4 and A 5 , and 
Tani et al. (17) have made some progress towards calculating A 4 . It will 
be interesting to see if a truncated series agrees with the simulation 
results. 

In the case of the charged hard spheres, it was found helpful to 
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3. H E N D E R S O N Perturbation Theory 63 

)3ju2/a3 

Figure 2. Free energy of a dipolar hard-sphere fluid (pa3 = 0.8344) as 
a function of reduced dipole moment. Key: •, computer simulation values 
ofValleau and Patey (15); , 2 and 2 + 3, results of Equation 60 when 
truncated after 2 and 3 terms, respectively; —, MSA results; solid curve, 

results of Equation 65. 

remove the MSA results from the perturbation series and write the series 
as a correction to the MSA. This could also be done for the dipolar hard 
spheres. If this is done 

A/NkT = AMSA/NkT -

where y = 4TTPP|A2/9. The similarity to Equation 52 is striking. Terms 
important at low densities can be constructed in a manner analogous to 
Equation 57. We should not expect this series of correction terms to the 
MSA result to converge quickly. A Pade summation may still be required. 
It may or may not be preferable to the original series, Equation 60. 
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64 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

However, in view of the fact that A M S A is not too bad an approximation 
to A, as is seen in Figure 2, using A M S A as a starting point, rather than 
A 0 , does not seem too bad an idea. At low densities, terms analogous to 
those in Equation 57 would have to be included in the perturbation 
expansion. 

Perturbation theory can also be applied to the calculation of the 
dielectric constant. The result is 

(e - l)(2e + 1) 
9e 

3 cos2 e 3 - 1 

( r l 3 r 2 3 ) 3 

g0(123)dr2dr3 + . . (67) 

Including only the first term in the above series gives the Onsager result 
for e (18). 

This series for e can be rewritten by expressing it as a correction to 
the MSA for e rather than as a correction to the Onsager result. Hence 

(e - l)(2e + 1) (e - l)(2e + 1) 

^=1 9e 9e MSA 

The integrals in Equations 67 and 68 can be calculated by the same 
techniques as those used in the calculation of the integral in Equation 
63. However, the numerical problems are more difficult because the 
integral is long ranged. Despite this, Tani et al. (17) have been able to 
calculate this integral and thereby obtain e. Their results are promising 
but still preliminary and so are not presented here. 

The perturbation theory presented here is based upon the u-ex-
pansion. Dipolar hard spheres have been treated by /-expansion tech­
niques also (19). The method has some advantages but is more complex 
since the angle averages cannot be performed analytically. 

In the past two sections, perturbation theory has been applied to 
the ions and the solvent separately. What is needed is a treatment of a 
mixture of ions and dipoles. This has not yet been done. The formulation 
of perturbation theory for this system would be more difficult as dipoles 
as well as ionic terms will have to be resummed to avoid divergences. 
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3. H E N D E R S O N Perturbation Theory 65 

Electric Double Layer 

Let us consider first ions near a charged electrode. As before, we 
consider the ions to be charged hard spheres of diameter a. The electrode 
is approximated as a uniform, hard, charged wall. First let us consider 
the case where the solvent is a uniform dielectric medium. 

If the electrode is charged, there will be an accumulation near the 
electrode of ions whose charge is opposite to that of the electrode. We 
can then speak of a double layer of charge. To apply perturbation theory 
to the system, we consider the electrode to be a large ion whose diameter 
is R » a and whose charge is Q. Eventually, we will take the limit 
R - ^ 00. 

Since the concentration of this large ion is l/N 

A = A o " 2 w2*2 / d r 

where the sums are over the bulk charged hard spheres and go (r) is the 
radial distribution between the large hard sphere and the bulk hard 
spheres. 

Hence, the excess free energy due to the presence of this large ion 
is 

A = - gg(r) dr 
2 8 J ( R + a)/2 6 0 V 1 

= _ r d r _ ^!2! r m d r + . . . (7o) 
2e Jo 2e Jo 

Replacing the divergent integral in Equation 70 by the ring sum of which 
it is the first member gives 

AA = - e~Krdr + —^- dr 
2e Jo 2e Jo 

K 2 Q 2 f0 0 

- hS(r)dr + . . . 
2e J(R+<x)/2 
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66 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

The last integral has been neglected since ho(r) — 0 for normal ionic 
concentrations. 

Introducing T, defined by Equation 50, gives 

Q 2 

AA = - — T (1 - TR) + 
e 

e 1 + TR 

For large R, Equation 72 becomes 

(72) 

O2 O2 

The first term in Equation 73 is the free energy of a sphere. The second 
term is the free energy of the double layer, 

A A D L = - 2 L (74) 

The potential difference across the double layer is 

a(AAD L) 

2 Q (75) 
ETR2 

If the surface charge density is E/4TT then Q = ER2/4. Thus, 

V = — — (76) 
e(2r) V 1 

which is the MSA result (20). 
The MSA potential is linear in the charge density on the electrode. 

However, as is seen from Figure 3, where Equation 76 is compared with 
computer simulation (21), this is true only for a small charge density. 
For larger charge densities additional perturbation terms must be in­
cluded in Equation 69. Something more sophisticated than a generali­
zation of Equation 57 seems to be needed, since in such an approximation 
all of the higher order terms in Q (or E) have the same sign as the linear 
term in Equation 76. As is seen from Figure 3, the simulation results 
lie below the linear term. This means some of the higher-order terms 
in Q must be negative. 
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3. H E N D E R S O N Perturbation Theory 67 

Charge Density (c/m 2 ) 

Figure 3. Potential difference as a function of electrode charge density 
for an electrified interface. Key: •, computer simulation of Torrie and 
Valleau (21) for a 1:1 electrolyte (v = 4.25 A, e = 78.5, T = 298 K); 

—, MSA result for this system. 

A qualitatively correct expression for the dipolar hard-sphere sol­
vent's contribution to the double layer potential can also be obtained 
from perturbation theory. The contribution to the surface free energy is 

A A = - -2 0ps J u L (r,ft)gS-(r)rfrdn (77) 

The first-order contribution vanishes because the integral of uws (r,ft) 
over orientation is zero. Now 

Hence 

A A = - — |Jp s eV r-*gS°(r)dr (79) 
3 J(R + as)/2 
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68 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

since (cos2 8) = ^. To evaluate this contribution, the integral in Equation 

79 must be evaluated. However, a qualitative expression can be obtained 
by assuming that gos(r) = 1. To this approximation 

A A . - ^ f - (80) 

where y = 4irp(3|x2/9. 
The surface part of Equation 80 is 

A A d , - s e s (8D 

so that the solvent contribution to the potential difference is 

V = 
R2 

= 3 y ^ (82) 

Equation 82 can be made more similar to the MSA result by recalling 
that for small y, 3y = e — 1 (cf. Equation 67). At large values of y we 
could write 3y — (e — 1)/Xe where X is some unspecified parameter 
reflecting the relation between y and e and the fact that go*(r) is not 
identically unity. Substituting for 3y 

V - ^ ( £ | (S3) 

Equation 83 is the same as the MSA result (22, 23). However, the per­
turbation theory value for X will differ from the MSA result. In the MSA, 
X is a weak function of e since if e = 1, X = 1 and if e = 78, X = 2.76. 
Presumably, this is true in perturbation theory also. If so, the MSA and 
perturbation theory values of X will be similar. 

Hence, including both the ionic and solvent contributions 

_ ^ (B - WT. 
e(2r) 2eX K ' 
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3. H E N D E R S O N Perturbation Theory 69 

which becomes, in the limit of small K , 

V = E + E * + (s - l)Evs 

8K 2e 2E\ 

Equation 85 is the same as the MSA result (22, 23). 

Perturbation theory is a powerful tool in the theory of fluids. In this 
chapter we have briefly reviewed the general formalisms of perturbation 
theory and its application to simple fluids. Much of this is well known. 
However, the observation that the virial series is a form of perturbation 
theory may not be well known. 

For ionic fluids, we have shown that perturbation theory gives some 
interesting results. In particular, it can be reformulated so that the zeroth-
order approximation is the mean spherical approximation. This is fairly 
promising since the MSA often gives a fairly reasonable approximation 
to the free energy. Presumably, a perturbation theory for the corrections 
to the mean-spherical-approximation free energy will be better behaved 
than one for the corrections to the hard-fluid free energy. However, this 
conjecture will have to be tested. The work of Tani et al. (17) is of 
interest in this regard. 

Finally, perturbation theory has been applied to the electric double 
layer. With little effort, the MSA results for the double layer are re­
covered. Unfortunately, the double layer problem is highly nonlinear. 
Hence, approximations which are more sophisticated than those pres­
ently available will have to be developed before perturbation theory can 
be applied at high charge densities on the electrode. Nonetheless, per­
turbation theory as a theory of the double layer is promising because of 
its simplicity. 

Glossary of Symbols 

A Helmholtz free energy 
A 0 Helmholtz free energy of the unperturbed fluid 
A H S hard-sphere free energy 
An nth order perturbation term in the expansion of the free energy 
%(r) ring or chain sum 
^(k) Fourier transform of chain sum 
D(12) angular part of dipolar interaction 
d hard sphere diameter 

Continued on next page 
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Glossary of Symbols—Continued 
E electric field near a charged electrode; also 4TT times the charge 

density on the electrode 
e magnitude of the electronic charge 
ey(r) e~lde/dy 
e^if) e~ld2e/dy2 

f(r) exp{ -Mr) } - 1 
f(r) exp{-pW l(r)} - 1 
g(r) radial distribution function 
g0(r) radial distribution function of the unperturbed fluid 
go (r) radial distribution function of an unperturbed fluid molecule near 

large ion 
g H s ( r ) hard-sphere radial distribution function 
g(l . . . h) /i-body distribution function 
h(r) g(r) - 1 
k Boltzmann constant 
N total number of molecules and ions 
Q total charge on electrode 
R diameter of large ion before wall limit is taken 
r{ position vector of ith molecule or ion 
T temperature 
u(r) intermolecular pair potential 
u0(r) reference fluid pair potential 
u^r) u(r) - u0(r) 
u*(r) reduced pair potential 
V volume 
x density of a lattice gas 
x{ concentration of molecules or ions of species i 
y 4TTP(3U/V9 
z number of nearest neighbors in a lattice 
z( valence of ion of species i 

Greek Letters 

P 1/kT 
T renormalized screening parameter in MSA 
7 expansion parameter in perturbation series 
e parameter describing strength of attractive part of pair potential; also 

dielectric constant 
K (4TTpzVp/e)1/2 

fx dipole moment 
£ number of triangles of nearest neighbors that can be formed on a 

lattice, divided by N 
p N/V 
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p5 solvent density, Ns/V 
a hard-sphere diameter, or the value of r for which u(r) = 0 
<*>( r i • • • riv) potential energy of a collection of N molecules 
il variable specifying the orientation of a molecule 

Abbreviations 

D H Debye-Huckel 
HS hard sphere 
MSA mean spherical approximation 
nnd nearest neighbor distance 
SL Stell-Lebowitz 
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4 
A Review of Methods for Predicting 
Fluid Phase Equilibria: 
Theory and Computer Simulation 

KATHERINE S. SHING1 and KEITH E. GUBBINS 
Cornell University, School of Chemical Engineering, Ithaca, NY 14853 

This chapter first reviews computer simulation methods for 
calculating the free energy or chemical potential in a mix­
ture. Particular attention is given to methods suitable for 
dense gas or liquid mixtures, including umbrella sampling 
and test particle methods. This is followed by a review of 
mixture theories based in statistical mechanics. We focus 
on theories developed since 1967, and include perturbation 
theory for spherical and nonspherical molecules as well as 
the fluctuation formulas of Kirkwood and Buff. 

A M O N G T H E M O S T S I G N I F I C A N T A D V A N C E S for future work on phase 
equilibria has been the development of perturbation theories and 

computer simulation methods. Computer simulation studies provide data 
on precisely defined model fluids that can be used to test theoretical 
approximations. Such tests are of great value in discriminating among 
theories and are a desirable prelude to comparisons with experimental 
data on real fluids. For applications to phase equilibria it is particularly 
useful to calculate the chemical potentials of the mixture components by 
simulation. Such calculations require specialized techniques, and it is 
these techniques that we review in the first section of this chapter. We 
place special emphasis on those methods (umbrella sampling and test 
particle methods) that have been developed recently and that are useful 
at liquid densities. 

We next review some of the most useful statistical mechanical the­
ories that have been developed since 1967. These include perturbation 
theories for both spherical and nonspherical molecules, and theories 
based on the fluctuation formulas of Kirkwood and Buff. For spherical 
molecules, the theoretical situation is relatively satisfactory, except for 
mixtures where the molecules differ greatly in size (e.g., dilute solutions, 

1Current address: University of Southern California, Department of Chemical En­
gineering, Los Angeles, CA 90007 

0065-2393/83/0204-0073$09.50/0 
© 1983 American Chemical Society 
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74 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

supercritical extraction systems). For nonspherical molecules, there have 
been substantial improvements in methods in the last six years, and 
calculations based on perturbation theory are now quite accurate for 
mixtures in which the liquids are completely miscible. However, these 
methods are still rather poor for highly nonideal mixtures (e.g., those 
where hydrogen bonding is important), mainly because the intermolec­
ular potential functions are poorly known. 

The calculations carried out so far usually assume rigid molecules 
and neglect effects due to quantum corrections or multibody forces. 
Quantum corrections are important for mixtures containing hydrogen or 
helium, but are usually small otherwise. Some calculations have been 
made that include three-body dispersion and induction forces. The rigid 
molecule approximation precludes the use of the theoretical methods 
reviewed here for long-chain molecules. 

Free Energy and Chemical Potential by Computer Simulation 

The usual Monte Carlo and molecular dynamics techniques used to 
simulate fluids can yield the internal energy and pressure with reasonable 
accuracy, but do not give good results for the Helmholtz free energy, 
A, or chemical potential, |x. The conventional Monte Carlo and molecular 
dynamics methods are reviewed elsewhere (I, 2). (For a more detailed 
discussion of the older methods used to calculate A or |x, see References 

For pure fluids, a knowledge of A is equivalent to knowing |x, but 
this is not the case for mixtures. The first few methods described below 
give the free energy rather than the chemical potential. The grand ca­
nonical Monte Carlo and test particle methods then described give the 
chemical potential directly; this is to be preferred where mixture phase 
equilibria are to be studied. 

Methods for Calculating Helmholtz Free Energy. T H E R M O D Y N A M I C 

I N T E G R A T I O N . In thermodynamic integration, the difference in the free 
energy between two states is calculated by numerically integrating over 
states between the initial and final state, using some thermodynamic 
relationship. For example 

3-5.) 

(1) 

or 

(2) 
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4. S H I N G A N D G U B B I N S Theory and Computer Simulation 75 

where p = N/V is the number density, P is pressure, and U is internal 
energy. Values for P or U from computer simulations for 10 or so points 
along an isotherm or isochore are usually fitted to polynomials and then 
integrated according to Equation 1 or 2. The free energy for the initial 
state is usually known (usually one takes the high-temperature or low-
density limit). 

The integration variable is not restricted to thermodynamic varia­
bles. The initial and final states could represent two systems at the same 
thermodynamic state, but having different intermolecular forces. Thus 
we can write 

where, for example, the state X may represent a quadrupolar Lennard-
Jones fluid, whereas X0 represents a Lennard-Jones fluid. Here °lt is the 
intermolecular potential energy. In this particular example, then (d°U(X)/ 
aX)x is given by where °W,(X) = % L J + X%. Therefore the inte­
gration variable X is a measure of the quadrupole strength. 

The thermodynamic integration method has been used by various 
authors to study model fluids, including hard spheres (6), soft repulsive 
spheres (7, 8), Lennard-Jones atoms (9-13), the dipolar-quadrupolar 
Lennard-Jones fluid (14), one-component plasma (15), and hard dumb­
bells (16). Thermodynamic integration is tedious and poses problems 
when phase transitions occur along the path of integration. In the two-
phase region, simulation gives large uncertainties in P and U used in 
Equations 1 and 2, so that the resulting values of A are rather unreliable. 
To overcome these problems, artificial constraints have to be imposed 
on the system to reduce the fluctuations. In the case of the melting 
transition, Hoover and Ree (17) used a single occupancy model where 
the center of each particle is confined to a cell centered at the lattice 
site. In the case of the vapor-liquid transition, Hansen and Verlet (18) 
divided the Monte Carlo box into subcells and restricted the density 
fluctuations in the box by imposing upper and lower limits on the density 
of each subcell. When such artificial constraints are imposed, one is 
essentially performing a series of simulations on artificial systems, the 
sole purpose of which is to allow integration to obtain A and which is 
otherwise of no particular interest or utility. 

M E T H O D O F M C D O N A L D A N D S I N G E R . Several more direct meth­
ods of finding A have been proposed. McDonald and Singer (19-21) write 
the free energy for the two states Tl and T0 as 

(3) 

A(7\) A(T0) 
Ti T0 

exp (4) 
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76 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

Again, the two states need not be restricted to thermodynamic states 
and (with obvious changes to the integrand) could equally well represent 
two systems having different intermolecular forces at the same ther­
modynamic state. A(7\) — A(T0) is easily obtained from Equation 4. In 
this method, a Monte Carlo simulation at the state T0 is used to obtain 
the distribution / ro(°U) which is then integrated according to Equation 4 
to obtain A A = A(TX) - A(T0). Typically, / r o(°tt) is a rather narrow Boltz­
mann distribution and covers only the range of °U important to the state 
T 0 . Therefore, /ro(°U) obtained from the simulation at T0 will allow cal­
culation of A(7\) only if state T1 is close to state T0; that is, when the 
range of °ll important to Tl overlaps sufficiently the range important to 
T0. For Lennard-Jones fluids, McDonald and Singer (19, 21) found that 
this method works if the states 7\ and T0 differ in temperature by less 
than 15%. 

M U L T I S T A G E S A M P L I N G . A S described in the last subsection, the 
free energy difference between two systems 1 and 0 having intermolec­
ular potential energies ^ and °U0 can be written as 

A A = Ax - A0 = -kT\n\ f0(%) exp(-%/kT) d% (5) 

where /o(°^p) is the probability density for observing the difference °Up 

= — °U0 in the reference (0) system, where and °U0
 a r e the potential 

energies that would be observed in the 1 and the 0 systems for the 
molecular configuration in question. Valleau and coworkers (22, 23) noted 
that when the systems 1 and 0 are rather different, /0(°^p) a s obtained 
from a single simulation at the state 0 will not overlap the distribution 
/()(%>) exp( — °llp/kT), which is the integrand in Equation 5. The integral 
in Equation 5 will then be underestimated. They suggested the use of 
bridging distributions that bridge the gap between /0(%,) and 
/o(°top) exp(-°Up/feT), and used Boltzmann distributions corresponding 
to physically realistic states between 0 and 1 as the bridging functions. 
Unless states 0 and 1 are quite close together, several distributions (or 
stages) are needed to bridge the gap—hence the name multistage sam­
pling. This method has been used to study Coulombic hard spheres (22), 
dipolar hard spheres (23), and diatomic Lennard-Jones molecules using 
hard diatomics as reference (23, 24). The method is superior to ther­
modynamic integration, since a knowledge of / 0(°^ P) o v e r the range of 
°Up relevant to states 0 and 1 allows accurate interpolation for the con­
tinuous spectrum of states between 0 and 1. (Jacucci and Quirke (24, 25) 
introduced a method called marquee sampling, in which an analytic form 
for the potential function of the intermediate ensemble is given.) 

For many systems, multistage sampling requires fewer simulations 
than thermodynamic integration. Exceptions occur at low temperature 
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4. S H I N G A N D G U B B I N S Theory and Computer Simulation 77 

and for large systems, since for those cases the Boltzmann bridging dis­
tributions become very narrow, and overlap is usually poor. These short­
comings prompted Valleau and Torrie to seek other more optimum choices 
for bridging functions. This resulted in the development of the method 
of umbrella sampling, described later in this chapter. 

B E N N E T T S M E T H O D . Bennett (26) derived expressions for the op­
timal estimation of the free energy difference between two systems with 
temperature scaled potentials °U{ = Glil/kTl and ^ = °U 0/^o using data 
from simulations of finite length. 

E {f(% - % + c» 
A A e s t = l n £ {/(% - % - c» 

no 

For a run of sufficient length the first ln term on the right-hand side of 
Equation 6 will converge to zero, and we have 

A A e s t = C - l n ( ^ ) (7) 

Here A A e s t is the estimated free energy difference, nx and n 0 are the 
number of configurations generated in systems 1 and 0, respectively, C 
is a shift constant, and/(x) = 1/[1 + exp(x)] is the Fermi function. 

Two separate simulations, one for the 0 system and one for the 1 
system, are made, and histograms of the energy distribution functions 
/i0(°ltp = °U[ - °U0) a n d fti(°top) a r e constructed. Equal computer time 
should be devoted to each simulation, and this determines the optimal 
ratio njrio. Using the distributions /i0(°^P) a n d Ki^), AA is calculated 
by making guesses for C and iterating using Equations 6 and 7 until 
convergence is achieved. The success of this method depends on the 
overlap between the distributions h^^) and hQ^\L'p). When these do not 
overlap, AA cannot be estimated reliably. A comparison of Bennett's 
method and multistage sampling has been made by Quirke and Jacucci 
(24, 25) in a study of Lennard-Jones diatomics. They also suggested a 
new method for correcting the results of short Monte Carlo simulations. 

U M B R E L L A S A M P L I N G . Umbrella sampling (27, 28) allows calcula­
tion of the difference AA = A x - A 0 of two states that are not necessarily 
close to each other, using only one (or at most a few) simulations. It is 
convenient to write Equations 4 and 5 in a more general form 

(fl " (f)0
 = ~k l n / l / o ( A ) CXP ["^(A)] dA (8) 
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where % = (WkT^ - (°H/fcT)o and A is an appropriate variable. For 
example, A equals °lt in Equation 4 and in Equation 5. 

In umbrella sampling (27, 28)/0(A) in Equation 8 is not determined 
from Monte Carlo simulation at the reference state 0 alone (as was the 
case in the work of McDonald and Singer), nor is it determined from a 
range of physically realistic states in between and including the states 0 
and 1 [as was the case in the multistage sampling work of Valleau, Card, 
and Patey (14, 22), as well as in Bennett's method (26)]. Instead, f0 is 
determined from one or a few simulations for artificial systems that give 
rise to configurations typical of many states between 0 and 1. An artificial 
system is generated by replacing the Boltzmann distribution exp (— (3%) 
with a new distribution W(A) exp (— P°U), where W(A) is a suitable weight­
ing function, and A is a suitable integration variable. With a judicious 
choice of W(A) the simulation for this artificial system gives a weighted 
distribution fw(A) that is much broader than the Boltzmann distribution 
f0 (see Figure 1). The original Boltzmann distribution f0(A) can be re­
covered from fw(A) by reweighting according to 

where ( )w indicates an ensemble average over the weighted chain of 
configurations. In this way/0 is obtained over a much wider range of A. 

Umbrella sampling has been used by various authors to study several 
model fluids, including pure Lennard-Jones fluids (28), Lennard-Jones 
mixtures (29), dipolar hard spheres (30), and quadrupolar Lennard-Jones 

Figure 1. Probability density distribution functions for a typical liquid 
condition for the unbiased system (f0) and the weighted system (fw). For 
small A values, f0 and the desired curve f0 exp ( — °ltp) are calculated from 

fw using Equation 9. 

(9) 

A 
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4. S H I N G A N D G U B B I N S Theory and Computer Simulation 79 

fluids (31). It has also been used to study the surface tension of water 

Umbrella sampling has several advantages. It has been shown that 
AA is less dependent on system size than A itself, and good results for 
free energies have been obtained using only 32 atoms (27, 30; see also 
24, 25). Since umbrella sampling simulations are carried out for artificial 
systems representing states between the system of interest (1) and the 
reference state (0), in cases where the system of interest phase-separates, 
the umbrella sampling simulation may show no phase transition and thus 
allow more accurate results to be obtained. Disadvantages of this method 
are that the reference free energy must be known; also, the weighted 
sampling makes it uneconomical to obtain some of the properties other 
than A, such as correlation functions. The distribution functions f0 and 
fw narrow as the size of the system increases or when temperature de­
creases; therefore the number of stages or separate simulations required 
to cover a specified range in A also increases. The selection of a suitable 
weighting function requires some trial and error. Finally, the method is 
restricted to Monte Carlo calculations and cannot be used in molecular 
dynamics. 

Methods for Calculating Chemical Potential. G R A N D C A N O N I C A L 

M O N T E C A R L O . The partition function for the grand canonical ensemble 
is given by 

where dxN = dxldx2. . .dxNandx{represents the coordinates that specify 
the configuration of molecule i (e.g., x{ = r{ for spherical molecules, xt 

= for nonspherical rigid molecules), and X = (qqu/A?Ar) exp (yJkT); 
here qqu, At and A r are the usual quantal, translational, and rotational 
partition functions, respectively, for a single molecule. 

In this ensemble, |x, T and V are fixed and the density fluctuates. 
The mean density and (N) are found as ensemble averages at the end of 
the simulation. This simulation method has been implemented in some­
what different ways by Norman and Filinov (33), Adams (34-37), and 
Rowley, Nicholson, and Parsonage (38). The method involves essentially 
two steps. The first step is the displacement of the particles in the system 
and is identical to the procedure used in the canonical ensemble simu­
lation. The second step involves adding or removing particles according 
to the requirements of the grand canonical ensemble weighting function, 
so that the number density in the system fluctuates. In their studies of 
the Lennard-Jones fluid, both Norman and Filinov, and Adams observed 
abrupt changes in density at a particular value of |JL corresponding to the 
vapor-liquid transition; however, such jumps were very infrequent. 

(32). 

(10) 
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Adams also used this simulation method to locate the coexistence 
curve of the Lennard-Jones fluid. He observed that close to the phase 
transition, if the simulation was started from the wrong phase for the 
prescribed (x, the system would ultimately converge to the correct phase. 
No flipping back and forth between the two phases was observed, how­
ever. Grand canonical Monte Carlo works best at high temperatures and 
low densities, since the addition of molecules is then allowed with suf­
ficient frequency for adequate sampling of the density fluctuations rel­
evant to this ensemble. Recently, Mezei (39) has modified the sampling 
procedure so that states of higher densities can be studied. In his cavity 
biased (|xTV) Monte Carlo method, a network of uniformly distributed 
test points was generated in the fluid and the fraction of these points in 
a suitable cavity was found. Insertion of a new particle was attempted 
at this cavity instead of at randomly selected points. The fraction of test 
points in the chosen cavity also allows the proper normalization of the 
ensemble averages. For the Lennard-Jones fluid, Mezei found that the 
efficiency of the insertion process was increased by a factor of 8 while 
the required central processing unit (CPU) increased by a factor of 2.5. 

Grand canonical Monte Carlo has the advantage of giving the chem­
ical potential directly. Since the number of particles in the system is 
allowed to fluctuate, the ensemble permits density fluctuations and also 
permits concentration fluctuations in the case of mixtures. Therefore, 
this ensemble should be more suitable for studying systems close to phase 
transitions and for systems close to the critical region. Grand canonical 
Monte Carlo simulations are more complex and more time consuming 
than canonical ensemble Monte Carlo simulations. Adams noted that the 
results are sensitive to errors in the random-number generators used. 
At low temperatures and high densities, it is very difficult and time 
consuming to sample the density fluctuations adequately, even with Mez-
ei's improved cavity biased version. This problem will become more 
severe if a more complex, angle-dependent potential is used, because 
the success of the insertion attempts will then also be angle dependent. 
Furthermore, since it is (x that is specified, the density (and also the 
composition in the case of mixtures) is not known until the end of the 
simulation; this is inconvenient in practice. This method is restricted to 
Monte Carlo calculations, and does not appear to be useful for molecular 
dynamics. 

T E S T P A R T I C L E M E T H O D . This method is based on an expression 
for the chemical potential derived by Widom (40) 

^ r = -kT ln (exp (-XJkT)^., 

= -kT Injl J^fXJ exp (~%JkT) 0%* (11) 
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4. S H I N G A N D G U B B I N S Theory and Computer Simulation 81 

where |xar = |xa - is the residual chemical potential for the species 
a in a fluid composed of N — 1 real molecules of which NA are molecules 
of species A, NB are molecules of species B, and so forth, in a volume 
V at temperature T; °ll,a is the potential energy felt by an invisible test 
particle (molecule 1 of species a); and (. . .)#_! denotes an ensemble 
average in a system of N— 1 real molecules. It should be emphasized 
that in Equation 11 the test particle has no influence on the N—l real 
molecules. 

Adams (34) used this method to calculate the free energy of hard 
spheres in order to test the scaled particle theory. Romano and Singer 
(41) later implemented this method in both Monte Carlo and molecular 
dynamics simulations to calculate the chemical potential of bromine and 
chlorine using a two-center Lennard-Jones model. The sampling pro­
cedure used by Romano and Singer was as follows: after every molecular 
dynamics time step or after every few hundred Monte Carlo configu­
rations, the value of °ll ( a for three mutually perpendicular test particles 
at each of a few hundred uniformly distributed lattice sites was calculated. 
The ensemble average (exp ( — 6HtJkT))N_l was found by an unweighted 
average over all values of °M,,a obtained over the course of the simulation. 
Powles (42) further studied the method and used the results of Romano 
and Singer to calculate the vapor-liquid coexistence properties of bro­
mine and chlorine. 

The advantages of the test particle method are that it is much simpler 
than the grand canonical Monte Carlo algorithm, and requires only the 
addition of a simple subroutine to perform the test particle sampling. 
Also, Romano and Singer have shown that it can be implemented in both 
canonical Monte Carlo and molecular dynamics simulations, although 
they found that the convergence was poorer in molecular dynamics. It 
is conceivable that this method can also be used in other ensembles, for 
example, the isothermal-isobaric ensemble. Since the test particle sam­
pling does not affect the real particle configurations, the internal energy, 
pressure, and correlation functions can be obtained in the usual way. 
The disadvantage of the method is that it fails at normal liquid densities 
because of the predominance of configurations in which the test particle 
overlaps one or more of the real molecules, causing the Boltzmann factor 
of the test particle to be negligibly small. Such failure is closely related 
to the failure of the grand canonical Monte Carlo method at high den­
sities. In mixtures, this difficulty increases whenever one considers a 
solute that interacts strongly (through large size or large attractive force) 
with the other solvent molecules. There are two sampling problems 
associated with the test particle method at liquid densities: 

1. Given a fixed configuration of the real particles, how can 
one efficiently sample the relevant range of °U,a by placing 
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the test particle in locations that overlap real particles as 
little as possible? 

2. How can the sampling be concentrated on those real par­
ticle configurations that exhibit "holes" and thus make a 
major contribution to the average in Equation 11? 

These problems can be overcome by one or more recently developed 
techniques which are now briefly described. 

Restricted Umbrella Sampling. The first problem mentioned above 
can be solved by using a procedure called restricted umbrella sampling 
(43), in which a weighting function is used to force the test particle to 
move mainly in regions with holes. The weighted distribution is nor­
malized by comparing it to the unweighted distribution over the range 
of °U,a where the two overlap. The weighting function acts only on the 
motion of the test particle, which is invisible to the real particles. In 
other words, through the weighting function the test particle can see the 
real particles, but the reverse is not true. For a Lennard-Jones fluid at 
a reduced density of p* = pa 3 = 0.7, restricted umbrella sampling is 
able to increase the number of configurations that contribute significantly 
to the integral in Equation 11 by a factor of 30. 

Combined f-g Sampling. This method is designed to solve the 
second problem, i.e., that of adequately sampling real molecule config­
urations that exhibit holes. It is based on a combination of Widom's 
expression, Equation 11, and its inverse (43, 44) 

[Lar = kT ln (exp (%JkT))N 

= kT ln £ gN(%J exp (%JkT) d%a (12) 

where (. . .)N is now an ensemble average over the system of N molecules 
in which the test particle is one of the N real molecules. Equation 12 
has been derived independently by Oliviera (44) and by Shing (43, 45, 
46). 

From Equations 11 and 12, it can be shown that (43, 46) 

gN(%J = exp (^ar/kT)/„_,(%») exp (~%JkT) (13) 

This means that when there is a range of °\ltOL over which gN and fN_l 

overlap, the chemical potential |xar can be calculated. The functions fN_1 

and gN are shown for a typical liquid density in Figure 2. It should be 
noted (see Equations 11 and 13) that gN is proportional to the integrand 
needed to calculate the chemical potential. This is as expected, since gN 

gives the distribution over °Ufct for a real molecule and thus samples the 
hole region adequately. 
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Ut — -

Figure 2. Probability density distribution functions needed in the test 
particle method for a typical liquid state condition. The function f N _ x is 
a very broad distribution and extends to very large °Ut values; the width 
of this distribution is compressed here for convenience of plotting. For 
small °Ut values the desired integrand, f N _ 2 exp ( —°Ut/kT), is obtained by 

using g N in Equation 13 to calculate f N _ i . 

Using restricted umbrella sampling and f-g sampling, Shing and 
Gubbins (43) have shown that for the Lennard-Jones fluid, the chemical 
potential up to the triple-point density can be found. They also used this 
method to calculate the chemical potential of highly nonideal Lennard-
Jones mixtures (43, 46). Results for the Henry constant in Lennard-Jones 
mixtures using this technique are shown in Figures 6 and 7. 

Test Particle Method with Full Umbrella Sampling. If the density 
is very high, or if the test particle interacts strongly (for example, for 
large or strongly interacting solutes, in the case of mixtures) the distri­
butions g N andfN_l may no longer overlap. In such cases the spontaneous 
generation of holes in the fluid occurs so rarely that it is almost never 
sampled in a simulation of normal length. Therefore it is necessary to 
bias the sampling artificially in such a way as to emphasize configurations 
with suitable holes. This is done by coupling the motion of the test particle 
to that of the real particles through a weighting function (47). The test 
particle and the real particles are then mutually visible. 

The advantage of this procedure is that it works at very high densities 
and for very nonideal mixtures. However, since the motion of the test 
particle is now felt by the real molecules, the structure of the fluid is 
altered and it is no longer practical to calculate some of the usual prop­
erties (for example, the correlation functions). The fact that the weighting 
function now affects the motion of both the test particle and the real 
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particles also means that this full umbrella sampling test particle method 
cannot be used in molecular dynamics simulations. 

S U M M A R Y O F M E T H O D S F O R C A L C U L A T I N G C H E M I C A L P O T E N ­

T I A L . The methods for calculating the chemical potential will usually 
be the most useful for testing theories of mixtures, particularly when the 
ability of the theory to predict phase equilibria is important. Of the two 
methods described, the test particle method or one of its modifications 
works under most conditions and is relatively simple to use. The grand 
canonical Monte Carlo method will offer advantages over the test particle 
procedure when large density or concentration fluctuations are likely in 
the real system, i.e., near phase transitions or critical points. At present, 
this method is more complex to program and is restricted to moderate 
densities unless special techniques are used. Mezei's method (39) re­
moves this last restriction to some extent, but does not solve the problem 
completely for very dense liquids. 

R E C E N T W O R K . Several articles have appeared recently on com­
puter simulation methods for determining the chemical potential. An 
interesting application of the grand canonical Monte Carlo method to 
chemical equilibria in mixtures of bromine and chlorine has been de­
scribed (48), and a new method of implementing the grand canonical 
Monte Carlo method has been proposed and applied to the Lennard-
Jones fluid (49). The test particle method has been further studied using 
molecular dynamics in place of the Monte Carlo technique (50). These 
authors study a shifted-force Lennard-Jones fluid using both the direct 
Widom method and the combined f-g sampling technique. They find 
little to choose between these two variants of the test particle method, 
in contrast to the results found in the Monte Carlo studies of the Lennard-
Jones fluid (43). The molecular dynamics runs of Powles et al. (50) are 
considerably longer than the Monte Carlo calculations of Shing and Gub­
bins (43), are at different state conditions for a larger system, and are for 
a different potential model, so that the calculations cannot be directly 
compared. It is possible that the molecular dynamics method samples 
phase space more efficiently, so that the direct Widom method is ade­
quate for dense fluids with spherical potentials, at least when they are 
pure. Careful tests comparing the Monte Carlo and molecular dynamics 
methods for the same potential, state conditions, and length of runs are 
needed to clarify these points. 

Theory 

In this section we concentrate on the more successful theoretical 
approaches that have been developed since 1967. The most promising 
approach at present is perturbation theory, and various forms of pertur­
bation theory are described below. Most recent work has proceeded by 
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evaluating the partition function, but an important alternative approach 
is to start from the formulas of Gibbs and Kirkwood and Buff, discussed 
below, which relate the mixture thermodynamics to concentration fluc­
tuations. We omit any discussion of many of the older theories (cell and 
lattice theories, regular solution theory, random mixture theory, and so 
forth) and theories that apply only to specialized states (for example, the 
critical region) or particular sorts of mixtures (polymer solutions, aqueous 
mixtures, fused salts, and so forth). 

It is convenient to classify binary phase behavior on the basis of the 
types of critical and three-phase lines present and on the way these 
intersect. For fluid phase equilibria, the classification scheme shown in 
Figure 3 is convenient, and includes all the known binary types. Class 
I systems are often fairly ideal in a thermodynamic sense, and do not 
exhibit liquid-liquid immiscibility. The remaining five classes display 
liquid-liquid separation of various kinds. The most common types of 
behavior are Classes I, II, and III. These classes of phase behavior are 
further complicated by the presence of solid phases, and many subclasses 
occur. Detailed discussions of these various types of phase behavior are 
given elsewhere (51-55). 

Mixtures of Hard Molecules. The simplest nonideal mixtures are 
those composed of hard particles. Their study provides valuable insight 
into the effects of molecular size and shape on the thermodynamic prop­
erties, in the absence of complications from attractive forces. In addition 
to integral equation and perturbation theory, it is possible to study such 
mixtures using scaled particle theory. In scaled particle theory, one cal­
culates the work required to add a hard molecule to the fluid by first 
adding a point molecule and then scaling this molecule up to its full size 
(56). The derivation of scaled particle theory is valid only for mixtures 
of molecules of the same shape, although the final expression obtained 
seems to work quite well even when the molecules have different shapes. 
Studies of mixtures of hard bodies have been made by Percus-Yevick 
theory (57), scaled particle theory (56), various modified forms of scaled 
particle theory (58-61), and computer simulation (62-66). These studies 
are in general agreement, and lead to the following three conclusions 
concerning the thermodynamics of mixtures of hard molecules: 

1. The excess volume, VE, and hence GE, is always negative. 
(For such mixtures UE = 0 and GE is simply the integral 
of VE over pressure.) There is therefore no fluid-fluid phase 
transition in such mixtures, though it is possible that iso-
tropic-nematic phase transitions may occur for very elon­
gated molecules. 

2. Molecular shape has virtually no effect on the shape of the 
VE curve, and only a minor effect on its magnitude. 
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3. The size ratio of the two molecules and the pressure both 
have a large effect on the shape and magnitude of the VE 

curves. 

The small influence of molecular shape on the compressibility factor is 
shown in Figure 4 for a mixture of hard spheres and spherocylinders of 
equal volumes. It is seen that the values of P/pkT for such a mixture are 
similar to those for pure hard spheres and pure spherocylinders, provided 
these molecules all have the same volume. The values of VE for this 
mixture are very small, because the nonideality arises entirely from the 
difference in shape of the two species, their volumes being the same. 

Perturbation Theory for Spherical Molecules. Until 1971, work 
on the theory of liquid mixtures focused almost exclusively on simple, 

16 -

pkT 

12 

o / 

O/ / 

0.2 
Tl 

OA 

Figure 4. The compressibility factor for pure hard spheres (—), an equi-
molar mixture of spheres and spherocylinders of equal volumes (O), and 
pure spherocylinders (•). Here n = pS ax av a , where p = N/V is number 
density, xa is mole fraction, and v a is molecular volume of component a. 
(Reproduced with permission from Ref. 66. Copyright 1980, Taylor and 

Francis, Ltd.) 
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spherical molecules. Perturbation and conformal solution theories, which 
relate the free energy of the real mixture to a hard-sphere mixture and 
to an ideal mixture, respectively, are successful for spherical molecules 
(neon, argon, krypton, xenon) and are quite good even for weakly non­
spherical molecules (e.g., nitrogen, methane). These theories give a good 
account of systems with phase diagrams of Classes I and III of Figure 3, 
provided that the molecules are spherical and not too different in size. 
They can predict qualitative behavior of Classes II, IV and V, but this 
generally requires the use of potential parameters that are physically 
unrealistic. They cannot predict behavior of Class VI. We give only a 
brief account of these theories here; for details, reviews are available 
(67-71). 

C O N F O R M A L S O L U T I O N T H E O R Y . In this approach it is assumed (1) 
that the molecules are conformal; i.e., they obey the same intermolecular 
force law, differing only in the values of the potential parameters e a B and 
a a B , and (2) the values of e a B and araB for the various molecular pairs are 
not too different from each other. Because of the second assumption, it 
is possible to expand (72) the Helmholtz free energy A about that of an 
ideal solution of molecules, all of which have the same parameters ex and 
a x , and to terminate the series at the first-order term. The most successful 
of these theories is the van der Waals 1 fluid (vdWl) theory. The ex­
pansion parameters in vdWl theory are the combinations eo 3 and a 3 , 
which appear to give more rapid convergence than other choices that 
have been tried (67-69, 72, 73). This leads to 

A = A x + R e 2 2 * a V e a B ° " a B ~ 6X(T 3) 
a B 

+ R a S S W ^ - + - (14) a 3 

Here R e and RCT are pure fluid integrals for the reference fluid, the precise 
form of which need not concern us here; A x is the free energy of the 
reference mixture; and CTx and ex are the size and energy parameters for 
the reference fluid. If EX and a x are now chosen according to the vdWl 
mixing rules, 

= 22*a*B e a P a 3
s (15) 

a B 

a B 

then the first order term in Equation 14 vanishes, and Equation 14 
reduces to the simple result A = A x . This is the basis of corresponding 
states treatments for mixtures, and for the shape factor methods. 
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Clearly Equations 1^-16 can be expected to apply only for mixtures 
in which the molecules are not too different, i.e., in which (JAA^BB a n d 
8 A A / 8 B B a r e not too different from unity for binary A-B mixtures. If the 
series in Equation 14 is extended to second order, it is found that these 
terms involve triple summations over the mole fractions (74, 75). Thus 
for mixtures of components of very different critical volumes or critical 
temperatures, Equations 15 and 16 are likely to be unsatisfactory. 

A test of this theory is shown in Figure 5 for argon-krypton mixtures, 
and in Figures 6 and 7 for infinitely dilute solutions of A in B, where A 
and B are spherical Lennard-Jones molecules. The points in these last 
two figures are exact computer simulation results for such mixtures (43, 
46), obtained by the modified test particle method described earlier, 
while the dashed lines give the results for the theory. The usual Lorentz-
Berthelot rules 

are used in these calculations. It is seen from these figures that the vdWl 
treatment gives quite a good description of the chemical potential for LA 
^ £ A A / 8 B B ^ 4 (corresponding to critical temperatures that vary by as 
much as a factor of four) when the molecular sizes are the same; these 
limits correspond to LA ^ £AB/£BB ^ 2. However, the theory does not 
describe well the effect of molecular size differences (Figure 7), partic­
ularly when the solute is much larger than the solvent molecules. 

The vdWl theory has been extended in two ways. In the first (74, 
75), the expansion of Equation 14 is extended to second order. The 
second-order terms must be calculated explicitly and involve three-body 
integrals, so that the simplicity of the first-order theory is lost. Detailed 
numerical calculations do not seem to have been reported, except for 
hard-sphere mixtures (72, 75). For that case, the second-order theory 
seems to give quite good results even for ratios (JBB^AA a s targe as three, 
where perturbation theory based on a pure hard sphere reference system 
fails (See Figure 8). The second extension is the so-called two-fluid the­
ory, or vdW2 theory (67-70, 76), in which the properties of the real 
mixture are equated to those of an ideal mixture of two pure pseudo-
components; i.e., components A and B (in the case of binary mixtures) 
are referred to different pure reference fluids. The vdWl mixing rules 
of Equations 15 and 16 are now replaced by 

8 A B ~~ ( E AA £ B B ) 1 / 2 

°AB = lU(VAA + GTBB) (17) 

(18) 

(19) 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

04



90 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

100 

to 
-0.8 

Ar / Kr MIXTURES , 115-8K, P=0 

Figure 5. Test of vdWl theory (lines) against Monte Carlo data (points) 
(67-70, 77) for Lennard-Jones mixtures at 115.8 K. The Lennard-Jones 

parameters are chosen to simulate argon-krypton mixtures. 

where a = A,B, and so forth. The vdW2 theory has been tested against 
simulation data for Lennard-Jones mixtures in which the molecules are 
of nearly the same size, and is poorer than the vdWl theory. It does not 
seem to have been tested for highly nonideal Lennard-Jones mixtures, 
where the size or energy parameters of the two molecular species are 
very different. 
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0 5 (W f BB) 1 5 2 

Figure 6. Variation of the Henry constant K A , with the ratio e A B /e B B for 
Lennard-Jones mixtures at kT/e B B = 1.2, pcr^ = 0.7. The molecules are 
of the same size, cr^ = cxBB. In this case, the results of the vdWl theory 
are the same as those for a perturbation expansion (46) about the pure 
solvent (PTS). Key: , result of the Mansoori-Leland approximation; 

, result of Monte Carlo technique; and —, result of vdWl theory. 
(Reproduced with permission from Ref. 46. Copyright 1982, Institute for 

Physical Science and Technology.) 

P E R T U R B A T I O N A B O U T A H A R D - S P H E R E F L U I D . In this approach 
the intermolecular potential energy °U is usually written in the form 

°ttx = % + X% (20) 

where °U0 is the reference system potential energy, °Up is the perturbing 
energy, and \ is a perturbation parameter. Choosing \ = 0 gives the 
reference potential, while \ = 1 gives the potential for the full system. 
If we expand the Helmholtz free energy A in powers of X and subse-
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quently set A = 1 we obtain the perturbation expansion 

A = A0 + Ax + A2 + A3 + . . . (21) 

where A 0 is the free energy for the reference fluid, Ax is the first-order 
perturbation term, etc. The reference fluid is chosen to be one in which 
the molecules interact with a purely repulsive potential, so that the 
attractive forces are included in °Up. The reference system properties are 
subsequently related to those of a fluid of hard spheres through a second 
expansion, usually in some form of inverse steepness parameter (the hard-
sphere potential being infinitely steep). The expansion can be carried 
out either about a pure hard-sphere fluid, or about a hard-sphere mixture. 
The latter gives the better results, particularly if the molecules are much 
different in size (Figure 8 shows results of using a pure hard-sphere 
reference fluid). 

Three variations on this approach have been proposed—due to 
Leonard et al. (79, 80), Lee and Levesque (81), and Mansoori and Leland 
(82, 83). The theories of Leonard et al. and Lee and Levesque differ 
mainly in the definition of the reference potential, the former using the 
part of the potential for r < a, and the latter that part for r < rm, where 
r m is the separation corresponding to the potential minimum. The Man­
soori-Leland theory is an extension of the variational approach to mix­
tures. These three theories give similar results (67-70). 

These theories have been extensively reviewed (67-71), so that we 
do not dwell on them here. They are more complicated to use than vdWl 
theory and its extensions, since the evaluation of Ax and higher order 
terms requires the evaluation of integrals over the hard-sphere corre­
lation functions. They give better results for highly nonideal mixtures, 
however, particularly if the molecules are much different in size, and 
are not restricted to conformal mixtures. They can be used as a starting 
point for the derivation of empirical equations of state, such as the van 
der Waals and Redlich-Kwong equations (67-71, 84). Such an approach 
makes clear the approximations in such equations, and can be used to 
suggest new equations. 

T H E M A N S O O R I - L E L A N D A P P R O X I M A T I O N . In the Mansoori-Leland 
approximation (85), the true mixture radial distribution function, gaB(r), 
is replaced by the corresponding function for a pure fluid evaluated at a 
reduced temperature fcT/eaB, a reduced distance r/craB, and a reduced 
density per3, with a 3 given by Equation 16. Results for the Mansoori-
Leland approximation are included in Figures 6 and 7. It gives quite a 
good account of the effects of varying e^/e^ (an^ hence TcAITcB, where 
Tc is critical temperature) when the molecules are similar in size, but 
does not work well when the molecules are much different in size. 
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Figure 8. The compressibility factor for an equimolar mixture of hard 
spheres with oBB/crAA = 3. The points are molecular dynamics results of 
Alder (62-66) and the curves are theoretical results. Key: Percus-
Yevick (compressibility) equation; , vdWl; , second-order vdWl 
theory; and , Henderson-Barker perturbation expansion about a 
pure hard sphere fluid (79). Here d* = (xAaAA + xBaBB)p. (Reproduced 
with permission from Ref. 75. Copyright 1971, Taylor and Francis, Ltd.) 

Perturbation Theory for Nonspherical Molecules. For nonspher­
ical molecules perturbation theory calculations have been made using 
reference fluids of both spherical and nonspherical molecules. The most 
extensive comparisons with experiment have been made for spherical 
reference molecules using the Pade approximation of the Pople expansion 
(86) suggested by Stell et al. (87). 

A = A0 + A 2 ( l - A 3 /A 2 )" (22) 

The term Al vanishes in this series. In this expansion the reference fluid 
pair potential u^(r) is defined by 

(u^(r^2)) (23) «2a(r) 
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where a and (3 are mixture components and (...) indicates an un­
weighted average over molecular orientations. Usually some simple model, 
such as the Lennard-Jones 6-12 or 6-n is chosen for u°. For the 6-12 
model both the equation of state and the pair correlation function are 
known from computer simulation studies (88), and it is a simple matter 
to relate the properties of the 6-n fluid to those for the 6-12 case (89). 
General expressions have been given (90) for Ax and A 2 ; they involve 
two- and three-body integrals over the correlation functions for the ref­
erence system. These integrals have been evaluated for a variety of 
potential forms and fitted to simple functions of temperature and density 
(88). Equation 22 is found to agree well with computer simulation results 
for fluids in which the molecules have spherical or near-spherical cores, 
even when strong electrostatic forces are present. It is less satisfactory 
for molecules with highly nonspherical shapes (90). 

In calculations based on Equation 22, the pair potential is written 
as a sum of terms 

u(12) = t#o(r) + uelec(12) + wind(12) + udis(12) + wov(12) (24) 

where u e l e c , uind, udis, and uov are the electrostatic, induction, anisotropic 
dispersion, and anisotropic overlap terms, respectively. The anisotropic 
dispersion term is usually approximated by the London expression, and 
the remaining anisotropic potential contributions are represented by the 
first few terms in an expansion in generalized spherical harmonics. Ex­
plicit expressions for the terms in Equation 24 are given in Reference 
91. Equation 22 has been used to explore the relationship between in­
termolecular forces and the resulting phase diagram (90-93). Thus, if one 
or both of the components interacts with a Lennard-Jones plus a dipole-
dipole term, it is possible to obtain any of Classes I to V of Figure 3 by 
suitable adjustment of the parameters in the potential (see Figure 9). 
Similar results are obtained if a quadrupole-quadrupole term is used in 
place of the dipole-dipole one. If, instead, the anisotropic part of the 
potential consists only of an overlap term designed to simulate the shape 
of a linear molecule, then only Classes I and III are obtained (90). The 
anisotropic overlap and dispersion parts of the potential seem to have a 
relatively small effect on the phase diagram, whereas the effect of elec­
trostatic forces is large. A detailed study of the effect of various potential 
terms on systems showing gas-gas immiscibility has been made by Gibbs 
(93). Jonah et al. (84) have recently carried out a study of the influence 
of various types of intermolecular potential terms on the dissolving power 
of solvents used in supercritical extraction of liquids and solids. They 
found that quadrupolar forces are particularly effective in increasing the 
dissolving power. 
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Comparisons of Equation 22 with experiment have been carried out 
for liquid mixtures involving inorganic fluids (nitrogen, oxygen, carbon 
monoxide, carbon dioxide, carbon tetrafluoride, nitrous oxide, hydrogen 
chloride, and hydrogen bromide), hydrocarbons (acetylene, ethylene, 
and n-alkanes up to C 8), and the first four primary alcohols. Work up to 
1978 has been reviewed (89). More recent studies include those by Shukla 
et al. (94, 95) for simple inorganics (nitrogen, oxygen, carbon monoxide, 
and carbon dioxide) and methane; by Clancy et al. (96-99) on mixtures 
involving hydrogen chloride, hydrogen bromide, ethylene carbon tetra­
fluoride, hydrogen, methane, and xenon; by Machado et al. (101, 102) 
on the mixtures carbon dioxide-ethane, ethane-ethylene, xenon-nitrous 
oxide, and nitrous oxide-ethylene; by Gibbs (93) on mixtures involving 
the n-alkanes up to C 8 and the first four primary alcohols; and by Moser 
et al. (102) for mixtures carbon monoxide-methane, xenon-hydrogen 
bromide and xenon-hydrogen chloride. 

For mixtures having Class I phase behavior (no liquid-liquid equi­
libria) agreement between Equation 22 and experiment is usually good. 
Results for the system carbon dioxide-ethane are shown in Figure 10. 
In the theoretical calculations the pair potential model is that of Equation 
24, with u0 being the 6-n model, and the electrostatic potential being 
represented by a quadrupole-quadrupole term. The three 6-n parame­
ters (n, e, a) were adjusted to best fit the vapor pressure and saturated 
liquid density of the pure components, and e 1 2 was adjusted to best fit 
the data at 263.15 K. Equation 22 gives an excellent fit to the data over 
the temperature range of 60 K. The dashed lines are the best fit obtainable 
using the van der Waals 1 theory, using the same fitting procedure and 
number of parameters, but with the 6-n potential alone. The vdWl theory 
gives good results at the temperature where e 1 2 is fitted, but fails to 
reproduce the variations of Pxy with temperature. This conclusion is 
borne out by calculations for other mixtures (100, 101). Equation 22 
usually gives good results for mixtures in which the molecules are ap­
preciably different in size and for polar mixtures (102), provided the 
mixture is still of Class I. 

As we pass from the Class I systems to systems having greater 
nonideality (Classes II, III, and so forth) the agreement between theory 
and experiment becomes poorer. Of particular importance is the recent 
work of Gibbs (93), who has studied the systems methanol-methane and 
methanol-ethane, both of which are Class III in the classification scheme 
of Figure 3. Gibbs uses a potential model of the type given in Equation 
24 with the electrostatic potential approximated by dipolar and quad-
rupolar terms. The nonaxial quadrupole of methanol is approximated by 
an effective axial quadrupole. Good results are obtained for the phase 
equilibria and three-phase ( L ^ G ) line at low temperatures for these 
methanol systems (Figure 11), and the theory predicts the correct qual-
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0 0.2 0.4 0.6 0.8 1.0 
x,y(C02) 

Figure 10. Theory versus experiment for carbon dioxide-ethane. Solid 
lines are from Equation 22, dashed lines are vdWl theory, and points are 

experimental data. 

itative Class III behavior. However, the quantitative agreement is poor 
at higher temperatures (Figure 12). This is principally because the meth­
anol model predicts a critical temperature and a critical pressure that 
are too high. Thus the critical locus is of the correct shape, but lies at 
pressures that are too high. When the quadrupolar terms are omitted 
from the methanol potential model, the results are much worse, and the 
theory predicts Class I behavior. 

Machado et al. (100, 101, 103) have recently carried out calculations 
for nonaxial molecules, with particular attention being paid to nonaxial 
quadrupole effects. Such nonaxial effects are important in general. The 
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Figure 11. Theory versus experiment for methanol-ethane. Solid lines 
are from Equation 22, dashed lines and points are experimental data. 

(Reproduced with permission from Ref. 93.) 

200 300 4 0 0 500 600 
T / K 

Figure 12. Theory versus experiment for methanol-ethane. Solid lines 
are theoretical and points are experimental data. (Reproduced with per­

mission from Ref. 93.) 
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simplest example of a nonaxial molecule is ethylene (D2h point group). 
An approximate calculation of the excess enthalpy for a nitrous oxide-
ethylene equimolar mixture at 183.2 K and zero pressure gives 357 J/ 
mol by the correct nonaxial treatment, and 84 J/mol by the effective axial 
method (103). The experimental value is 271 J/mol. Molecules such as 
water and methanol are more nonaxial than ethylene (103), and the errors 
in using an effective axial treatment would probably be substantially 
greater. 

The neglect of quantum effects usually leads to small errors unless 
the system contains hydrogen as one of the constituents. Clancy and 
Gubbins (98) have studied hydrogen and hydrogen-xenon mixtures using 
Equation 22, but accounting for quantum corrections using the first 
correction to the partition function of order h2. It is found that the simple 
0(h2) treatment gives good results for hydrogen for temperatures down 
to about 100 K, the precise temperature depending on the density (quan­
tum effects being more important at higher densities). Below this tem­
perature a full quantal treatment becomes necessary. Figure 13 shows a 
comparison of theory and experiment at 100 K for the hydrogen-methane 
system. In this case the anisotropic intermolecular forces make only a 
small contribution, but the quantum effects are substantial. While the 
theory gives quite good results, the empirical equations of state fail to 
converge over much of the range of composition, presumably because 
of the neglect of quantum corrections. 

The effect of three-body dispersion forces on thermodynamic prop­
erties have been studied recently by Shukla et al. (94, 95) and by Clancy 
(98-99) and were found to be significant. Preliminary calculations (104-
107) also suggest that multibody induction forces are important, but there 
do not seem to have been any comparisons with experiment so far. 

Mixture calculations based on perturbation theory using a non­
spherical molecule reference system have been made by Boublik (108-
112). A Kihara potential is used, and the properties of this fluid are 
expanded about those for a fluid of hard convex molecules. Calculations 
have been reported for the excess properties of argon-nitrogen, argon-
oxygen, nitrogen-oxygen, nitrogen-methane and carbon disulfide-cy-
clopentane, and are in moderately good agreement with experiment. 
This approach accounts in a more realistic fashion for the effects of mo­
lecular shape than does the Pade approximant of Equation 22, but omits 
the effects from electrostatic forces. Enciso and Lombardero (113) have 
used nonspherical reference perturbation theory to calculate excess prop­
erties for argon-nitrogen and argon-oxygen mixtures using a two-center 
Lennard-Jones model. Agreement with experiment is poor. Several other 
authors have proposed perturbation theories based on a nonspherical 
reference potential, but have not compared them with experiment. 
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4. S H I N G A N D G U B B I N S Theory and Computer Simulation 101 

Figure 13. Vapor-liquid equilibrium data for hydrogen-methane from 
experiment (O), from theory including quantum correction ( ), and 
from the Redlich-Kwong equation of state ( ), at 100 K. Parameters 
in the equation of state were fitted to the data at 130 K in each case. 
(Reproduced with permission from Ref. 98. Copyright 1981, Taylor and 

Francis, Ltd.) 

Finally we mention the work of Starling et al. (114) who have de­
veloped a form of conformal solution theory based on the Pople pertur­
bation theory. This involves a third parameter in the expansion that 
accounts for anisotropy of the intermolecular forces, and gives good re­
sults in mixtures that are not too nonideal. It has been applied to hy­
drocarbon mixtures. 

Kirkwood-Buff Theory. It is possible to relate mixture thermo­
dynamic properties to composition fluctuations in a particularly direct 
and simple way. Such equations were first derived by Gibbs (115), but 
were put in a convenient form much later by Kirkwood and Buff (116), 
who showed that the composition fluctuations can be written in terms 
of integrals over the pair correlation functions gaP(r) between molecular 
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centers. The resulting equations are quite general, and make no as­
sumption concerning the type of molecule (spherical or nonspherical, 
rigid or nonrigid), or additivity of the intermolecular potentials. 

The Kirkwood-Buff theory gives expressions for the composition 
derivatives of the chemical potentials, the partial molecular volumes, Va 

= (dV/dNj TPN>, and the isothermal compressibility, x — ~~ V l(dV/dP)TN. 
For a binary mixture of A and B, some of these relations are (116-117) 

dxA/ TP 

kT 

VA = 

X = 

PB(2# a b - # A A - HBB) _1_ 

*A 1 - PBxA(2HAB - HBB). 
(25) 

[1 + pB(HBB - H ^ I / T I (26) 

[1 + P A ( ^ A A - HjJVn (27) 

[1 + p A H A A + pBHBB + p A p B ( H A A i f B B - HAB)]lkTr\ (28) 

v̂ here 

H a B = 47rJJ[gaB(r) - l]r 2 dr (29) 
T\ = PA + PB + PAPB(«AA + HBB - 2HAB) (30) 

Expressions similar to Equation 25 can be derived for the other com­
position derivatives of |xA and |xB (116, 117). It is seen from Equations 
25-30 that all of the mixture thermodynamic properties can be obtained 
if it is possible to calculate the integrals H a B . Also, from Equation 25 we 
see that if 

HAB - g^AA + #BB) (31) 

the last term on the right-hand side of Equation 25 vanishes, and we 
have the ideal solution (Lewis rule) form for (JLa; i.e., d[iA = kTd \nxA. 
Equation 31 provides the molecular definition of such an ideal solution. 

The corresponding expressions for a multicomponent mixture have 
been given by Kirkwood and Buff (116) and in somewhat more general 
form by O'Connell (118). O'Connell has also shown that the Kirkwood-
Buff theory expressions can be rewritten in terms of integrals C a B in 
place of H a B , by using the relation (in matrix form) 

H = C + pCHX (32) 
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where H and C have elements H a B and C a B , and X is a diagonal matrix 
whose nonzero elements are xA, xB, . . . . Here C a B is given by 

where caB(r) = (caB(ra)1a)2))WlC02 is the centers direct correlation function. 
The advantage of the C-form of Kirkwood-Buff theory is that caB(r) is a 
simpler and more short-ranged function than gaB(r), so that it should be 
possible to develop simpler approximations to the C integrals. 

O'Connell and coworkers (119-123) have used the C-form of Kirk­
wood-Buff theory to make numerical calculations for highly nonideal 
mixtures containing supercritical components. It is found that the C 
integrals, when put in reduced form, are rather insensitive to the type 
of intermolecular forces involved, so that simple corresponding states 
correlations can be developed. 

Conclusion. For mixtures of spherical or near-spherical molecules 
the existing forms of perturbation theory give good results unless the 
molecules are very different in size. For small, nonspherical molecules, 
including strongly polar or quadrupolar molecules, the Pade theory of 
Equation 22 gives good results and is a significant improvement over 
vdWl theory or empirical equations of state, particularly for nonpolar-
polar mixtures. Further improvements in perturbation theory calcula­
tions will come with the development of perturbation theory methods 
based on a nonspherical reference system. The Kirkwood-Buff theory 
provides an alternative starting point because of its simplicity and gen­
erality, and seems to have been relatively little used by engineers. 
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5 
A Model for the Calculation of 
Thermodynamic Properties of a Fluid 
Using Hard-Sphere Perturbation Theory and the 
Zero-Kelvin Isotherm of the Solid 

GERALD I. KERLEY 
Los Alamos National Laboratory, Applied Theoretical Physics Division, Los 
Alamos, NM 87545 

The CRIS model of fluids is reviewed and calculations using 
the theory are compared with experimental data. The equa­
tion of state is computed from an expansion about a hard­
-sphere reference system, in which the optimum hard-sphere 
diameter is chosen by a variational principle. All infor­
mation about the intermolecular forces is obtained from the 
zero-Kelvin isotherm of the solid. Calculations for the rare 
gases, for the hydrogen isotopes and other polyatomic mol­
ecules, and for liquid iron are shown to agree well with 
experiment. Liberman's model for the electronic structure 
of a compressed atom is used to calculate contributions from 
thermal electronic excitation to the equation of state. These 
terms are shown to be important in explaining shock-wave 
data for xenon. 

S E V E R A L E X C E L L E N T T H E O R I E S recently have been developed for cal­
culating the thermodynamic properties of fluids from specified pair 

potentials (1-10). Barker and Henderson (1) showed that hard-sphere 
perturbation methods are very accurate, even at low temperatures, when 
the hard-sphere diameter is defined in an optimum fashion. Subse­
quently, Mansoori and Canfield (2) and Rasaiah and Stell (3) developed 
the variational principle for choosing the hard-sphere diameter. Anderson 
et al. (4) showed that perturbation theories succeed because repulsive 
forces, or effects of excluded volume, play the principal role in deter­
mining the equilibrium structure of dense fluids (for spherically sym­
metric molecules). Approaching the problem from a different point of 
view, Rosenfeld and Ashcroft (5) developed an accurate integral equation 
method that relies on the universality of the short-range structure in 
dense fluids. Other important developments include applications of fluid 
theory to nonspherical molecules (1, 6, 7) and to liquid metals (8-10). 

0065-2393/83/0204-0107$09.00/0 
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108 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

Unfortunately, applications of these accurate theories to problems 
of practical interest are often hampered by lack of knowledge about 
intermolecular forces. For this reason, we have developed the CRIS 
model (11,12), a perturbation theory of fluids in which explicit knowledge 
of the interaction potentials is not required. Our model retains the key 
concepts of fluid structure that are essential to the success of the other 
perturbation theories. However, the energy of a fluid molecule in the 
cage formed by its neighbors is estimated from the zero-Kelvin isotherm 
of the solid. This cold curve is usually easier to compute or measure than 
is an effective pair potential. 

In this chapter we discuss the theoretical model and review the 
results of several calculations. First, the theory for the case of spherical 
molecules in the ground state is considered. The model is shown to agree 
with computer simulation studies on systems where the pair potentials 
are known (13). We then show how other degrees of freedom can be 
included in calculating equations of state. In particular, an electronic 
structure model due to Liberman (14) is useful for computing contri­
butions from thermal electronic excitation. Rotational ordering and other 
perturbations of intramolecular motions are not considered in this paper. 
Additional theoretical problems, including treatment of vaporization, 
melting, and shock waves, are then discussed. The rest of the chapter 
compares calculations using the model with experimental data for rare 
gases, molecular fluids, and liquid metals. 

Because of space limitations, only an outline of the main theoretical 
ideas is presented here. Detailed and rigorous discussions are given in 
the literature cited. We also note that Rosenfeld (15) has derived the 
first-order CRIS model by a method different from ours. 

Outline of the CRIS Model 

Consider a system of N spherical molecules, having no internal 
degrees of freedom, in a volume V at temperature T. The thermodynamic 
properties of the system are determined by the potential energy function 
<I> (J). Although 4> is a function of the positions of all N molecules, only 
the short range structure is important for perturbation theories. To see 
this fact, define coordinates {qk} that specify the positions of all molecules 
relative to an origin fixed at the center of mass of molecule k. We write 

<*> = £ (i) 

where <$>(qk), the potential energy of molecule k in the field of its neigh­
bors, includes all pair, triplet, and higher-order interactions (11). This 
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5. K E R L E Y Calculation of Thermodynamic Properties 109 

function depends only on the local structure of the fluid, i.e., the co­
ordinates q of nearby molecules relative to the one under consideration. 

For spherical molecules, the structure of dense fluids is determined 
primarily by the effects of excluded volume, and it is useful to express 
the Helmholtz free energy as a perturbation expansion about a model 
system, the hard-sphere fluid (11). 

A^(V,T,N) = A0(V,T,N;cr) + <O)0 + A A * (2) 

Here A 0 is the free energy for hard spheres having diameter a; (4>)0, the 
first order correction, is an average of O taken in the hard-sphere system. 
By definition, AA^ contains all remaining contributions to A^; these 
corrections are caused by differences between the structure of the real 
fluid and that of the hard-sphere system. The term AA^ can be made 
quite small by making an optimum choice for o\ 

It can be shown that the first-order approximation gives an upper 
bound to the true free energy of the system (2, 3). 

A* = A 0 + <<D>0 2= A* (3) 

Our procedure is to minimize A^ with respect to a; in that way, we find 
the hard-sphere system whose structure is closest to that of the real fluid. 
When a is defined in this optimum fashion, first-order perturbation 
theory gives realistic predictions for the properties of fluids (2, 3). How­
ever, the correction term AA^ must be included if quantitative results 
are desired (J). In the CRIS model, for AA^ we use an approximate 
expression derived from macroscopic fluctuation arguments. We believe 
it to be accurate if a is chosen by the variational principle. Detailed 
discussion of this term is given elsewhere (11, 12). 

The first-order correction to A^ can be written as an average of ty(q) 
over all configurations of neighboring molecules. 

m0 = N(4>)0 = \ <|>(qr) n0(q) dq1 dq2 . . . (4) 

where n0(q) is a hard-sphere distribution function. It specifies the prob­
ability density that a molecule in the fluid will have neighbors located 
within differential elements dqx, dq2, . . . , at positions qx, q2, . . . (11). 
Because <|>(g) depends upon the short range structure of the fluid, the 
position of the first shell of neighbors is the most important quantity 
specifying the local configuration. In the CRIS model, the nearest neigh­
bors are assumed to lie on a spherical shell, of radius R, that varies from 
molecule to molecule (12). We further assume that the coordination 
number v varies with R so that the volume per molecule is fixed at the 
macroscopic value V/N. If there are 12 nearest neighbors in a close-
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110 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

packed configuration, it can be shown that 

v = 6V2 NR3/V (5) 

In this approximation, only one variable, R, is required to specify the 
local arrangement of neighbors about a particular molecule. Equation 4 
becomes 

<cf>>o = \ 4> (R, v) n0(R) 4TTR2 dR (6) 

Furthermore, the distribution function n0(R) is given by 

(v/N)n0(R) = (N/V) g0(R) (7) 

where g0(R) is the contribution from the nearest neighbor shell to the 
radial distribution function for the hard-sphere fluid. A satisfactory work­
ing definition of this quantity can be obtained from the first peak in the 
radial distribution function (12). 

The potential energy function c()(R,v) can be estimated from the 
zero-Kelvin isotherm of the solid in the following way. Let EC(VS) be the 
electronic contribution to the energy per molecule for the close-packed 
solid at volume Vs and zero temperature. (Note that this definition does 
not include any contribution from the zero-point lattice vibrations, which 
are not part of the intermolecular forces.) In the solid, there are 12 nearest 
neighbors on a sphere of radius R, given by 

Vs = NR3/V2 (8) 

In the fluid, a molecule has the same potential energy as it would have 
in the solid phase at the same nearest neighbor distance, except that the 
coordination number is reduced from 12 to v. Hence 

<KR,v) s (v/12) EJY.) = (VS/V)EC(VS) (9) 

This result is approximate because it assumes the forces between mol­
ecules to be pairwise additive. The assumption is not correct for liquid 
metals; however, the theory is found to give good results in practice. 
Further discussion of this point is given later in this chapter. 

Once the free energy has been defined by the above equations, the 
internal energy and pressure P^ can be computed from standard 
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5. K E R L E Y Calculation of Thermodynamic Properties 111 

thermodynamic formulas, 

£«, = A* - T(dA+tdT)VJI 

P* = -(dAJdV)TiN 

(10) 

(11) 

In order to test the CRIS model, we have compared our calculations 
to Monte Carlo and molecular dynamics data for fluids having inverse-
power and 6-12 potentials (13). The cold curve is obtained by summing 
the pair potential U2(R) over all molecules in the lattice (16). 

where n{ and Rf are the number of molecules and the radius for the i-th 
shell of neighbors, respectively. For the 6-12 potential, we have 

where p = Nd3/Vs, C 1 2 = 12.12188, and C 6 = 14.45392. 
In Figures 1 and 2, we compare our equation of state for the 6-12 

fluid with Monte Carlo calculations (17) on three isotherms that range 
from the triple point to above the critical point. Agreement for both the 
pressure and the internal energy is very good. In fact, the CRIS model 
was shown to agree well with all of the available computer simulation 
data for thermodynamic properties, radial distribution functions, and the 
vapor-liquid coexistence curve (13). 

The calculations for these model fluids involve no parameters that 
can be adjusted to give agreement with experiment. The success of the 
CRIS model in these tests shows that it retains the essential features of 
a good fluid theory while eliminating the need to know the intermolecular 
potentials explicitly. 

Internal Degrees of Freedom 

The model discussed above describes the translational degrees of 
freedom of the molecules, which interact through forces determined by 
the ground electronic state of the system. Internal degrees of freedom 
can also contribute to the equation of state. For example, the free energy 
is 

EC(VS) = (1/2) 2 nt U2(R() (12) 

U2(R) = 4e[(d/R)12 - (d/R)6] 

EC(VS) = (e/2)[C12p12 - 2C 6p 6] 

(13) 

(14) 

A = + A V R + Ae (15) 
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112 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

Figure 1. Equation of state for the 6-12 fluid. The solid line was calcu­
lated using the CRIS model; the discrete points are Monte Carlo results 
(17). Key: • , T = 2.74; O , T = 1.15; and A , T = 0.75. (Reproduced 
with permission from Ref. 13. Copyright 1980, American Institute of 

Physics.) 

Figure 2. Excess internal energy for the 6-12 fluid. Symbols have the 
same meaning as in Figure 1. (Reproduced with permission from Ref. 13. 

Copyright 1980, American Institute of Physics.) 
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where A^ is given by Equation 2, AVR includes contributions from in­
tramolecular vibration and rotation, and Ae includes contributions from 
thermal electronic excitation and ionization. In our model, AVR and Ae 

are calculated in a "static" approximation; that is, the translational motion 
of the molecules is not coupled to the internal degrees of freedom. 

In most applications, we have computed AVR from the rigid-rotator, 
harmonic-oscillator approximation (18). To some extent, effects due to 
hindered rotation and vibration can be included in the definition of the 
cold curve for the CRIS model (19). This approach is most reasonable at 
temperatures high enough to allow free molecular rotation. Perturbations 
to the vibrational motion were included in our calculations of the equation 
of state of deuterium (20). These effects were found to be fairly small 
when compared with uncertainties in the zero-Kelvin isotherm. 

Several models exist for calculating the temperature dependence of 
electronic structure and the corresponding contributions to the equation 
of state. Statistical atom theories, such as the Thomas-Fermi-Dirac (TFD) 
model (21), are often used for this purpose. A well-known problem with 
these theories is that they do not reproduce the electronic shell structure 
that is characteristic both of free atoms and of condensed matter. How­
ever, the T F D model is a good approximation at high densities, where 
the shell structure has been crushed by pressure ionization. 

At low densities, electronic contributions to the equation of state 
can be computed from the theory of ionization equilibrium (22), using 
energy levels and ionization potentials of the isolated atoms and ions. 
However, the standard approximations made in such calculations break 
down at high densities where the energy levels are strongly perturbed 
and pressure-ionized by the forces of surrounding ions (23). 

For intermediate densities, ranging from about 0.05 to 200 times 
normal solid density, we have found the INFERNO model of Liberman 
(14) to be very useful. Liberman considers an average atom, with a point 
nucleus at the center of a spherical cell, surrounded by an electron gas 
and a uniform positive charge. The charge distribution outside the sphere 
simulates the environment of neighboring atoms in the real system, and 
the sphere radius rs is defined by the average volume per atom, 

(4ir/3)2Vr? = V (16) 

Liberman solves the Dirac equation to obtain wave functions and energies 
for both the discrete bound states and the continuum free levels. The 
average electron charge density is computed from the wave functions by 
populating the energy levels according to Fermi-Dirac statistics. The 
screened potential and the charge distribution, which depend upon den­
sity and temperature, are required to be self-consistent. The electronic 
entropy is also calculated by Fermi statistics. We calculate the pressure, 
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energy, and free energy numerically, using standard thermodynamic 
formulas (24). 

Although the INFERNO model contains many approximations, it 
treats most of the electronic structure problems well enough to calculate 
the equation of state. At low densities, the atomic structure agrees well 
with that of the isolated atom; all of the electrons are in bound levels, 
and there is an insulating gap between the highest occupied state and 
the continuum. As the density increases, this gap narrows, and the bound 
levels cross into the continuum. A notable feature of the model is that 
the way a bound level changes into a free "resonance" is handled in a 
continuous fashion. The theory predicts a transition from an insulating 
to a metallic state and is in reasonable agreement with band theoretical 
calculations (25) for solids. 

In Figure 3 we compare the INFERNO and T F D results for the 
electronic entropy versus temperature for aluminum at several densities. 
At low densities, the INFERNO calculations exhibit steps that corre­
spond to different stages of ionization. At higher densities this structure 
disappears because the discrete atomic levels pass into the continuum 
and become broad resonances. The INFERNO and T F D models are in 
good agreement at high densities and at high temperatures. 

I I I 111II) 1 I I I l l l l | 1 I I I l l l l | 1 I I 111 ll| 1 I I I Mll| 

id3 io4 lrf lrf io7 ICP 
Temperature (K) 

Figure 3. Electronic entropy for aluminum as a function of temperature 
at several densities. Solid lines were calculated using the INFERNO model; 

dashed lines, using the TFD model. (Reproducedfrom Ref. 65.) 
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Other Theoretical Considerations 

Zero-Kelvin Isotherms. In the CRIS model, all information about 
the intermolecular interactions is obtained from the cold curve of the 
solid. Therefore, construction of this curve is the principal problem in 
applying the theory to a specific material. In most cases we use both 
experimental and theoretical results to accomplish this task. 

Experimental information about the zero-Kelvin isotherm can be 
obtained from both static and shock wave measurements. Accurate static 
measurements of pressure versus volume up to 2-4 GPa have been 
available for some time, and recent diamond cell techniques have ex­
tended the range of static data to much higher pressures. We used such 
measurements on iron (26), extending to 95 GPa, in our calculations for 
liquid iron, discussed below. Methods for reducing shock-wave data to 
the cold curve can be very useful (24, 27), but they involve some ap­
proximations; we do not report such methods here. 

Recently, accurate band theoretical calculations of the zero-Kelvin 
isotherm have been made for several materials. These calculations usually 
agree well with experimental measurements, although the normal solid 
density may be in error by a small amount. As a practical matter, we 
correct this discrepancy by adding a small constant term to the theoretical 
pressure curve. The band theoretical results of Ross and McMahan (25) 
were used in our computations for liquid xenon. 

For the CRIS model, the cold curve must be specified both in 
compression and in tension. For the tension region we normally use an 
analytic expression of the following type (24, 28) 

EC(VS) = a, eM-a2Vy*) - aJVf* (17) 

where the four constants are determined from the solid binding energy, 
normal density, and compressibility data. Fortunately, most results using 
the CRIS model are not very sensitive to details of the cold curve in 
tension. However, the liquid density on the coexistence boundary is one 
exception. 

At very high densities a reasonable estimate of the zero-Kelvin iso­
therm can be obtained from T F D theory. In many problems we have 
used an interpolation formula, based on T F D results, to represent the 
cold curve in regions where no better data are available (24, 28). 

Vaporization. At low temperatures, isotherms calculated using the 
CRIS model display van der Waals loops, indicating the existence of a 
vapor-liquid coexistence curve and a critical point. For example, our 
theoretical equation of state surface for methane (28) is depicted in Figure 
4. For temperatures above the critical point, 200 K, the pressure is a 
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o 
o 
d 

0.0 10.0 20.0 30.0 

Volume (cc/g) 
40.0 50.0 

Figure 4. Equation of state for fluid methane at low densities. The dashed 
line is the equilibrium vapor pressure at T = 185 K. 

monotonically decreasing function of volume, and a single fluid phase 
exists. Below the critical point, the fluid at equilibrium separates into a 
vapor-liquid mixture (29). The vapor pressure and the other properties 
of the liquid and vapor are determined by requiring that the two phases 
have equal pressures and Gibbs free energies. The equilibrium vapor 
pressure for the 185-K isotherm is shown by a dashed line in Figure 4. 

The CRIS model was shown to give good agreement with computer 
simulation results for the coexistence curve of the 6-12 fluid (13). How­
ever, neither calculation gives the correct result near the critical point, 
where long-range density fluctuations are important (30). The CRIS model, 
like other mean field theories, overestimates the critical temperature by 

Hugoniot Measurements. Shock wave experiments can test an 
equation of state model at high densities and at high temperatures that 
are not accessible by other methods. The Hugoniot is calculated from 
the standard relation (27) 

where EH, PH , and p H are the energy, pressure and density of the shocked 
state, and E0> a n d p 0 are the initial state conditions. Experiments 

5-10%. 

EH - E0 = (1/2) (P* + P0)(p0-1 " P H 1 ) (18) 
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usually measure the particle velocity UP and shock velocity Us 

UP = V ( P „ - PoXPo-1 " P H 1 ) 

Us = C7P/(1 - p 0/P w) 

(19) 

(20) 

These relations can be derived from the conservation laws of mass, mo­
mentum, and energy, applied to a single steady, plane shock wave. 

A few experiments have been performed in which a shock wave is 
reflected back into the material, compressing it for a second time (31). 
These double shock experiments do not heat the material as much as a 
single shock does, and they can reach higher compressions. Conditions 
for the reflected shock state are determined by applying Equations 18-
20 a second time. 

Melting. From thermodynamics, the melting line is simply defined 
as the pressure-temperature locus at which the solid and liquid phases 
have equal Gibbs free energies. In calculations for methane and for 
metals, we found that the Debye model (28) gave a good representation 
of the thermodynamic properties of the solid. For hydrogen and deu­
terium, in which anharmonic effects on the lattice vibrations are not 
described by such a model, we used the free volume theory for the solid 

Because melting depends upon the difference in free energy be­
tween the two phases, small errors in the equation of state can cause 
large errors in the predicted melting curve. All our calculations for in­
sulating fluids have given reasonable melting predictions. However, our 
calculations for metals show that the CRIS model underestimates the 
free energy of the liquid by about 5% of the cohesive energy. We attribute 
most of this error to the use of Equation 9, which assumes additive forces 
between molecules. A reasonable melting curve can be obtained by 
subtracting a constant from the liquid energy in order to match the 
observed melting point at zero pressure. This expedient was used in our 
calculations for iron. However, further work, leading to an improvement 
of Equation 9, is needed. 

Fluid Structure and Transport Properties. As noted above, the 
hard-sphere diameter a used in the CRIS model is obtained by mini­
mizing the first-order free energy expression, Equation 3. The parameter 
a, which depends on both temperature and density, provides a crude 
description of the short range structure of the fluid. 

To first-order, the radial distribution function of the real fluid is 
equal to that of a hard-sphere fluid (with an optimum a). In this ap­
proximation, the structure factor can also be computed from the hard-
sphere formula (17). In the CRIS model, corrections to the radial dis-

(20). 
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tribution function and structure factor due to the soft core of the inter­
action in the real fluid can be derived from the same arguments used to 
obtain the higher order correction AA^ to the free energy. The CRIS 
model was shown to give good agreement with computer simulation 
results for the radial distribution functions of inverse-power and 6-12 
potentials (13). 

Dymond and Alder (32) have shown that reasonable predictions of 
transport properties of fluids can be made using hard-sphere formulas, 
if a is determined from the equation of state of the real fluid. Hence the 
a obtained from the CRIS model can be used to make rough estimates 
of these quantities. For the shear viscosity t?s, in poise, we use Dymond's 
formula (33). 

VWT n , x 

«. = 7 . 6 1 X 1 0 * — r r f ^ »> 

where W is the molecular weight, and r\ — Afara^V is the packing 
fraction. 

Corrections to the Basic Model. Quantum corrections to the CRIS 
model can be computed by several methods. Our approach (24) has been 
to add a quantum correction to the hard-sphere free energy A 0 , in Equa­
tion 2, using the formula of Singh and Sinha (34). Admittedly, this pro­
cedure is not rigorous, although it is found to give reasonable results for 
the hydrogen isotopes, as shown later in this chapter. Alternate methods 
have been used by Rosenfeld (35) and by Fiorese (36). Further study of 
this problem is desirable. 

As noted above, use of Equation 9 is not a fully satisfactory way to 
correct the potential energy of a molecule for the change in coordination 
number when going from the solid to the fluid. As a practical matter, 
Equation 9 must be modified at very high densities where the electrons 
are free and EC(VS) V s

- 2 / 3 . In calculations for real materials we use an 
interpolation formula (24) 

4> = [(1 - f)(VJV) + f(Vs/VDEc(Vs) (22) 

Here / , the fraction of electrons that are free, is estimated from 

/ = exp [-(0.23 + 0.6544Z2/3)(V5/Z)1/3] (23) 

where Z is the atomic number. This expression was obtained by making 
a rough estimate of the number of free electrons from T F D theory. We 
stress that Equation 22 differs very little from Equation 9 in any of the 
calculations discussed in this chapter. For example, use of the modified 
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formula does not substantially improve the free energy of the fluid near 
melting. This feature of our model also requires further study. 

Calculations for the Rare Gases 

Extensive comparisons have been made between calculations using 
the CRIS model and experimental data for the rare gases neon, argon, 
krypton, and xenon (37). For these substances, it is known (J) that an 
effective pair potential of the Buckingham form (38) gives a good de­
scription of the intermolecular forces up to moderate densities. Hence, 
Equation 17, with a4 = 2, is a good representation of the cold curve 
both in tension and in moderate compression. 

At high densities, the zero-Kelvin isotherm for xenon is known both 
from static measurements up to 11 GPa (39) and from band theoretical 
calculations up to 100 GPa (25). Using these data, together with IN­
F E R N O calculations at higher densities, we constructed the cold curve 
shown in Figure 5. 

For the other rare gases, data extend to only 2 GPa (40), and we 
used a T F D interpolation formula for higher pressures (37). Therefore, 
we do not know the cold curve as well for these gases as we do for xenon. 
However, this uncertainty is only important in the comparisons with 

"n 1 1 1 1 1 r 
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 

Density (g/cc) 

Figure 5. Zero-Kelvin isotherm for xenon. Key: O , from Ref. 25; •, from 
Ref. 39; A , calculated using the INFERNO model; and —, the cold curve 

used in this work. (Reproduced from Ref. 65.) 
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Density (g/cc) 

Figure 6. Equation of state for solid and liquid argon. Data for the solid 
at 4.2 and 77 K are from Ref. 40; data for the liquid are from Refs. 41-

44; solid lines are our calculations. 

shock wave measurements because the other experimental data were 
taken at fairly low pressures. 

Equation of state data (40-44) for solid and liquid argon are shown 
in Figure 6. The same zero-Kelvin curve was used in both the solid and 
liquid models. The CRIS model accurately predicts the liquid compress­
ibility and the expansion that occurs at melting and upon heating of the 
liquid. The other rare gases give similar results (37). For example, Figure 
7 shows the sound speeds as a function of pressure at 298.15 K (45). The 
pressure dependence and the trends among the four rare gases are in 
good agreement with the measurements. 

Vapor pressure curves for the rare gas liquids (46) are shown in 
Figure 8. The model accurately predicts the temperature dependence 
of the pressure and the trends among the four elements. The coexistence 
curve for krypton (46) is given in Figure 9. Agreement between theory 
and experiment is good. As noted above, the theory overestimates the 
critical temperature and pressure because it does not include long-range 
density fluctuations. 

The calculated and measured radial distribution functions for argon 
at 85 K (47) are compared in Figure 10. Only the first peak is calculated 
by the theory (IJ, 12). The agreement is good, showing that the model 
correctly predicts the short-range liquid structure using no information 
except the solid cold curve. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

05



5. K E R L E Y Calculation of Thermodynamic Properties 121 

T 
0.6 0.8 0.4 

Pressure (GPa) 
1.0 1.2 

Figure 7. Sound speeds for the rare gases at 298.15 K. The solid lines 
are our calculations; points are experimental data (45). Key: O , neon; A , 

argon; •, krypton; and 0 , xenon. 

0.0 50.0 100.0 150.0 200.0 250.0 300.0 350.0 

Temperature (K) 

Figure 8. Vapor pressures for the rare gas liquids. The solid lines are 
our calculations; points are experimental data (46). Key: O , neon; A , argon; 

•, krypton; and 0 , xenon. 
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In Figure 11 we compare measured shear viscosities for liquid argon, 
krypton, and xenon (48) with our calculations, using only the hard-sphere 
formula, Equation 21. The good agreement with experiments is en­
couraging; if a perturbation expansion can be developed to calculate 
corrections to this simple model, better results might be obtained. 

R (Angstroms) 

Figure 10. Radial distribution function for liquid argon at a density of 
1.409 g/cm3 and a temperature of 85 K. Points are experimental data (47). 

The solid line is our calculation of the first peak. 
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1 1 1 1 1 r 
50.0 100.0 150.0 200.0 250.0 300.0 

Temperature (K) 

Figure 11. Shear viscosities for liquid argon, krypton, and xenon. Points 
are experimental data (48); solid lines are our calculations. Key: O , argon; 

A , krypton; and •, xenon. 

Hugoniot measurements for the rare gases are of interest because 
they generate both high compressions and high temperatures. Very high 
pressure data for argon and xenon show interesting behavior that is 
associated with thermal excitation of the electrons. Because the cold 
curve for xenon is well known, it is possible to make an a priori calculation 
and to compare the results with experiment as a test of the theory. 

At low densities the rare gases are insulators, with a large energy 
gap between the closed-shell ground state configuration and the empty 
conduction band. Hence there is very little electronic excitation at low 
temperatures. Good agreement with the low-pressure shock data for 
argon and xenon was obtained using the CRIS model without including 
the electronic term (37). 

At high densities, the rare gases are expected to become metallic 
(49). For xenon, band calculations (25) predict the energy gap between 
the 5p band and the conduction band to close at a density of about 12 
g/cm3. At the high temperatures reached in some of the shock wave 
experiments, effects of the insulator-metal transition can be observed at 
lower densities. As shown by Ross (49), narrowing of the band gap in­
creases the energy absorbed by electronic excitation and also makes a 
negative contribution to the pressure; both effects soften the Hugoniot. 

The INFERNO calculations give results that are similar to those 
predicted by Ross's model. As shown in Figure 12, the thermal electronic 
pressure is negative in the density range 2-10 g/cm3, for temperatures 
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less than 3 eV. INFERNO predicts closing of the band gap to occur at 
about 10 g/cc, in fair agreement with the band calculations. 

The Hugoniot for xenon (50, 51) is shown in Figure 13. Calculations 
in which no electronic excitation is allowed are in good agreement with 
experiment at pressures below 40 GPa but give poor results at the high 
pressures. When the T F D model is used to describe the electronic ex­
citations, the results are better but still not satisfactory. Calculations 
using the INFERNO model are in excellent agreement with the exper­
imental data. The theory gives similar results when applied to shock 
wave data for argon. 

Calculations for the Hydrogen Isotopes 

Calculations for the equations of state of hydrogen and deuterium 
are complicated by the existence of several phases, by the transition from 
the molecular form to a metallic form at high pressures, and by the effects 
of dissociation and ionization in the fluid phase at high temperatures. 
We have developed a detailed theoretical model that accounts for all of 
these phenomena (20, 52). Our calculated phase diagram for deuterium 
is shown in Figure 14. Separate equations of state were computed for 
the molecular solid, the metallic solid, and the fluid phases; the phase 
boundaries were determined by matching the pressures and Gibbs free 
energies. The fluid phase was treated as a mixture of molecular and 
metallic (atomic) species, and the fraction of dissociation was computed 
using a chemical equilibrium model. The EOS for both the molecular 
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O 

Density (g/cc) 

Figure 13. Hugoniot data and theoretical calculations for xenon. Key: 
•, from Ref. 50; and O , from Ref. 51. The three theoretical curves are 
calculated using different models for thermal electronic excitation. (Re­

produced from Ref. 65.) 

n — • 1 1—i—i i i i 11 1 1—i—i—i i i 11 

lrf lrf io4 Temperature (K) 

Figure 14. Phase diagram for deuterium. (Reproduced with permission 
from Ref. 52. Copyright J972, Elsevier Scientific Publishing Co.) 
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and metallic fluids was calculated with an early version of the CRIS model 
(53) that does not include either quantum terms or corrections to first-
order theory. 

At present very few experimental data exist for the hydrogen isotopes 
in regions where either dissociation or metallization can occur. Our equa­
tion of state is consistent with experiments that report observation of the 
metallic transition (54), but those results are preliminary because the 
measurements did not provide complete diagnostics. Therefore, we limit 
the discussion in this article to calculations for the molecular fluid. For 
completeness we have redone the computations using our improved 
version of the CRIS model and recent experimental data for the cold 
curve. These new results differ only slightly from our earlier work (13, 
52). 

CRIS model calculations for hydrogen have also been reported by 
Rosenfeld (35) and by Fiorese (36). Rosenfeld included quantum cor­
rections but made only a first-order calculation of the equation of state. 
Fiorese included the higher-order perturbation corrections as well as 
quantum terms. Fiorese also showed that the CRIS model gave good 
agreement with his Monte Carlo calculations that treated the rotational 
degrees of freedom explicitly, using a dumbbell model for the molecules. 

The zero-Kelvin isotherm for hydrogen is shown in Figure 15. For 
pressures up to 2 GPa we have used the measurements of Anderson and 
Swenson at 4.2 K (55). To obtain that part of the cold curve that is due 
to the intermolecular forces, the contribution from zero-point nuclear 
motion must be subtracted. We estimated this correction from the dif­
ference between the hydrogen and deuterium data. As in our previous 
work (52), the high density portion of the cold curve was taken from the 
band theoretical calculations of Liberman (56). Our fit to these two sets 
of data is shown by a solid line. 

The results of recent high pressure diamond cell experiments on 
hydrogen are also shown in Figure 15. Shimizu et al. (57) measured the 
pressure dependence of the acoustic velocities for the fluid and solid 
phases at 300 K; the volume versus pressure was calculated by integrating 
the sound velocity data. Van Straaten et al. (58) measured the volume 
at 5 K from observations of the actual dimensions of the cell under 
pressure. These two sets of data differ by about 40% in pressure at the 
highest density. Our theoretical curve is in better agreement with the 
results of Ref. 58. 

The equation of state for fluid hydrogen (59) and deuterium (60), at 
temperatures up to 300 K and pressures up to 2 GPa, are shown in 
Figures 16 and 17, respectively. For comparison, we also show the 4.2-K 
solid isotherms (55), with the zero-point pressure term included. The 
calculations are in good agreement with experiment, but the results for 
deuterium are significantly better than those for hydrogen. This suggests 
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Density (g/cc) 

Figure 15. Zero-Kelvin isotherm for hydrogen. Key: O , data from 
Ref. 55, corrected for the zero-point nuclear term; •, calculations from 
Ref. 56; +, from Ref. 57; A , from Ref. 58; and —, cold curve used in our 

calculations. 

Density (g/cc) 

Figure 16. Equation of state for hydrogen. Key: O , fluid hydrogen data 
(59); and •, solid hydrogen data (55). 
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~r i 1 1 1 
0.10 0.15 0.20 0.25 0.30 0.35 0.40 

Density (g/cc) 

Figure 17. Equation of state for deuterium. Key: O , fluid deuterium data 
(60); and •, solid deuterium data (55). 

that our treatment of the quantum corrections to the fluid EOS is not 
adequate, because these terms are more important in the case of hy­
drogen. 

The Hugoniot for liquid deuterium is shown in Figure 18. Our 
calculations are in very good agreement with the measurements (31, 61, 
62). The highest shock velocity reached in these experiments corresponds 
to a pressure of about 20 GPa, a temperature of about 5000 K, and a 
compression of about 3.5 times that of the liquid at the triple point. 
Reflected shock Hugoniots for liquid deuterium are shown in Figure 19. 
The highest pressure points, at about 90 GPa, correspond to a temper­
ature of about 7500 K and a compression of about six times normal 
density. Agreement between theory and experiment (31, 61) is very good. 

Calculations for Other Molecular Fluids 

The CRIS model has also been used to calculate the thermodynamic 
properties of methane (28) and nitrogen, oxygen, and carbon monoxide 
(19). The molecules were assumed to rotate freely, so that the "effective 
cold curve" used in the CRIS model corresponds to an average over all 
orientations of the molecules. The effects of dissociation and ionization 
were not included in the theory. 

For methane, the zero-Kelvin isotherm up to about 2 GPa was 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

05



5. K E R L E Y Calculation of Thermodynamic Properties 129 

Figure 18. Single shock Hugoniot for liquid deuterium. Key: O , from 
Ref. 31; •, from Ref. 61; and A , from Ref. 62. 

Figure 19. Reflected shock data for liquid deuterium. The principal Hu­
goniot is shown by a solid line, and reflected Hugoniots are shown by 

dashed lines. Key: O , from Ref. 31; and •, from Ref. 61. 
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constructed from an effective pair potential that was obtained from second 
virial coefficient data (38). This potential is of the Buckingham form and 
corresponds to an average over all rotational degrees of freedom. As in 
the rare gases, the zero-Kelvin isotherm for this potential is given by 
Equation 7, with a4 = 2. Using this cold curve, our calculations gave 
good agreement with experimental data for both the solid and fluid (28). 
For pressures above 2 GPa, the T F D interpolation formula was used for 
the cold curve. This formula has one adjustable parameter, which was 
chosen to fit shock-wave data. Good agreement was obtained for both 
the single shock and reflected shock Hugoniots (28). 

A portion of the methane equation of state table is pictured in Figure 
4. The coexistence curve was determined by matching the pressures and 
Gibbs free energies of the liquid and vapor phases, as described earlier. 
The calculated vapor pressure curve is compared with experimental data 
(63) in Figure 20. Also shown are isochores (64) in the liquid, vapor, and 
supercritical regions. Agreement with the measurements is very good in 
all cases. 

Nitrogen, oxygen, and carbon monoxide molecules do not rotate 
freely in the solid phase. Therefore, only a rough estimate of the cold 
curve for use in the CRIS model can be obtained from experimental data 

Figure 20. Vapor pressures (•) and isochores (O) for methane (63, 64). 
(Reproduced with permission from Ref. 28. Copyright 1980, American 

Institute of Physics.) 

o 

50.0 100.0 150.0 200.0 250.0 300.0 350.0 400.0 450.0 
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for the solid. In these cases, we used Equation 7, with a4 = 2, to 
represent the zero-Kelvin isotherm, just as we had done for methane 
and the rare gases. The remaining three constants were determined by 
fitting the model to experimental data for the liquid (19). These calcu­
lations were not rigorous, because perturbations to the rotational and 
vibrational motions were included in the definition of the empirically 
determined cold curve. However, it is encouraging that the equation of 
state constructed in this fashion is accurate over the entire fluid range. 
Furthermore, the parameters obtained in our calculations are in reason­
able agreement with data for the solid. For example, the effective "bind­
ing energies" are slightly less than the experimental ones. This result is 
to be expected; the difference corresponds to the energy needed to go 
from preferential molecular orientations in the crystal to the disordered 
rotational state in the liquid. A more fundamental treatment could make 
use of techniques discussed by other workers (I, 6, 7). 

Calculations for Liquid Iron 

In all of the examples that we have discussed above, it is likely that 
nonadditive contributions to the intermolecular forces are fairly small 
and that good results can be obtained using theories that employ an 
effective pair potential (J). In liquid metals, however, the valence elec­
trons are delocalized, and the intermolecular forces are not even ap­
proximately additive. Successful results for liquid metals can be obtained 
using the pseudopotential method (8-10). The cohesive forces can be 
approximately separated into a free-electron part, which is independent 
of the positions of the ions, and a structure-dependent part, which is 
expressed in terms of a density-dependent pair potential. This pair po­
tential is used to calculate the liquid structure. 

The CRIS model provides an alternate theory for calculating the 
properties of liquid metals. Because it uses only the zero-Kelvin curve 
of the solid to represent the intermolecular forces, it eliminates the need 
to determine the effective pair potential from a theoretical calculation, 
and it is easy to apply in practice. We have chosen recent work on liquid 
iron (65) to illustrate the method and the results. 

Equation of state calculations for iron are complicated by the exist­
ence of several solid phases (66). The ferromagnetic alpha phase is stable 
at room temperature and pressure; it transforms to the hexagonal close-
packed (hep) epsilon phase when compressed and to the face-centered 
cubic (fee) gamma phase when heated. To simplify the problem, we 
treated iron as if it had only one solid phase, taken to be the close-packed 
phase. Differences in the equations of state of hep and fee structures are 
usually small and were ignored. The cold curve for the close-packed solid 
was also used in our CRIS model calculations for the fluid. To some 
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extent, this decision is arbitrary, and different results would have been 
obtained if the cold curve for the alpha phase had been used instead. 
However, computer simulations show that the radial distribution function 
of the liquid at the melting point is quite similar to that for the close-
packed solid (12). Furthermore, the liquid phase is not ferromagnetic. 
The electronic structure in liquid iron may be different from that in any 
of the solid phases, but a close-packed crystal should provide the best 
approximation. 

The zero-Kelvin isotherm for close-packed iron is pictured in Figure 
21. The solid line, which was used in our calculations, is a fit to the 
diamond cell measurements of Mao and Bell (26). Band-theoretical cal­
culations (67, 68) are also shown. 

Two assumptions in our application of the CRIS model to iron are 
that the fluid structure is dominated by short-range forces and that these 
forces are similar in the fluid and the solid. In Figure 22 we compare 
our calculated structure factor for molten iron with the measurements 
of Waseda and Suzuki (69). The agreement is very good, demonstrating 
that these key ideas lead to a good description of the short-range liquid 
structure. The shear viscosity of molten iron, computed from the hard-
sphere formula, is shown in Figure 23. Agreement with the data of 
Cavalier (70) is fairly good. 

n 1 1 1 1 r 
8.0 12.0 16.0 20.0 24.0 28.0 32.0 36.0 40.0 

Density (g/cc) 

Figure 21. Zero-Kelvin isotherm for close-packed iron. Key: O , from Ref. 
26; A , from Ref. 67; •, from Ref. 68; 0, calculated using the INFERNO 
model; and —, cold curve used in this work. (Reproducedfrom Ref. 65.) 
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Figure 23. Shear viscosity for liquid iron as a function of temperature. 
Key: O , from Ref. 70; and —, theory. (Reproduced from Ref. 65.) 
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Our theoretical melting curve for iron is shown in Figure 24. In this 
calculation, we forced agreement with the experimental melting point 
at zero pressure (71) by subtracting an empirically determined constant 
from the free energy of the fluid. The correction was 4.25 kcal/mol, about 
4% of the solid binding energy. 

Calculated Hugoniots for iron of two initial densities are also shown 
in Figure 24. Alpha-phase iron, having a density of 7.85 g/cm3, transforms 
to the e-phase at about 13 GPa under shock loading (66). According to 
our calculations, melting should begin at about 320 GPa. This result is 
in fair agreement with the value of 250 GPa obtained by Brown and 
McQueen (72). Porous a-phase iron, with an initial density of 4.8 g/cm3, 
is predicted to melt at 45 GPa. 

Curves of shock velocity versus particle velocity for iron of various 
initial densities (73-75) are shown in Figure 25. Agreement between the 
theory and the measurements for normal density iron is very good over 
the entire range of the close-packed solid and fluid phases, extending 
up to 1000 GPa. The theory also predicts the correct behavior as a 
function of porosity. More detail can be seen in Figure 26, which shows 
the shock data for an initial density of 4.8 g/cm3. Agreement with ex­
periment is excellent except at the lowest pressures, for which the shocked 
state is the a-phase. 
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1 i 1 1 r 
0.0 2.0 4.0 6.0 8.0 

Particle Velocity (km/s) 
Figure 25. Shock velocity vs. particle velocity for iron at four initial 
densities. Points are experimental data (73-75); solid lines, theory. Key: 
O , p 0 = 7.85 g/cm3; A , p 0 = 7.0 g/cm3; • , p 0 = 5.7 g/cm3; and 0, p 0 

= 4,4 g/cm3. (Reproducedfrom Ref. 65.) 

o 
d - l i i i L 

o 
d H , 1 1 1 

0.0 1.0 2.0 3.0 4.0 5.0 

Particle Velocity (km/s) 
Figure 26. Hugoniot for porous iron having an initial density of 4.8 
g/cm3. Points are experimental with permission data (73, 74); the curve is 

theory. (Reproducedfrom Ref. 65.) 
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Summary 

In this chapter, we have shown how the thermodynamic properties 
of a fluid can be computed without explicit knowledge of the interaction 
potentials, using only the zero-Kelvin isotherm of the solid phase. The 
theory was shown to agree with experimental data for simple monoatomic 
fluids such as the rare gases and liquid metals. It also gives good results 
for polyatomic molecules such as hydrogen and methane, if the molecules 
are freely rotating. The CRIS model can be used together with the 
INFERNO model of Liberman to calculate the equation of state at high 
temperatures where thermal excitation of the electrons becomes an im­
portant effect. 
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6 
Fluids at Interfaces 

JOHANN FISCHER 
Ruhr-Universität, Institut für Thermo- und Fluiddynamik, D-4630 Bochum, 
Federal Republic of Germany 

Three topics are considered in this chapter: gas adsorption 
on solid surfaces, the free liquid surface, and a liquid in 
contact with a wall. They are treated theoretically, and 
results are compared with experiments and simulations. A 
review of virial expansions and of the application of the 
first equation of the Born-Green-Yvon hierarchy for in­
homogeneous fluids is given. For the case of gas adsorption, 
the structure of a fluid adsorbed on a plane surface at 
supercritical and subcritical temperatures is shown, to­
gether with adsorption isotherms. Adsorption in pores is 
dealt with in a simple model. From the study of the liquid­
-gas interface the coexisting densities, the surface tension, 
and the surface thickness are obtained. Finally, the struc­
ture of a liquid close to a wall is discussed. 

T H E EQUILIBRIUM PROPERTIES OF FLUIDS AT INTERFACES are of practical 
importance in many engineering processes. While molecular theory 

will hardly be able to make quantitative predictions for all real situations, 
it can help us at least in understanding many of the interface phenomena. 
In order to achieve the latter goal we will keep the model of the fluid 
molecules and the solid surfaces as simple as possible—we consider only 
Lennard-Jones or hard-sphere molecules and unstructured walls with 
forces perpendicular to the surface—and concentrate on some physically 
interesting situations. 

Statistical mechanics of inhomogeneous fluids is now in development 
and different theoretical methods are in competition. Here, we will briefly 
describe the virial expansion and the use of the first equation of the 
Born-Green-Yvon hierarchy, as these will subsequently be used in treat­
ing the model systems. A comparison with the density functional method 
closes the first section. 

Theory 

Consider a fluid of N identical spherical particles which neither form 
a free boundary nor are in contact with a smooth solid surface at tem-

0065-2393/83/0204-0139$06.00/0 
© 1983 American Chemical Society 
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perature T. The potential between two fluid atoms is u(rik) = uih and 
the potential that a fluid atom experiences from the solid surface is us(r{) 
= MJ. We are mainly interested in the local density n(r), which is the 
same as the one-particle distribution function and is given by 

n(rx) = (N/ZN) j exp |-p[S + 2 j dr 2 . . . dr N (1) 

where Z N denotes the configurational partition function and (3 = 1/kT. 
For evaluating the local density in the case of a gas in contact with 

a wall we can think of a virial expansion. Technically we start from 
Equation 1 and use van Kampen's method (I), which results in (2) 

n(rx) = nb exp {-(3ul}[l + v^rjnj, + v2(r1)n| + . . .] (2) 

where nb is the gas density far away from the solid surface. In that 
expansion the coefficient v{ describes the interaction of (i +1) particles 
among themselves and with the wall. Expressions for vx and v 2 are given 
elsewhere (2). If the kinetic energy of the gas molecules is small compared 
with the adsorptive potential of the wall, then the molecules tend to sit 
in-a layer close to the wall. Thus, even for low bulk gas densities, the 
local density in the adsorbed layer may become so high that one has to 
consider the simultaneous interaction of many particles. In that case, the 
expansion shown in Equation 2 can no longer be used. Concluding, we 
can say that a virial expansion is expected to be useful at high temper­
atures and low densities. 

Another route for evaluating the local density n(r) is the first equation 
of the Born-Green-Yvon hierarchy. In that connection we consider the 
probability of finding simultaneously two particles in the volume ele­
ments drY and dr2. We denote that probability as n(r^) n(r2) g(r1? r2) drx 

dr2. The function g(rl,r2) is called the pair correlation function. Now, by 
differentiating Equation 1 with respect to the local coordinate r : and 
denoting that differentiation by V 1 ? we obtain, after rearranging 

V x ln n W = - V x $u\ + j (- V _ ! pu1 2) g(r1 ?r2) n(r2) dr2 (3) 

This is the first equation of the Born-Green-Yvon hierarchy, (the BGY 
equation). The first term on its right-hand side is the force exerted by 
the wall on a particle at rv The integral is the mean force that a particle 
feels from the other fluid particles. These forces are balanced by the 
density gradient on the left-hand side. In order to calculate the local 
density from that equation one has to use an approximation for the pair 
correlation function. 
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Different approximations for the pair correlation function in con­
nection with the BGY equation are possible. In a previous article (3) the 
author and a co-worker had the goal of making a physically reasonable 
approximation which, on the other hand, should be simple enough that 
numerical solutions were readily attainable. We split the potential uik 

between two fluid particles into a short-range repulsive part and an 
attractive part. Hence the mean force in Equation 3 splits into a mean 
repulsive and a mean attractive force. In the mean attractive force we 
neglect any correlations. The mean repulsive force is treated in the hard-
sphere approximation, the pair correlation function being taken as that 
of a homogeneous hard-sphere system at a mean density, which is ob­
tained by averaging the local density over the volume of a molecule. 
Contrary to the virial expansion, this is not a systematic but an ad hoc 
approximation scheme. The BGY method, however, has a much larger 
range of applications. Moreover, a recent investigation (4) using a more 
sophisticated approximation for the pair correlation function has con­
firmed that the above described method yields at least qualitatively cor­
rect results. 

The first approach to fluids at interfaces was originated by van der 
Waals and is called, in its modern version, density functional theory. 
The basic idea is to write the Helmholtz energy A of the system as a 
function of the local density n(r) and the direct correlation function c(rly r2) 

A = 9[n(r), c(r1 ;r2)] (4) 

Instead of the direct correlation function the pair correlation function 
may also be used. It must be stated that all the functions used are only 
approximate expressions. After making suitable approximations for the 
correlation function, one gets an equation for the local density by min­
imizing the Helmholtz energy. A review of such approaches can be found 
elsewhere (5). 

In comparing the BGY with the density functional approach we learn 
that in both methods an approximation for the correlation function has 
to be made. The starting equation in the BGY approach, however, is 
exact, while the expression for the density functional is always an ap­
proximation. On the other hand, our BGY method requires some nu­
merical calculations. This is not necessarily the case in the density func­
tional theory. For slowly varying density profiles, for example, gradient 
expansions can be made, which greatly facilitates the evaluation (5). 

Gas Adsorption on Plane Solid Surfaces 

A simple model for physical adsorption is that of spherical fluid 
particles in contact with a plane, structureless wall. In nature corre-
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sponding systems are that of argon or krypton adsorbed on the basal 
plane of graphite, for which accurate measurements have been made 
(6, 8). 

We assume the fluid particles to interact through a 6-12 Lennard-
Jones potential and to be in contact with a plane 3-9 wall 

u'(z) = \W* Egs[(crgs/z)9 - (<xgs/z)3] (5) 

where the z-axis is perpendicular to the surface. 
One quantity that can be calculated from theory and measured in 

experiments is the surface excess density T. It tells us how much gas per 
unit surface area the system contains in excess of an idealized system, 
where the bulk gas density would be maintained up to the wall. Usually 
the Gibbs dividing surface between solid and gas is defined as that surface 
where the wall gas potential goes through zero, us(z) = 0. Hence we 
have 

which, as a function of the bulk gas density nb, is called an adsorption 
isotherm. 

At low bulk gas densities, the local density is obtained by the first 
term in the virial expansion 

niz) = nb exp {-$us(z)} (7) 

and insertion into Equation 6 yields the low density value for T. With 
increasing density, higher order correction terms have to be calculated 
from Equation 2. 

As it has been argued, the virial expansion is most useful at higher 
temperatures. There, the repulsive forces between the fluid particles are 
the dominating ones. It was for this case that the coefficients describing 
the interaction of two or three hard spheres with a 3-9 wall have been 
calculated explicitly (2). The main results of that calculation can be sum­
marized as follows: 

• At low densities the adsorption isotherm is essentially determined 
by the interaction of a single particle with the wall, expressed by 
Equation 7. The simultaneous interaction of two and three particles 
with the wall leads only to minor corrections in the adsorption 
isotherm. 

• The experimental results for the system argon-graphite (6) could 
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6. F I S C H E R Fluids at Interfaces 143 

be reproduced with high accuracy if the parameters for the wall-
particle potential were properly chosen (sgs/k = 1108 K, vgs = 
0.191 nm). 

• At high temperatures the coefficient describing the interaction of 
two particles with the wall can be determined from an experimental 
adsorption isotherm only with great inaccuracy. 

• For that special model the virial expansion for T has the form of a 
geometric series. This suggested casting the adsorption isotherm 
into the mathematical form 

even at rather high bulk densities. Generally, if we look for a 
representation of the surface excess density as a function of the 
pressure p instead of the bulk density, a useful expression is (9) 

where P(p) denotes a simple polynomial of the pressure. 

At higher bulk densities the virial expansion breaks down, at least 
in the sense that the higher order virial coefficients become too com­
plicated to be calculated. That breakdown strongly depends on the tem­
perature. At temperatures much higher than the critical temperature of 
the gas, virial expansions can still be valid at pressures of several bars, 
while at subcritical temperatures, virial expansions may break down at 
near-vacuum conditions. For such cases we have solved the BGY equa­
tion. The calculations were done again for the system argon-graphite at 
both supercritical and subcritical temperatures. We took the same wall-
particle potential as in the virial expansion and the usual Lennard-Jones 
potential for argon (e/fc = 119.8 K, a = 0.3405 nm). 

Solutions of the BGY equation for the local density were obtained 
in the supercritical region at several states in a temperature-density grid 
and are shown in Figure 1. These results have also been evaluated to 
yield layer coverages, which are compiled in Table I. We learn that at 
lower temperatures the first adsorbed layer is quickly filled, while at 
higher temperatures this filling occurs much more slowly due to the 
higher kinetic energy of the molecules. Moreover, we observe that a 
second and third layer are already formed before the first layer is com­
pletely filled. Adsorption isotherms have also been calculated by using 
Equation 6. Comparison with experimental results (6) in Figure 2 shows 
qualitative agreement. One reason for the discrepancies seen at higher 
densities could be the approximation scheme for the pair correlation 
function. More probably, an unfortunate choice for the wall-particle po-

r = Bnb/(1 + qnb) (8) 

r = P(p)/(1 + qp) (9) 
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T = 323.15K 
nbo3=0.05 

1 = 253.15K 

T = 200.00K 

T = 323.15K 
nbo3=0.20 

T = 253.15K 

T = 200.00K 
nho3=0.20 

T = 323.15 K 

T = 253.15K 

xl i i i l _ 

T = 200.00K 
nbo3--0.40 

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 
z/o 

Figure 1. Density profiles of argon adsorbed on graphite at supercritical 
temperatures. 

tential or changes in the intermolecular potential between the fluid par­
ticles caused by the solid surface can be the sources of the discrepancies. 

At subcritical temperatures, one interesting problem is the structure 
of the adsorbed film and its behavior in the case where the bulk gas 
density approaches the dew line. It is important to mention that for the 
argon-graphite system, computer simulations (10) have been made at 
two subcritical temperatures with the same model potentials described 
above. In solving the BGY equation (3) we first wanted to compare our 
results with the simulation results. Another aim was to study the approach 
to the dew line. For that purpose we had to know exactly the coexisting 
gas density within our model. As will be shown in the next section, we 
can obtain that value from an eigensolution of the BGY equation for the 
liquid-gas interface. At a temperature of 120 K the dew density was 
found to be n f c a 3 = 0.0207, which is somewhat lower than the experi­
mental value. At that temperature, density profiles for the adsorbed gas 
were calculated for the bulk gas density, n^cr3, equal to 0.0200 and 
0.01919. The results are reproduced in Figure 3. The lower density 
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Table I. Layer Coverages for Argon Adsorbed on Graphite 

Temperature Degree of Coverage Temperature 
(K) nbCT3 = = 0.05 ntor3 = 0.20 ntcr3 = 0.40 

323.15 e1 = 0.27 0.48 0.59 
e2 = 0.10 0.31 0.51 
e3 = 0.07 0.27 0.50 

253.15 0.43 0.58 0.65 
e2 = 0.14 0.37 0.53 
e3 = 0.08 0.30 0.50 

200.00 e1 = 0.61 0.68 0.71 
e2 = 0.23 0.49 0.58 
e3 = 0.11 0.39 0.53 

Note: The layers are defined by the distances 1.1 a, 2.2 a, and 3.3 a. Values given 
are the relative degrees of coverage 0* referring to a triangular packing of Lennard-Jones 
atoms with nearest neighbor distance 2 1 / 6 o\ In the absence of any wall-induced structure, 
the degree of coverage would be 0 = 1.2 nbv3. 

corresponds to the simulation run at kT/s = 1.002 (10) and shows good 
qualitative agreement. It is also interesting to learn from Figure 3 that 
in approaching the dew point, the first two layers adjacent to the wall 
remain unchanged while the transition zone between the third layer and 
the bulk gas tends to form a plateau. The onset of bulk condensation 
may be explained by considering that the film represented by that tran­
sition zone rapidly increases in density and extends into the gas volume. 
It should be mentioned that we were not able to find BGY solutions for 
bulk densities higher than 0.0207. 

For the system krypton-graphite, experimental values (7) are also 
available at 253.15 K, which is a lower reduced temperature (with respect 
to the critical temperature) than in the case of argon. Therefore, we also 
performed calculations for that system using the 3-12 wall potential sug­
gested elsewhere (IJ) and a usual 6-12 potential for krypton (e/k = 
165.2 K, a = 0.366 nm). It turned out that at high bulk densities the 
calculated values for the adsorption isotherms were as much as 40% 
higher than the experimental ones, which continues the trend already 
observed for argon. Obviously, there is a relation to the previous finding 
(11) that with the same wall potential, the experimental results could 
only be explained by a weakening of the dispersion forces of the krypton 
atoms close to the wall. A more detailed discussion of that question will 
be given elsewhere (8). 

Gas Adsorption in Pores 

If we apply adsorption in technical processes, we are interested in 
high surface areas and hence use porous adsorbing materials. The effect 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

06



146 MOLECULAR-BASED STUDY OF FLUIDS 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

06



6. F I S C H E R Fluids at Interfaces 147 

6 

5 

1.2 -

0.4 

0.8 

2 3 5 z/a 

Figure 3. Density profiles of argon adsorbed on graphite at densities 
close to the dew point (n ba 3 = 0.0207). Temperature, 120 K. Key: —, 
n b a 3 = 0.02000; and —, n b a 3 = 0.01919. (Reproduced with permission 

from Ref. 3. Copyright 1980, American Institute of Physics.) 

of pores, however, is not only that of enlarging the surface area. In pores, 
the gas-wall potential may be changed considerably by purely geomet­
rical reasons. In order to study that effect in more detail we investigated 
a very simple model (12) corresponding to krypton adsorbed in porous 
carbon. We assume the pores to be circular cylinders and the carbon 
atoms to be smeared out uniformly over the cylinder surface with a given 
surface density. For the interaction of one carbon and one krypton atom 
we take a 6-12 potential with the parameters suggested by Steele (13). 
Now, we are able to calculate a wall potential. The most significant result 
is that the attractive well becomes strongly deeper with decreasing pore 
size as a consequence of the pore curvature. An example is shown in 
Figure 4. For the limit of low bulk densities, the amount of adsorbed 
gas corresponding to Henry's constant can be calculated from the first 
term in the virial expansion, Equation 7. For high bulk densities, it 
seems reasonable to assume that the surface of the pore has the same 
coverage as a plane surface, which can be calculated by analogy to Table 
I. From this limiting value an interpolation for mean bulk densities can 
be made by using Equation 8. In order to allow comparison with ex­
periment, we assume that in a real adsorbent all the pores are cylinders 
of equal radii. From given experimental values for the surface area and 

American Chemical 
Society Library 
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10 -

Figure 4. The potential in a cylindrical pore for two pores of different 
pore size a. Generally the potential has its minimum at a distance ap­
proximately a away from the sites of the solid atoms. Due to the curvature 
at small pore sizes, this minimum can become very deep. The model cor­

responds to krypton adsorbed by porous carbon. 

the pore volume we calculate the pore size for the model. A comparison 
(12) of a calculated with an experimental adsorption isotherm is shown 
in Figure 5. In spite of all the simplifications in the model, the predictions 
are surprisingly good. 

The Free Liquid Surface 

Investigations of the liquid-gas interface aim at understanding the 
structure and predicting the surface tension. Beyond that, however, one 
may speculate whether vapor-liquid phase equilibria should not also 
be determined by the situation in the interface. Of course it should not 
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Figure 5. Excess amount of adsorbed krypton on porous carbon. The 
comparison shows experimental and theoretical values at 298.15 K, given 
in milligrams krypton per gram of carbon, for an adsorbent with a surface 
of 1100 m2lg and a micropore volume of 0.42 cm3/g. Key: O , experiment; 

and —, theory. 

be doubted that equal chemical potential is a condition for phase equi­
librium. On the molecular level, however, the molecules in the gas phase 
"know" about the situation in the liquid phase only by the mediation of 
the molecules in the interface. Subsequent results will give support to 
the idea that phase equilibria can also be obtained by considering the 
interface without using the chemical potential explicitly. 

The model fluid consists again of Lennard-Jones atoms and com­
parison is always made with argon. We are looking now for nontrivial 
solutions of the homogeneous BGY equation, as the liquid-gas interface 
will be considered in the absence of any external forces. The most in­
teresting point is that the homogeneous BGY equation turns out to be 
an eigenvalue equation, which means that at a given temperature a 
solution could be found only for one definite value of the bulk liquid 
density. The corresponding eigensolution for n(r) gives the density profile 
in the interface and the coexisting gas density. 

Bubble- and dew-point densities obtained from the eigensolutions 
of the BGY equation (3, 14) are compared in Figure 6 with simulation 
results, using the condition of equal chemical potential (15), and with 
experimental results for argon (16). In spite of the approximations in the 
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BGY equation, the coexisting densities are qualitatively correct. Note 
that the chemical potential has not been used explicitly. 

The density profiles always show a monotonic decrease from the 
bulk liquid to the bulk gas density. From those profiles we have calculated 
the surface thickness d (3) and obtained d = 1.41 a for T = 91 K and 
d — 3.20 a for T = 135 K. These values are compared in Reference 14 
with simulation results (17) and experimental values (18). Taking into 
account the inherent difficulties in both the latter methods, the agree­
ment is reasonable. 

Surface tensions 7 can be obtained (3, 14) from the density profiles 
using the same approximation for g(r l 5r 2) as in the BGY equation. The 
results can be correlated (14) by 

7a2/e = 2.33[1 - T/167.4]130 (10) 

Figure 6. Coexistence curves determined by different methods. Key: ex­
perimental data for argon (16) ( ); Lennard-Jones system with 
equal chemical potential from simulations (15) ( ); Lennard-Jones 
system with interface investigations using the BGY equation ( ). 
(Reproduced with permission from Ref. 14. Copyright 1981, Berichte der 

Bunsengesellschaft fur Physikalische Chemie.) 
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Comparison with experimental results (19) shows good agreement at low 
temperatures, but with increasing temperature the calculated values are 
much too high, which is reflected in a calculated critical temperature of 
167.4 K. On the other hand, at all temperatures our results are in rea­
sonable agreement with simulation results (17). The reason for these 
discrepancies is not yet clear. 

Liquids in Contact with a Wall 

The BGY equation can also be solved for liquids in contact with a 
wall (3, 14). In a previous paper (14) a systematic study was made for a 
Lennard-Jones liquid in contact with a 3-9 wall. The parameters of the 
wall potential were egs/k = 265 K and crgs = 0.234 nm, so that it is much 
more shallow than in the case of gas adsorption. Density profiles were 
calculated again in a temperature and density grid. As can be seen in 
Reference 14, the bulk density has a considerable influence on the struc­
ture of the liquid close to the wall, while the influence of the temperature 
is negligible. 

It is interesting to note (3) that with the same wall-particle potential 
a hard-sphere fluid is more strongly adsorbed than a Lennard-Jones fluid. 
This result agrees with findings of Snook and van Megen (20) and can 
be explained by the fact that for Lennard-Jones particles, the attractive 
"background" force of the bulk liquid balances the attractive wall force. 
This may help us in understanding adsorption from liquid solutions. 
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7 
Fluctuations of Local Fluxes in Fluids: 
Simulation Versus Langevin Theory 

J. KIEFER1 and P. B. VISSCHER 
University of Alabama, Department of Physics and Astronomy, University, 
AL 35486 

Numerical simulations of flux fluctuations in a fluid have 
been performed. The results for momentum fluxes are in 
qualitative disagreement with the standard (Langevin-Lan­
dau-Lifshitz) theory of fluctuating hydrodynamics, which 
assumes stochastic flux correlations are local. Since the the­
oretical predictions for number-density fluctuations have 
been verified by light-scattering experiments, the difficulty 
appears to be related to the part of the momentum flux that 
does not couple to the density. We have calculated the 
stochastic fluxes explicitly from molecular dynamics data 
for soft spheres by using a recently developed discrete for­
mulation of hydrodynamics. A possible explanation of the 
nonlocal correlations is described; this involves renormal­
ization-group techniques related to those used in the theory 
of critical phenomena. 

F L U C T U A T I O N S I N F L U I D S are calculated in this chapter by using a re­
cently introduced, exactly renormalizable discrete formulation of hy­

drodynamics. Several descriptions of the discrete formulation of hydro­
dynamics have been published previously. Originally introduced as a 
discrete analogue of continuum hydrodynamics (I), it can also be thought 
of as an adaptation to fluid mechanics of the renormalization-group meth­
ods used in the theory of critical phenomena (2, 3). However, an im­
portant advantage of the discrete formulation is that fluctuations can be 
treated more accurately than they can in continuum theories. Therefore, 
in the present paper we will approach discrete hydrodynamics as a dis­
crete analogue of the stochastic Langevin equations used in fluctuating 
hydrodynamics (4, 5). We will begin by reviewing the usual (Langevin-
Landau-Lifshitz) form of these equations. We then show how the discrete 
formulation of hydrodynamics may be regarded as a concretization (for 

1Current address: St. Bonaventure University, Department of Physics, St. Bona­
venture, NY 14778 

0065-2393/83/0204-0153$06.00/0 
© 1983 American Chemical Society 
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application to a real fluid) of the continuum Langevin equation. We show 
how this discrete Langevin equation can be directly determined by sim­
ulation. The results for the stochastic fluxes are then used to study the 
validity of the assumptions usually made in the Langevin equation. 

In particular we find the assumption (due to Landau and Lifshitz) 
that there are no correlations between fluxes at different points to be 
qualitatively incorrect for the momentum fluxes. 

Langevin-Landau—Lifshitz Equations of Fluctuating 
Hydrodynamics 

The Langevin equation for the stochastic force on a Brownian particle 
(6) was first extended to describe fluctuations in fluids by Landau and 
Lifshitz (7). For simplicity, we will first discuss a Langevin equation for 
a single degree of freedom, say a diffusing density p(r,f). The usual 
deterministic equation of motion is 

! ) " - - ' • > • ( i> 

where the flux vector is 

jm(r,t) = - D V p ( r , f ) (2) 

and D is the diffusivity. The superscript m indicates that Equations 1 
and 2 give only the mean values of dp/dt and j {for a given function p(r, t)}. 
The Langevin approach involves adding a stochastic term (dp/dt)s de­
scribing deviations from the mean 

dt \dtj \dtj 

It is usually assumed (4), following Landau and Lifshitz (7), that there is 
a field js such that 

= - v r (4) 

with the additional properties 

< r> = o (5) 

<j}(r',t')ji(r,t)> = A8(r' - r)8(*' - t)8<(< (6) 
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for some constant A. It is important to understand why the stochastic 
flux js need be introduced; i.e., why (dp/dt)s cannot itself be assumed to 
have simple 8-function correlations as in Equation 6. This is because the 
requirement that the total number of particles be constant implies a 
constraint on the fluctuations 

d V < | ( r U ' ) ' | ( M ) ' > = 0 (7) 
ot ot 

This constraint is automatically satisfied by any (dp/dt)s that is obtained 
as a divergence; Equation 4 in particular gives 

ot dt 

However, without the Laplacian V 2 , Equation 8 would violate the con­
servation law constraint. We will reconsider this question, with benefit 
of hindsight, in the last section of this chapter. 

The simplest statement of the Langevin equation for a conserved 
density is therefore 

jm + js (10) 

together with Equation 2 for the mean flux jm and Equations 5 and 6 
for the stochastic flux js. 

We may now generalize the above Langevin equations to describe 
a fluid. Essentially, there are five conserved densities instead of one; 
these are number, energy, and momentum (with three components), 
which we will denote by pN, p E , and pP. There are therefore three versions 
of Equation 9, involving three fluxes jN, jE, and jP, the momentum flux 
being a 3 X 3 tensor. These equations were first proposed by Landau 
and Lifshitz (7), and were analyzed and extended to allow a bulk viscosity 
by Fox and Uhlenbeck (5); we will refer to them as the Langevin-Landau-
Lifshitz equations. 

Fox and Uhlenbeck (5) have given explicit expressions for the coef­
ficient A in Equation 6, for each of the hydrodynamic fluxes. Their 
expressions for the fluctuations follow from a fluctuation-dissipation theo­
rem if one makes the Landau-Lifshitz assumption (Equation 6) of com­
plete independence of the fluxes at different space and time points. For 
the shear momentum flux, for example, they obtain 

A = 2kBTx\ (11) 
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where i) is the shear viscosity, kB is the Boltzman constant, and T is the 
absolute temperature. Their result for longitudinal momentum flux is 

A = 2*Br{(4/3)r) + £} (12) 

where £ is the bulk viscosity. 

Discrete Hydrodynamics 

How could one test the applicability of the Langevin-Landau-Lif-
shitz theory of continuum fluctuating hydrodynamics to a real fluid? It 
is first necessary to establish what the theory means in a real fluid of 
particles having finite size, in terms of quantities one could actually 
measure in a simulation (or, for that matter, in a laboratory experiment). 
It is by no means obvious how to do this; we present below what appears 
to us to be the most straightforward such concretization of the formal 
Langevin-Landau-Lifshitz theory. In a molecular dynamics simulation 
one can measure discrete analogues of the densities; that is, the number, 
energy, and momentum contents of finite cells, at a finite number of 
discrete times, say multiples of some interval T. Let us divide our system 
into cubical cells of width W, each labeled by its center J. Denote the 
content of cell / at time mi by c(l,m). In a fluid we need number, energy, 
and momentum contents cN, cE, cP. As in the previous section, however, 
we shall consider a simple diffusive system for simplicity. There is then 
only one content, cN, and we may omit the subscript. The discrete an­
alogue of the flux is the transfer, the number of particles (or amount of 
momentum, and so forth) crossing a square face separating two cells 
during the interval between two of our discrete times, say mi and mi 
+ T. Labeling each face by its midpoint / , and the time interval by its 
midpoint (m + 1/2)T, we may denote the corresponding transfer by x(f,m 
+ 1/2). 

The Langevin-Landau-Lifshitz theory, like any hydrodynamic the­
ory, is supposed (4) to describe a fluid on a scale that is large compared 
to molecular sizes. Thus the current j and the density p are limits of the 
transfer x and the content c (with suitable factors of W and T) as W, T-̂  
oo. The meaning of Equations 9 and 10, as applied to a real fluid, is that 
if we replace j and dp/dt by x and the content change Ac(l) = c(l,m+ 1) 
— c(l,m), the resulting dynamic equation is correct in the limit W, T —» 
oo. Although we can only test it for finite W and T, we can hope to make 
inferences about the probable limit. 

The above considerations do not tell us, however, what to do with 
jm. In the formal continuum theory one simply postulates a form for it 
(in terms of p). It is supposed to represent the mean flux for a given 
instantaneous density profile. This can be made precise in a discrete 
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formulation by defining an ensemble of fixed contents c(Z,0) at t = 0, 
and denoting a mean transfer in this ensemble by [x(f,l/2)]. Then 
[ac(/,l/2)] is the natural analogue of jm. The analogue of Equation 2 for 
jm should express the conditional mean transfer [JC(/,1/2)] as a linear 
function of the contents c(l,0) 

M/,1/2)] = 2 [ * ( / , l / 2 ) W o ) « (13) 
I 

where the [x(/,l/2)]c(/0) factors are simply constant coefficients about 
which we have not yet made any assumptions. Evidently they contain 
information about the diffusivity D. They are uniquely defined if we 
regard Equation 13 as the first term in a power-series expansion of the 
mean flux. 

One can see from Equation 10 that the discrete analogue of the 
stochastic flux js is the difference x(fyl/2) — [x(/,l/2)]. Our analogue of 
Equation 6 should describe the moments of this quantity in the equilib­
rium ensemble. However, since the Langevin theory assumes that the 
probability distribution of the stochastic flux js(r,0) is independent of 
the density p(r',0), the moments in the equilibrium ensemble are the 
same as those in each ensemble of fixed p(r',0). Therefore, our fluctuation 
equation could equally well describe the moments in the ensemble of 
fixed contents c(/,0), 

[{*(/',1/2) - [*(/', 1/2)]} {x(7,1/2) - W/,1/2)]}] 

which we prefer because these are exactly the cumulant moments (8) 
and our fluctuation equation takes the form 

[*(/', 1/2) x(/,l/2)]c = function of / ' , / (14) 

This choice also results in an attractive unification of the two equations, 
Equations 13 and 14, which comprise our discrete analogue of the Lan­
gevin equation. They describe the first two cumulant moments of the 
probability distribution of the transfers x(f, 1/2) in the ensemble of fixed 
c(/,0). From this point we will omit the c superscript; all moments will 
be cumulants. 

A number of possible generalizations of the basic discrete Langevin 
equations (Equations 13 and 14) now present themselves. First, it is 
possible that a more accurate prediction of the mean transfer (Equation 
13) could be made by taking into account some or all of the previous 
transfers x(f, —1/2), x(f, — 3/2), . . . as well as the present contents c(l,0). 
Let us denote by [ ] l a mean in an ensemble in which the terms x(f, —1/2) 
(for all/), as well as c(/,0), are fixed. It is therefore a function of the values 
chosen for c(/,0) and x(f, —1/2). Similarly [ ]2 is a mean in an ensemble in 
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which c(Z,0), x(/-l/2), x(/-3/2) are fixed; note that specifying c(l, — l) 
would be redundant since it is determined by c(l,0) and x(f, —1/2). In 
general [ ]M involves fixing transfers at M different times. The conditional 
means discussed previously can now be denoted [ ]°. The necessary gen­
eralization of the equation of motion for [x]° (Equation 13) is 

k/,l/2)]M = EW/,1/2)]^, c(l,0) 

+ S [x(f,l/2)]%f,m)x(f',m) (15) 
0 > m > — M 

and Equation 14 becomes 

[x(f',l/2)x(f,l/2)]M = function of/ ' , / , M (16) 

Our principal interest is in the case M = o°, for which all previous 
transfers are constrained and the equation of motion, Equation 15, in­
volves all previous times. This is because the theory for that case is 
exactly renormalizable (see the section on Numerical Results). 

The continuum analogue of the non-Markovian theory represented 
by Equation 15 with M = o° is referred to as "generalized hydrodynamics" 
and has been heavily studied by many authors (9, 10). 

The linear theory described by Equations 15 and 16 can easily be 
generalized to the nonlinear case. Each equation can be thought of as 
the lowest-order nonvanishing term in a power-series expansion of a 
conditional cumulant moment in terms of the "history variables" c(/,0), 
x(f, —1/2), . . . . In Equation 16 only the constant term is present, and 
in Equation 15 the constant term vanishes and the linear term is given. 
In the most general formulation of discrete hydrodynamics (1, 8) all orders 
are allowed in these power series. The restriction to the first and second 
cumulant moment corresponds to assuming Gaussian fluctuations (4); this 
restriction also is removed in the general theory. In dealing with a fluid 
on a fairly macroscopic scale, the linear Gaussian case is sufficient; this 
is acceptable because the important fixed points under a scale-coarsening 
(renormalization) transformation (3, 11) are linear and Gaussian. Even 
on the rather microscopic scale (four-particle cells) used in our simulation 
work, both non-Gaussian and nonlinear terms have been calculated (12) 
and found not to be numerically important. Therefore, in this chapter 
we consider only the linear, Gaussian parts of the equation of motion; 
i.e., Equations 15 and 16. 

Before calculating, in the next section, the actual values of the pa­
rameters in the discrete equations of motion (Equations 15 and 16), we 
discuss what the continuum Langevin-Landau-Lifshitz theory of fluc­
tuating hydrodynamics (Equations 2 and 6) predicts for them. The pre-

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

07
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dictions about the mean transfers (Equation 15) are the same as those of 
the ordinary deterministic equations of hydrodynamics, and have been 
discussed in detail previously (12-14). Our interest here is in the Lan­
gevin fluctuations (Equation 6) of the stochastic flux component jf (i = 
X, Y, or Z). Regarding j- as being the large-cell limit of the transfer per 
unit time per unit area, across a face normal to the i direction, X S / T W 2 , 
we see that the assumption of independence of the j- terms at different 
positions translates into an assumption of independence of the x terms. 

[*(/', l/2)x(/,l/2)]M = A W ^ V (17) 

(The factor W2T provides a normalization equivalent to that of Equation 
6.) In a Markovian theory this cumulant is independent of M , since 
constraining M previous transfers makes no difference if nothing depends 
on them. This predicted independence of M is borne out fairly well by 
our numerical results covered in the next section. 

Of course we cannot expect to find exact independence of transfers 
across different faces for finite W, even if the Langevin theory were 
correct. However, the Langevin theory or various generalizations (9, 10) 
certainly imply that the correlations should be clearly dominated by a 
local part for reasonable W and T. A S we see in the simulation this appears 
to be definitely false for the momentum fluxes. 

Calculating Discrete Equations of Motion 

We would now like to calculate explicitly the parameters defining 
the discrete equations of motion; i.e., the coefficients [x(f 1/2)]%0) and 
[x(/,l/2)]^fm) of Equation 15 and the constants [x(f ,H2)x(fll2)Yi. The 
former describe the dependence of the expected transfer on the history 
of the system, as represented by the "history variables" c(l,0) and x(f',m). 
We will schematically denote any of these history variables by h, and 
suppress all space and some time indices. In previous discrete hydro­
dynamics work (12, 14) we have considered only the most general equa­
tion of motion having M = o° (i.e., allowing x(l/2) to depend on all previous 
transfers). We obtained [x]h from equilibrium averages by multiplying 
Equation 15 (with M = oc) by a history variable h! and averaging over the 
equilibrium ensemble 

W = 2 [x]% <hh') (18) 
h 

This is a set of linear equations from which [x]h can be calculated if the 
equilibrium averages (xh), {hh') are known. However, the number of 
coupled equations is the number of [x]h terms we wish to calculate. This 
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was 35 in Reference 14, but would be much larger if high accuracy were 
desired. For the present calculations we have used a more efficient 
method in which [x]M is calculated recursively from [x] M _ 1 , the equation 
of motion in which history variables are constrained at one fewer past 
times. 

The necessary recursion equations can be obtained by multiplying 
Equation 15 by x'( — M + 1/2) and averaging it over the " M — 1" ensem­
ble, which is larger than the "M" ensemble because x( — M + 1/2) is not 
constrained 

[x(l/2)x'(-M + l/2)]M~l 

= 2 [*(1/2)$-M+I/2) x [x(-M + l/2)*'(-M + 1/2)]**"1 (19) 
x ( - M + l/2) 

This is again a coupled system of linear equations, one for each [x]M, but 
now the h terms are all at a single time, so there are many fewer. The 
other [x]M terms (for h terms at times m, —M + 1/2 < m ^ 0) are 
determined by 

Wl/2)]^-1 = Wl/2)]jf 

+ 2 [x(l/2)$_M + 1 / 2 )[x(-M + 1 / 2 ) ]^ _ 1 (2 0) 
x(-Af+1/2) 

which are not coupled at all; Equation 20 is obtained by averaging Equa­
tion 15 over the larger M — 1 ensemble and picking out terms proportional 
to h. For the next stage of the recursion we must know fluctuations in 
the M ensemble, which are obtained by multiplying Equation 15 by x(m) 
for m = 1/2 or m < — M, and averaging 

[x(l/2)x(m)]M-1 = [x(l/2)x(m)]M 

+ 2 Wl/2)]^-m+i/ 2 )W-M + V2)x(m)]«-i (21) 
x(-M +1/2) 

This determines the fluctuation moment on the right side of Equation 
19, provided one realizes the latter is equivalent, by time reflection in 
t = (l-M)/2, to [x(l/2)x(l/2)]M"1. 

The recursion equations (Equations 19-21) give the lowest-order 
power series coefficients for cumulant moments in a smaller ensemble 
from those in a larger ensemble. Generalizations of such equations to all 
orders are given in Reference 3, but are not needed here. 

The lowest M for which the recursion relations in the form of Equa­
tions 19-21 make sense is M = 1. We must initially know the cumulants 
for M = 0; i.e., for the ensemble in which only the c(0) terms are fixed. 
However, these may be calculated from the equilibrium cumulants by 
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equations essentially identical to Equations 19 and 21 in which M = 0 
and x( — M + 1/2), the variables we are newly constraining, are replaced 
by c(0). The cumulants for M = - 1 , of the form [x(l/2)c(0)]_1 and 
[c(0)c'(0)]_1, are averages in an ensemble in which even c(0) is not fixed; 
i.e., the full equilibrium ensemble. Thus the recursion may begin with 
molecular dynamics data on fluctuations in the equilibrium ensemble 
(M = -1) and all other coefficients (for M = 0, 1, 2, . . .) can be cal­
culated. 

We have obtained equation-of-motion coefficients from the equilib­
rium correlations obtained from simulation, by solving Equations 19-21. 
In principle, the number of equations is infinite, because the number 
of times (m's) is infinite. Elaborate schemes for choosing an appropriate 
truncation of the system of equations have been used previously (12, 14). 
In the present work we have used a simplification of the scheme of 
Reference 14. Our program starts with a list of tolerances within which 
we would like to know the equation-of-motion coefficients [x]M and [x'x]M. 
These determine (assuming nearly diagonal matrices in Equation 19) the 
tolerances for each equation. Imposing this tolerance on each term in 
the sums in Equations 19-21 implies a tolerance for each factor. Each 
cumulant that exceeds its tolerance as obtained in any of these ways is 
regarded as important, and its "neighbors" (obtained by shifting h or x 
by one unit in space or time) are added to the truncation. We begin with 
a small "start-up" set of 183 cumulants (14), and repeat this truncation 
expansion procedure (with decreasing tolerances) until adequate con­
vergence is obtained. The results given here required about 1000 cu­
mulants. 

Molecular Dynamics Simulation 

The soft sphere fluid has been studied extensively using Monte Carlo 
(15, 16) and nonequilibrium molecular dynamics techniques (17), and 
therefore we have chosen this model as an example of the application of 
discrete hydrodynamics. 

The soft sphere interaction potential is central and has the form 

The separation distance between two particles is r, e defines the energy 
scale, and a is the effective hard core radius. It is convenient to define 
energy, length, and mass units so that e = a = m = 1 where m is the 
particle mass. 

The state of the fluid system is specified by the mass density, p, and 
the absolute temperature T. However, since the potential function has 

(22) 
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a power law form, we can select kBT = e = 1 and the properties of the 
system at any other T can then be obtained via a scale transformation 
(16). The mass density (particle density, since m= 1) is specified by de­
fining a dimensionless reduced density p r = pcr 3/V2. Then p r ^ 0.2 
represents the dilute fluid region where kinetic theory is applicable. 
Previous discrete hydrodynamics work has addressed the case of p r = 
0.6 (12). Here the viscosity, for instance, is about 50% higher than that 
predicted by the Enskog theory (17). At p r = 0.6 discrete hydrodynamics 
yields a viscosity in apparent agreement with nonequilibrium molecular 
dynamics calculation (12, 17). The results discussed in this chapter refer 
to a reduced density of 0.8, just less than the freezing density of 0.813. 

For the sake of economy we have chosen a system of 32 particles 
in a cube with periodic boundary conditions. The cube is divided into 
eight small cubical cells of side W, each containing on average four 
particles. Since we set p r = 0.8, we must have W = 1.523a. The periodic 
system is then a cube of width 2W. 

The molecular dynamics simulation is performed by integrating 
Newton's law numerically for each of the 32 particles in the periodic 
cube. 

The integration algorithm used is that due to Verlet (18), which 
involves the particle positions rt and velocities v{ as follows: 

v((t + (l/2)At) = v{(t - (l/2)Af) + AtF^/m (23) 

and 

r{(t + A*) = rt(t) + Atv{(t + (l/2)At) (24) 

where F^t) is the force acting on particle i at time t, and At is the 
integration interval. 

The data recorded on magnetic tape consist of small cell (width W) 
particle number, total energy, and momentum contents recorded at times 
rm, and the net amount of these quantities transported or transferred 
from one cell to a neighboring cell during the time interval [(m — 1)T, rm]. 
Here m is an integer. The contents and transfers are calculated as de­
scribed in detail elsewhere (I). 

We have computed discrete equations of motion from our molecular 
dynamics averages by using two different discrete intervals. We previ­
ously reported (14) results for a time interval = 0.1981. This was chosen 
so that a sound wave just crosses the cell in time T such that T = W/vs, 
where the sound velocity vs = 7.69 is obtained from the equation of 
state (15, 16) for p r = 0.8. We report here results for T = 0.1981 and 
also for half that, T = 0.0990. 

Computational economy motivates the use of as large an integration 
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interval A* as possible. The integration interval must be small enough, 
however, that numerical errors in computing the particle positions and 
velocities are not serious. We have used an interval At0 = 0.0099 (1/10 
of the smaller T). This produces adequate total energy conservation (one 
part in 1000). The most relevant criterion for our purposes, however, is 
the convergence of the microcanonical averages of products of cell var­
iables that are used in Equations 20 and 21 with M = 0. Theoretically, 
the errors in these averages should be of order At2 in the Verlet algo­
rithm. We have looked at several of them for increasing At (multiples 
of At0/2), averaged over 2250 At0. Within the statistical uncertainty, we 
detect no significant changes in the averages up to At = 2.5 At0. For 
At = 3Af0, our molecular dynamics code broke down (particles went 
further than W during At). This is strong evidence that our At was 
adequately small. The integration is started with the particles in a face-
centered cubic lattice. Initial velocities are randomly specified such that 
the initial kinetic energy is about 3.0 [kBT]. After 50 integration steps 
at this high temperature, the system is quenched slowly (over 100 At) 
until the average kinetic energy is about 1.5; the total energy is then 
5.943 as it should be according to the equation of state (15, 16). From 
this point, data are taken from a simulation of 18,000 At0. The average 
kinetic energy over that period is 1.486 ± 0.008. 

Although the reduced density p r = 0.8 is less than the infinite fluid 
freezing density, the simulated fluid froze three times in the course of 
the 18,000 integration steps because of the small size of the system and 
periodic boundary conditions. When this occurred, the simulation was 
stopped, and at a point preceding the phase change the system was 
perturbed by integrating for 400 steps of length (1/2)A£0. Then the sim­
ulation was resumed with steps At0. 

A cell variable (a content or a transfer) or a product of cell variables 
was averaged over rotations and translations consistent with the sym­
metry of the product (19), and over four separate time segments of length 
4500 At. The statistical uncertainty of an overall average (over 18,000 
At) was obtained by computing the standard deviation of the mean of 
the four time segments. 

Numerical Results 

We have calculated the discrete equation-of-motion coefficients [x]M 

and [x'x]M by using the recursion equations (Equations 19-21). Equation 
19 is a matrix equation in which the matrix is the covariance matrix of 
the transfers at time — M + 1/2, denoted x( — M + 1/2). Because of time-
reversal symmetry, this is the same as the covariance matrix of x(l/2) in 
the same ensemble, in which the contents c(0) and (if M>1) M — 1 sets 
of transfers x( — 1/2), . . . x( — M + 3/2) are constrained. It was our original 
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hope that the Landau-Lifshitz assumption of uncorrelated stochastic 
transfers (Equation 17) would be approximately correct, because then 
the covariance matrix would be nearly diagonal and the system of equa­
tions well conditioned. Unfortunately the opposite is the case; the trans­
fers are highly correlated, so much so that the matrix is very nearly 
singular. Such singularities are common in the literature of linear regres­
sion (20) (Equation 19 is essentially a linear regression equation) and are 
referred to as "multicollinearity." This occurs when the transfers are 
nearly linearly dependent; i.e., when there is a linear combination of 
the transfers that fluctuates much less than the individual transfers do. 
One symptom of multicollinearity is that the smallest eigenvalue of the 
matrix is much smaller than the diagonal elements; in our case, it is as 
low as one tenth of the diagonal elements. We have encountered this 
problem previously (14), but it occurred in the covariance matrix of all 
history variables, in which its physical significance was not obvious. In 
our present formulation we deal with much smaller matrices involving 
only transfers at time — M + 1/2. We find that the eigenvectors having 
small eigenvalues correspond almost exactly to the sum of the six transfers 
into each cell. That is, the nonfluctuating linear combination is the con­
tent change 

Ac(Z) = c(Z,l) - c(l,0) (25) 

Some of our numerical results demonstrating these strong correla­
tions are presented in Tables I and II. Table I gives the cumulant mo­
ments of the momentum transfers and content changes in various en­
sembles. It can be seen that the Langevin-Landau-Lifshitz predictions 
(Equation 17, labeled L L L in the table) are fairly good for the mean 
square fluctuations of the transverse and longitudinal momentum trans­
fers xT and xL. However, the predictions (zero) for their correlations are 
quite wrong. We give the largest correlation [xLxT] in the table; the 
correlations between two different xL terms or two different xT terms are 
smaller. The seriousness of the discrepancy is seen most clearly by com­
paring the first and second columns in Table I. The second column gives 
the value that [Ac2] would have if the transfers fluctuated independently 
(since Ac is a sum of four xT terms and two xL terms). It is very far from 
the actual value of [Ac2] (first column) even in the equilibrium ensemble, 
and is wrong by a factor of 10 in the most constrained ensembles. The 
latter are precisely the ensembles whose fluctuations should correspond 
most closely to the Langevin notion of "stochastic flux", since non-Mar-
kovian as well as Markovian deterministic effects have been subtracted 
out; as described in the section on Discrete Hydrodynamics. (See also 
Figure 1.) 

One might note that the discrepancy in [Ac2] is less for the smaller 
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Table I. Fluctuations of Z-Momentum Transfers and Content Changes 

Ensemble [Ac2]M 4[xf]M+ 2[x?JM [x|]M [x2JM [ X T X L ] M 

T = 0.198 
Equilibrium 

(M = -1) 8.00 35.40 4.16 9.38 -1.59 
M = 0 3.40 32.73 4.00 8.36 -1.60 
M = 1 3.05 27.30 3.43 6.78 -1.21 
M = 2 2.66 26.87 3.37 6.69 -1.21 

Uncertainties" ± 0 . 0 2 ±0 .42 ±0 .07 ± 0 . 1 4 ± 0 . 0 5 
L L L Predictions^ 33.00 33.00 4.96 6.61 0.00 
= 0.099 
Equilibrium 

(M = -1) 6.23 14.08 1.63 3.78 -0.46 
M = 0 3.52 12.55 1.57 3.14 -0.50 
M = 1 3.04 10.43 1.34 2.55 -0.33 
M = 2 2.00 10.24 1.32 2.47 -0.33 

Uncertainties" ± 0 . 0 2 ± 0 . 1 4 ±0 .02 ± 0 . 0 5 ± 0 . 0 2 
L L L Predictions6 16.50 16.50 2.48 3.30 0.00 

Note: Content change is Ac = c(l) - c(0), and xL(l/2) and xT(l/2) are the longitudinal 
and transverse transfers across the faces shown in Figure 1. M = 0, 1, and 2 are successively 
more constrained ensembles. The top and bottom halves of the table give large-T and 
small-T results respectively. For comparison, the equilibrium mean square content is (c2) 
= 3.54 ± 0.02. 

a All quoted uncertainties are standard deviations of the mean for several runs. 
b The Langevin-Landau-Lifshitz (LLL) prediction is from Equations 11, 12, and 17; 

we use T) = 5.4 (17) and £ < r\ (21). 

Table II. Fluctuations of Energy and Number Transfers and Content 
Changes 

Ensemble [Ac|]M [Ac2
N]™ 6[x2

N]M 

T = 0.198 
Equilibrium 24.7 81.9 1.37 1.62 

M = 0 11.6 70.8 0.87 1.43 
M = 1 11.2 69.6 0.86 1.32 
M = 2 11.1 69.2 0.83 1.28 

Uncertainties ± 0 . 2 ± 1 . 0 ±0 .02 ± 0 . 0 5 
= 0.099 
Equilibrium 19.4 35.3 0.98 1.04 

M = 0 11.2 28.6 0.72 0.94 
M = 1 10.9 27.1 0.72 0.89 
M = 2 10.3 26.4 0.71 0.86 

Uncertainties ± 0 . 2 ± 0 . 6 ±0 .01 ± 0 . 0 3 
Note: Content change AcE is the sum of six transfers xE across the faces of the cell. 

In equilibrium ensemble, <c|> = 11.5 ± 0.2 and (4> = 0.98 ± 0.01. 
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166 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

T used and suggest that our T'S are simply too large to allow us to identify 
the flux with the transfer divided by T and the area. Indeed, it is clear 
the Langevin-Landau-Lifshitz prediction (Equation 17) for [Ac2] cannot 
possibly be right for very large T, since it is proportional to T while the 
actual [Ac2] (which is equal to [c(l)2] if M ^ 0; i.e., if c(0) is constrained) 
is bounded by (c(l)2) independently of T (since constraining a variable 
decreases the fluctuations of the others in any Gaussian distribution). 
However, we do not believe decreasing T is physically sensible. For the 
smaller T = 0.099 we have used, the transport of shear momentum out 
of a cell ([x]c in Figure 2) is already very small, and any smaller T would 
make it difficult to extract information on the viscosity (12). Furthermore, 
T = 0.099 is very small by any physical criterion; the distance a particle 
moves at the thermal velocity (kTIm)112 during this time is only 0.065 
times the cell width W, or 0.092 times the close-packed interparticle 
spacing. Even a sound wave moves only half the cell width. 

Further evidence that the strong correlations we have found are 
unavoidable is provided by work that has been done (3) on the properties 
of discrete equations of motion under scale-coarsening transformations. 
These are similar to the renormalization-group transformations used in 

2(momentum direction) 

Figure 1. The molecular dynamics system (large cube) with one of the 
small cells used in analyzing the fluid motion. The cell is labeled c since 
Table I refers to its Z-momentum content c P Z. The Z-momentum transfer 
across the bottom face is xL (longitudinal), and that across the back face 

is xT (transverse). The length unit along the axes is W, the cell width. 
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7. K I E F E R A N D V I S S C H E R Simulation Versus Langevin Theory 167 

T = 0.198 

W e 
Y = 3/2 

0.090 ± 0.003 0.032 ± 0.001 

0.103 ± 0.003 0.017 ± 0.001 

[xT]x (transverse) 

Y = 2 Y=l 

-0.181 ± 0.010 

-0.053 ± 0.010 

-0.064 ± 0.007 

-0.027 ± 0.010 

0.194 ± 0.010 

0.043 ± 0.010 

-0.018 ± 0.009 

-0.036 ± 0.009 

-0.046 ± 0.007 

-0.004 ± 0.007 

0.036 ± 0.007 

-0.041 ± 0.008 

-0.059 ± 0.007 

-0.004 ± 0.006 

-0.032 ± 0.006 

0.009 ± 0.010 

[xT]x (longitudinal) 
Y = 3/2, Z = 0 

0.013 ± 0.001 -0.003 ± 0.001 

0.001 ± 0.003 0.011 ± 0.002 

Figure 2. Discrete equation-of-motion coefficients [xT(i/2)]c(0)1) and [x^l/ 
2j]x(m,l). 

Here xT(l/2) is the transfer of Z-momentum across the face entered atf = 
(1/2, 2, 1/2) and labeled xx in Figure 1; it is xPZ(f,i/2) in the notation of 
the section on calculations. The four-compartment squares are cross sec­
tions of the system (the large cube in Figure 1) in the plane of the figure. 
The first square gives the dependences on the Z-momentum contents, [xx]c (10) 

for the four cells whose centers 1 lie on the plane Y = 3/2. The next two 
squares give the dependences on previous transverse transfers, [xT]x(f _ 1 / 2 ) 

(upper number in each compartment) and [xT]x(f _3/2) (lower number) for 
faces whose centers f lie on the planes Y = 2 and Y = 1. There are only 
two inequivalent longitudinal transfers, that labeled xL in Figure 1 (cen­
tered at I = {1/2, 3/2, 0}) and the one to its right {f = (3/2, 3/2, 0)}. The 
effects [x x] x ( f m ) of these transfers are given in the final two-compartment 
rectangle, which may be thought of as lying horizontally on the bottom of 

Figure 1. 
Continued on next page 
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168 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

T = 0.099 

+ 0.037 ± 0.001 + 0.006 ± 0.002 

+ 0.077 ± 0.002 + 0.009 ± 0.001 

[xT]x (transverse) 
Y=2 Y=l 

-0.124 ± 0.020 -0.035 ± 0.005 -0.098 ± 0.009 -0.047 ± 0.006 

-0.050 ± 0.010 -0.030 ± 0.006 -0.037 ± 0.004 -0.026 ± 0.005 

0.218 ± 0.010 -0.017 ± 0.005 -0.051 ± 0.006 -0.022 ± 0.044 

0.027 ± 0.009 -0.001 ± 0.004 -0.044 ± 0.004 -0.038 ± 0.003 

\.XT\X (longitudinal) 
Y = 3/2, Z = 0 

0.009 ± 0.001 0.046 ± 0.003 

-0.011 ± 0.002 -0.004 ± 0.003 

Figure 2. Continued. Discrete equation-of-motion coefficients [xj(l/2)]ci0fl) 

and [xT(l/2)]x(mA). 

the theory of critical phenomena. The ultimate objective of that work is 
to see if the equations of continuum hydrodynamics may be understood 
as a fixed point of a coarsening transformation; i.e., an equation of motion 
that stays the same when the time and space scales are coarsened, and 
that various different small-scale discrete equations of motion of real fluids 
approach when the scale becomes large. The coarsening behavior has 
not yet been investigated for fluids, but work (unpublished) on a two-
dimensional diffusive system indicates that as the time and space scales 
increase, the transfer correlations increase in such a way that the ratio 
of the mean-square content change to the mean-square transfer becomes 
arbitrarily small. This suggests that the small values we have found for 
this ratio in our fluid represent generic behavior, and that the violation 
of the Langevin-Landau-Lifshitz prediction that it implies becomes more 
rather than less severe on larger scales. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

07



7. K I E F E R A N D V I S S C H E R Simulation Versus Langevin Theory 169 

Table II gives data on the fluctuations of energy and number. It can 
be seen that the Langevin-Landau-Lifshitz prediction of uncorrelated 
transfers again fails for the energy transfers; the content change it predicts 
(second column of Table II) is too large by as much as a factor of six. The 
transfer correlations are less severe for number transfers, which is con­
sistent with the success of the theory in predicting density fluctuations 
measured in inelastic light scattering experiments (21). We do not give 
a numerical fluctuating-hydrodynamics prediction for the energy trans­
fer, since Reference 4 does not (a sort of "temperature-flux' is given 
instead). 

The order-of-magnitude discrepancy in the momentum-content 
change fluctuation is particularly distressing because the content (i.e. 
momentum density) is more directly physically measurable than the transfer 
(i.e. momentum flux). The discrepancy calls into question our decision 
to regard the transfer as the primary fluctuating variable (i.e., to use 
Equation 14), and then derive the content change fluctuations from it. 
This was done (i, 2, 12, 14) for the same reason that the Langevin-
Landau-Lifshitz continuum theory regarded the flux rather than the 
density as having the simplest fluctuations; that is, some nonlocal cor­
relations in the content changes are forced by the conservation law 
2 Ac (I) = 0. This was particularly awkward in older formulations of 
i 
discrete hydrodynamics (I) which parameterized probability distribution 
functions directly, but it is not a serious complication when they are 
parameterized through moments such as Equation 14. As we mentioned 
above, the strongly nonlocal flux correlations are of interest not only in 
relation to the Langevin-Landau-Lifshitz theory, but also for the prac­
tical reason that they make the discrete hydrodynamic equation of motion 
very difficult to calculate. They have severely limited the success of 
transport coefficient calculations based on this method (2, 12, 14). The 
fact that the smallest eigenvalues of the covariance matrix are 10 times 
smaller than the diagonal elements has the effect of magnifying small 
errors in the matrices by a factor of 10. This increases the number of 
terms which must be included in the truncated Equation 19; to reduce 
truncation errors below the statistical errors quoted here we had to use 
essentially all possible cumulants for M = 0, 1, 2. Fortunately, in a 
2 x 2 x 2 cell system there are only about 1000. Clearly, however, it would 
be better to work with variables that are more nearly independent. The 
content changes are essentially the longitudinal part of the momentum 
flux; one can define other linear combinations of transfers that are trans­
verse and do not couple to the density. Hydrodynamic equations based 
on such variables would probably be simpler and easier to calculate (the 
matrices would not be so singular) and should be considered in future 
work in this area. 
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Figure 2 gives a few of the coefficients in the deterministic part of 
the equation of motion (Equation 15). To save space we give only [xT]h 

where xT is a transverse momentum transfer (of Z-momentum in the Y-
direction) and h is a content or transfer of Z-momentum. These are exactly 
the coefficients one would need to calculate the viscosity (12-14). How­
ever, the present results do not give a good estimate of the viscosity— 
it is lower by a factor of two than that of Ashurst and Hoover (17). This 
may be because the numerical problems described above made it im­
possible to go beyond M = 2, or because a 32-particle system is too 
small, or (less likely) because 4-particle cells are too small and the viscosity 
will renormalize as the cell size is coarsened (3, 8). 

In conclusion, it appears from the present work that the Langevin 
assumption of uncorrelated flux fluctuations is not valid in a fluid, at least 
not for momentum fluxes. Proper calculation of the equation of motion, 
and therefore the transport properties, would be greatly facilitated by a 
better understanding of the fluctuations. 
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Equations of State of Nonspherical 

Hard-Body Systems 

TOMÁŠ BOUBLÍK 
Czechoslovak Academy of Sciences, Institute of Chemical Process 
Fundamentals, 16502 Prague, Czechoslovakia 

Derivation of the hard-body equation of state within the 
scaled particle theory for fluids of fused hard-sphere mol­
ecules and hard convex bodies is briefly summarized, and 
the modified equations of state are discussed. Computer 
data for virial coefficients and the compressibility factor of 
fluids assuming hard convex bodies and hard interaction 
site models of different types are used to verify the appli­
cability of these equations. 

T H E EQUILIBRIUM BEHAVIOR OF MOLECULAR FLUIDS, that is, systems 
with spherically unsymmetrical intermolecular forces, has received 

increasing interest over the past few years. Because the structure of 
liquids is affected largely by the short-range repulsive forces, knowledge 
of the behavior of hard nonspherical bodies (with shape and size corre­
sponding to the structure of the molecules considered) forms the basis 
of our understanding of the equilibrium behavior of real fluids just as 
knowledge of hard spheres does in case of simple fluids. 

Repulsive forces of polyatomic molecules have been described es­
sentially in two ways: 

1. as a sum of the site-site interactions (dependent on the 
respective site-site distances) in the interaction site model 
(ISM). 

2. by the generalized Kihara potential, in which intermolec­
ular forces are assumed to depend only on the shortest 
surface-to-surface distance of hard convex cores, ascribed 
to given molecules. 

Accordingly, hard interaction site models (HISM) (in effect fused hard 
spheres) and hard convex bodies (convex bodies parallel to the cores) 
have been considered in theoretical and simulation studies. 

In this work we give a brief outline of the derivation of the hard-
body equations of state and of the expression for the contact value of 
distribution functions. We then apply two of the discussed equations to 

0065-2393/83/0204-0173$06.00/0 
© 1983 American Chemical Society 
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174 MOLECULAR-BASED STUDY OF FLUIDS 

determine virial coefficients and the compressibility factor of the hard-
convex-body and hard-interaction-site-model systems (pure fluids and 
mixtures) for which computer data are at our disposal. 

Equation of State from the Extended Scaled Particle Theory 

The scaled particle theory (SPT) formulated for simple fluids by Reiss 
et al. (J), yielded the first reliable equation of state of hard spheres, 
which is identical with the Percus-Yevick (c) [PY(c)] expression obtained 
several years later. In this theory a variable diameter is taken as a coupling 
parameter (similar to the relationship for the chemical potential) that 
makes it possible to express the reversible work connected with the 
introduction of a particle into the system under study. Several exact 
relations were found for this reversible work (for the particle diameter 
equal to zero or infinity) and an expansion in powers of the reciprocal 
diameter of the test particle was used for the interpolation. A weak point 
of the theory, which was extended also to mixtures, is the fact that it 
yields distribution functions only at the closest approach distance. 

An extension of the scaled particle theory to a class of molecular 
fluids—hard convex bodies—was given first by Gibbons (2, 3) and re-
derived by the present author (4); recently it was shown (5) that the same 
formalism can be used also for the HISM systems. It appears that both 
the HISM and the hard convex body pair-potentials can be written in 
terms of a single variable—the shortest surface-to-surface distance, s, 
where 

In the case of HISM, s is equal to a minimum of all the site-site distances, 
5 = min(r^ — a"7), where a a 7 is the characteristic distance. Then, in 
general relationships for pressure, the chemical potential, and further 
thermodynamic functions of molecular fluids 

PV/NkT = 1 - (p/6JtT) J [Ri2(du/dRl2)]gm(R12, <ol5 M^dR^d^d^ 
(2) 

(M. - [l*)/kT = (p/kT) J J (du/d§gm(R12, col5 co2, £J dRl2d^d^2d^ 

(3) 

and so forth, where R 1 2 is the center-to-center distance, co = Ocpc|> stands 
for the orientation coordinates, /di& = 1, and £ is the coupling parameter 

00 for s ^ 0 (1) 
= 0 s > 0 
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8. BOUBLIK Nonspherical Hard-Body Systems 175 

that scales the test particle size while its shape remains unchanged. It 
is possible to express the derivatives with respect to Rl2 and £ in terms 
of derivatives with respect to s, and the volume element dRl2 in terms 
of s and the angle coordinates characterizing the geometry of the given 
pair of molecules, 1 and 2. When the coordinate system is fixed in particle 
1 it can be written 

PV/NkT = 1 - (p/6fcT) | (Rl2v)(du/ds)g™(s)Sl+s+2ds (4) 

and 

(lL - M*) / *T = - l n ( l - pV2) 

- (p/kT) j'J (R^Xdu/ds^is, X)Sxl+s+2dsdk (5) 

Here K is the dilatation coefficient employed as the coupling parameter, 
v is the unit vector in the direction of s and g a v is the weighted average 
(over surface area) correlation function, S 1 + 5 + 2 is the mean surface area, 
given as a locus of the center of molecule 2 when it moves around 
molecule 1 with the given distance s. This surface area is (4-6) 

S1+s+2 = S 1 + 2 + 8ir^il+2s + 4 ™ 2 (6) 

S i + 2 = Sx + 87791^2 + S 2 (7) 

and 

3 t 1 + 2 = » ! + & 2 (8) 

where Vi9 S( and (3il stand for volume, surface area, and the (1/4 IT) 
multiple of the mean surface integral, respectively. 

Because (du/ds) possesses properties of the Dirac 8-function for hard 
body systems, it holds that 

PV/NkT = 1 + ipa-g-(O) S 1 + 2 (9) 
o 

and 

(p. - V*)/kT = - l n (1 - pVj + p P (R^iO, \)SK1+2d\ (10) 
Jo 

where a a v = <Hf2v> = (Rp) + (R2v). 
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176 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

To derive the equation of state it is useful to introduce the average 
correlation function G(\) weighted over volume elements; then 

PV/NkT = 1 + ^ G ( l ) V 1 + 2 (11) 

The mean volume V 1 + 2 of two hard bodies at contact is (3-5) 

v 1 + 2 = v, + + gi^z + v 2 (12) 

Equation 12 holds exactly for hard convex bodies, whereas for HISM 
systems a small volume At; 1 2 is neglected; A u 1 2 can be calculated exactly 
(in special cases) or approximately (5), but it can not be factored into 
contributions of HISM bodies 1 and 2. Because of this, the second virial 
coefficient of HISM from the resulting equation of state differs from the 
exact one (unless At; 1 2 is added) and the difference indicates the accuracy 
of this approximation. 

For the chemical potential we have similarly 

(|JL - |x*)/fcT = - l n ( l - pV{) + 11 G(X)(3\2V1 

Jo 
+ 2\SX Sft2 + gt^Jdk (13) 

The knowledge of G(\) in a relatively narrow interval \e(0, 1) suffices 
for the determination of the equation of state and the chemical potential; 
instead, the values of G(\) for X = 0 and X = ™ and (dG/dX) for X = 0 
are at our disposal. To make use of these relations a suitable three-
constant interpolation formula (an analogue of the expansion by Reiss et 
al.) was considered. After some rearrangement it follows that 

c m = - ± - + ^ + *) y + ( 1 4 ) 

W 1 - y (1 + 3a)(l -yf (1 + 3a)(l - yf ( ' 

where 

y = pV{ and a = 9ttS,/3Vt (15) 

By substituting Equation 14 into Equation 11 

PV 1 3ay 3 a V . . . . 
+ « ^To + 71 ^T, (16) NkT 1 - y (1 - yf (1 - yf 
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8. BOUBLIK Nonspherical Hard-Body Systems 177 

It is obvious that the equation of state depends only on the packing 
fraction, y, and the nonsphericity parameter, a. Because of the close 
interrelation of G and g a v the theory yields also the expression for the 
contact value of the latter function 

r v ( 0 ) = _ J _ + * » y + 3 « y 
g W 1 - y 2(1- yf 2(1 + 4 i r & A ) ( l - yf V ' 

The equation of state, Equation 16, is an analogue of the scaled 
particle theory or PY(c) expression for hard spheres; it is known that the 
most often used Carnahan-Starling equation of state of a hard-sphere 
system can be obtained as a sum of 2/3 of the PY(c) and 1/3 of the PY(v) 
expressions, or—as the present author pointed out (7)—by multiplying 
the last term of Equation 14 (for a = 1) by a factor of 2/3. By reducing 
this term in the same way in the general relationship we obtained (8) 

PV_ = _ J _ 3ay 3 a V - a 2 ; / 3 

NkT 1 - y (1 - yf (1 - yf K ' 

This equation of state, Equation 18, can be considered as an extension 
of the Carnahan-Starling relationship to a general case of the nonspherical 
hard-body system. The corresponding values of G and g a v follow from 
Equations 14 and 17 by the above-mentioned reduction; for the reduced 
virial coefficients, B% = Bfc/Vf _ I , it holds that 

B* = 1 + 3a 

B* = 1 + 6a + 3a 2 (19) 

B* = 1 + 9a + 8a 2 

and so forth. Equation 18 was extended also to mixtures of hard non­
spherical bodies: 

PV _ 1 + rs + ,*2(3 - y) ( 2 0 ) 

NkT 1 - v p(l - t;)2 9p(l - t;)3 

where v = pSx,^ is the packing fraction, r = p2x{2ft,f, s = pSx̂ Ŝ , and 
q = pXxffif. [The two-dimensional equation was also derived (9)]. 

Equations 18 and 20 are generally valid for all the hard-body fluids 
and fluid mixtures. As shown below, Equation 18 gives a good prediction 
of the P-V-T behavior of the HISM systems; the accuracy of values of 
higher virial coefficients and the compressibility factor of hard convex 
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178 MOLECULAR-BASED STUDY OF FLUIDS 

bodies for a > 1.2 is less satisfactory. Therefore, modified equations of 
state of convex bodies were developed. 

Equations of State of Hard Convex Bodies 

All the modified equations of state proposed for hard convex body 
systems start with Equation 18, which can be written 

Py 1 C2y C3y2 + C4y3 

+ /, x» + W*- (21) NkT 1 - y (1 - yf (1 - yf 

Nezbeda (10) determined C 2 - C 4 by fitting the pseudoexperimental data 
of virial coefficients and the compressibility factors to simple relationships 
in terms of a. Then 

PV _ 1 3ay (a2 + 4a - 2)j/2 - a(5a - 4)y» 
+ II . A 9 . + -VI ^ NfcT 1 - j, (1 - # (1 - yf 

Equation 22 and its extension to mixtures by Pavlicek et al. (11) yield 
very good results even for extreme values of a (and y); however, the 
functional dependence of the higher virial coefficients on a is rather 
strange. For example 

B* = - 1 + 10a + a 2 (23) 

B* = - 5 + 25a - 2a 2 

Similarly, the expressions for the contact values of the correlation function 
g a v and gf/ and the equation of state of mixtures possess complicated 
forms. 

In another version Nezbeda et al. (12) proposed to determine the 
coefficients C 2 - C 4 from the pseudoexperimental data of virial coefficients 
by employing the relationships 

C 2 = B* - 1 

C 3 = Bf - 2B* + 1 (24) 

C 4 = B* - 3(B* - B*) - 1 

which follow from the low-density expansion of Equation 21. This method, 
as well as a similar variant of Barboy and Gelbart (13), (who considered 
an expansion in y/(l — y), so that the term C4t/3/(l — yf appeared in 
their equation of state) predict the P-V-T behavior of different hard body 
systems, which are not necessarily convex, with good accuracy provided 
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8. BOUBLIK Nonspherical Hard-Body Systems 179 

the values of the second to fourth virial coefficients are available. This 
fact limits the applicability of these equations considerably, especially in 
the case of mixtures. 

Recently (14), on the basis of an inequality proposed by Kihara and 
Miyoshi (15) for the third virial coefficient (giving the upper and lower 
limits), the present author formulated the following approximations for 
Bf and Bf 

(25) Bf = 1 + 6a + 3a 2 

B* = 1 + 14a + 3a 2 

From Equations 21 and 24 we can obtain 

PV _ 1 + 3qy + 3a 2t/ 2(l - 2y) + 5a;/3 ^ 

NkT 1 - y (1 - yf (1 - yj 

For mixtures, it holds that 

PV 1 rs qs2(l - 2v) + 5rsv2 

+ -Z \o + » / , ( 2 7 ) NkT 1 - v p(l - vf 3p(l - vf 

where the variables r, s, q, and v have the same meaning as in Equation 
20. Relatively simple expressions for g a v and gff are available, also (14). 

Naumann et al. (16) began with the lower limit of the Kihara-Miyoshi 
inequality and introduced a further geometric parameter, T 

T = 4irRf/Sj (28) 

Their equation of state, obtained in a semiempirical way (16, 17) is 

PV _ 1 3ay 
NkT ~ 1 - y + (1 - yf 

^ 1.5a 2(l/T + l)tf - 0.5a2(5 - 3/T)^ + 7a 2 ( l / T - l)y* 
+ O^yf ( 2 9 ) 

For T = 1 the expression reduces to Equation 18. The corresponding 
third and fourth virial coefficients from Equation 29 are 

B* = 1 + 6a + 1.5a 2(l/T + 1) ^ 

Bf = 1 + 9a + a2(6/T + 2) 
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180 MOLECULAR-BASED STUDY OF FLUIDS 

Equation 29 gives theoretical values of the compressibility factor of hard 
spherocylinders in good agreement with pseudoexperimental results (16) 
and comparable with predictions from Equations 22 or 26. The intro­
duction of the parameter T is, however, theoretically unjustified (within 
the scaled particle theory), and the known data for higher virial coeffi­
cients and the compressibility factors for different hard-body systems do 
not indicate the necessity of introducing a further nonsphericity param­
eter in addition to a. 

Equations 18 and 26 fulfill well our claims for the sound theoretical 
basis and sufficient generality of the hard-body equations of state. In the 
following section their applicability is shown. 

Virial Coefficients and Compressibility Factor for Hard Convex 
Bodies 

In order to test the equation of state of hard convex bodies, Equation 
26, we shall first consider the values of the higher virial coefficients. 
Computer data of virial coefficients for hard convex body systems are 
relatively abundant; in addition to data for prolate spherocylinders, known 
in a broad range of length-to-breadth ratios, values for several kinds of 
oblate spherocylinders and ellipsoids of revolution are at our disposal. 
Thus, the most important types of shape (from the point of view of 
structures of real molecules) are included and the comparison of theo­
retical results with pseudoexperimental data gives a stringent test of the 
approximations used in Equation 25. Moreover, this test can reveal any 
dependence on another parameter by comparing the virial coefficient 
data for convex bodies that have different shapes but the same value of 
the nonsphericity parameter a. 

Hard prolate spherocylinders—convex bodies parallel to rods—were 
studied most thoroughly (18-21). Their geometry can be suitably char­
acterized by the length-to-breadth ratio, 7. If a/2 is the thickness, it 
holds that 

gft. = (7 + i)a/4 

S( = 771a 2 

V, - (37 - l)Tra 3/12 

(31) 

and 

a = 7(7 + l)/(37 - 1) (32) 

Oblate spherocylinders—convex bodies parallel to circles—can be 
characterized by the ratio of the basic circle diameter d and the breadth 
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8. BOUBLIK Nonspherical Hard-Body Systems 181 

a, <D = did (22). Then 

= (TTO/4 + l)o72 

S, = (O2 + TTO + 2)ir<r2/2 

V, = (6<D2 + 3TTO + 4)TTCT3/24 

(33) 

and 

a = 
(-rrO + 4)(<D2 + TT<£ + 2) 

(12<&2 + + 8) 
(34) 

Ellipsoids of revolution were studied by Freasier and Bearman (23); 
the characteristic parameters are length of axis of revolution, a, and length 
of the other axis, b; then m — bla. The geometric functionals can be 
determined from the relationships 

91 f = [m + arc cos ra/Vl — m2] a/4 

2ft, = [m + ln (m + V m 2 - 1)/V 1] a/4 

S, = 7T 

Sj = IT 

1 + 

1 + 

v r 
ln 

mr 

1 + v T m 

m 

a* 
"2 

m2 I 1 
z o arc cos — 

V m 2 - 1 \ra 
_ 
1 

for m < 1 

for m > 1 

for m < 1 (35) 

for m > 1 

V, = Trma3/6 

In Table I a comparison of theoretical and pseudoexperimental val­
ues of the third, fourth, and fifth virial coefficients is given for the above 
three types of hard convex bodies (the second virial is known exactly). 
The standard errors of the pseudoexperimental data are estimated to be 
0.2-0.4% for the third, 1-2% for the fourth, and 4% for the fifth virial 
coefficient. It is obvious that agreement is very good in all three cases. 
For given values of a, no dependence on any further parameter can be 
traced. 

Simulation studies of hard convex bodies have been performed to 
date only in systems of hard prolate spherocylinders (24-29). In Table 
II the values of the compressibility factor calculated from Equation 26 
for the spherocylinders of 7 = 2 and 7 = 3 are compared with the 
simulation data. Full agreement within the estimated errors is found in 
all cases except for the highest value of the packing fraction and 7 = 3, 
where the difference exceeds by 0.5% the estimated error of this ex­
perimental point. 
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182 MpLECULAR-BASED STUDY OF FLUIDS 

Table I. Viral Coefficients of Hard Convex Bodies 

Bf Bf 

Prolate Spherocylinders 
Monte Monte Monte 

7 a Theory Carlo Theory Carlo Theory Carlo Refs. 

1.0 1.00 10.00 10.00 18.00 18.36 28.00 28.31 20 
1.2 1.02 10.19 10.19 18.31 19.47 28.42 — 21 
1.4 1.05 10.61 10.64 19.01 19.26 29.35 — 18 
1.6 1.09 11.16 11.30 19.92 21.35 30.56 — 21 
1.8 1.15 11.81 11.84 20.97 21.50 31.93 — 18 
2.0 1.20 12.52 12.34 22.12 22.34 33.40 31.9 10, 19 

12.54 22.50 20 
2.5 1.35 14.51 14.30 25.28 26.06 37.35 — 10, 19 
3.0 1.50 16.75 16.20 28.75 28.00 41.50 36.80 10, 19, 20 

16.27 29.15 
4.0 1.82 21.83 20.43 36.37 31.90 50.09 39.70 19, 20 

20.48 
Oblate Spherocylinders 

Monte Monte Monte 
4> a Theory Carlo Theory Carlo Theory Carlo 

1.0 1.13 11.60 11.66 20.63 21.28 31.48 — 22 
1.5 1.23 12.97 13.02 22.85 23.49 34.32 — 22 
2.0 1.35 14.54 14.62 25.32 26.15 37.40 — 22 
3.0 1.59 18.11 18.03 30.82 30.14 43.91 — 22 

Ellipsoids of Revolution 
Monte Monte Monte 

a/b a Theory Carlo Theory Carlo Theory Carlo 

1.5 1.06 10.72 10.69 19.20 19.73 29.61 29.88 23 
2.0 1.18 12.25 12.09 21.69 21.57 32.85 31.87 23 
0.67 1.06 10.72 10.73 19.20 19.62 29.61 29.51 23 
0.50 1.18 12.25 12.30 21.69 22.81 32.85 33.18 23 

Using the Monte Carlo method, studies have been performed of 
mixtures of hard convex bodies, i.e., the system of mixed hard spheres 
and prolate spherocylinders (7 = 2). Monson and Rigby (30) considered 
two equimolar mixtures. In the first case (mixture A) the thickness of the 
spherocylinder was equal to the radius of the sphere. In the second case 
(mixture B) both the hard bodies possessed the same volume. In a sim­
ulation study (31) the system corresponding to mixture A was followed 
at three concentrations (mixture C). 

It is obvious from Table III that Equation 27 yields the compress­
ibility factor of mixtures in full accord with Monte Carlo data. Good 
agreement of the theoretical and pseudoexperimental values of the av­
erage correlation functions at contact was also found (14). 
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8. BOUBLIK Nonspherical Hard-Body Systems 183 

Table II. Compressibility Factor of Hard Prolate Spherocylinders 

7 = 2 7 = 3 

Monte Monte 
y Theory Carlo Theory Carlo Refs. 

0.20 2.67 2.65 ±0.02(2.69) 3.09 3.07 ±0 .03 24, 27 
0.30 4.56 4.48 ±0 .07 5.48 5.40 ±0 .10 24 
0.40 8.08 8.20 ±0.10(8.10) 9.89 9.60 ±0 .10 24, 25, 27 
0.45° 10.71 10.74 ±0 .24 13.44 13.00 ±0 .16 25, 28 
0.50 15.20 15.20 ±0 .20 18.50 18.00 ±0 .40 24, 25 

a Rounded value for y = 2. 

Virial Coefficients and Compressibility Factor of ¥ used Hard 
Spheres 

A considerable number of computer studies has been devoted to 
ISM systems with soft-sphere or Lennard-Jones interactions. From HISM 
the linear models have been considered. Virial coefficients are available 
for hard homonuclear and heteronuclear dumbbells (21, 32-36). The hard 

Table III. Compressibility Factor of Mixtures of Hard Spheres (1) and 
Hard Prolate Spherocylinders (2) of 7 = 2 

Mixture A Mixture B 

V Theory 
Monte 
Carlo* Theory 

Monte 
Carlo* 

0.20 2.51 2.50 ±0 .06 2.53 2.52 ±0 .04 
0.30 4.19 4.10 ±0 .05 4.26 4.20 ±0 .05 
0.40 7.36 7.31 ±0 .07 7.49 7.39 ±0 .06 
0.45 9.97 9 .87±0 .10 10.16 10.22 ±0 .10 

Monte 
V Theory Carloh 

Mixture C, x2 = 0.20 
0.33 5.13 5.17 ±0 .10 
0.44 9.68 9.89 ±0 .20 
0.50 14.43 14.34 ±0 .40 

Mixture C, xj = 0.50 
0.31 4.49 4.52 ±0 .08 
0.42 8.11 8.07 ±0 .15 
0.48 11.74 11.59±0.23 

Mixture C, x2 = 0.71 
0.30 4.02 4.03 ±0 .07 
0.40 6.96 7.02 ±0 .12 
0.45 9.81 9 .70±0.21 

a From Ref. 30. 
b From Refs. 11, 31. 
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184 MOLECULAR-BASED STUDY OF FLUIDS 

homonuclear dumbbells are characterized by a reduced length Z* = L/a; 
a volume and a surface area of hard dumbbells can be calculated from 
the relationships 

V. = J\ + 5/* - i / * 3 ) a 3 / 6 

V 2 2 / (36a) 

S, = ir(l + Z*)a2 

while in a method consistent with Equation 18 
91, = (2 + Z*)a/4 (36b) 

then 

a = (1 + Z*)(2 + /*)/(2 + 3/* - Z*3) (37) 

Values of the second to fourth virial coefficients of hard homonuclear 
dumbbells are compared with pseudoexperimental data in the first part 
of Table IV. In the lower part of the table, virial coefficients of hetero-
nuclear dumbbells are listed. In addition to Z* = L / a x , these bodies are 
characterized by the ratio a2/<Xi = 7- For the first three models of Table 
IV, 7 equals 1.5; for the fourth, 7 equals 1.8; and in the last case, 7 
equals 1.2. 

Table IV. Virial Coefficients of Fused Hard-Sphere Bodies 

B* B* B* 

Exact" 
(Monte Monte Monte 

1* a Theory Carlo) Theory Carlo Theory Carlo Refs. 

Homonuclear Dumbbells 
0.2 1.02 4.06 4.06 10.22 10.22 18.47 19.43 21 
0.4 1.07 4.21 4.21 10.87 10.94 19.83 20.35 18 
0.6 1.16 4.48 4.48 12.01 12.11 22.22 22.98 18 
0.8 1.30 4.89 4.87 13.82 14.04 26.11 27.61 21 
1.0 1.50 5.50 5.44 16.75 16.93 32.50 34.88 33 

Heteronuclear Dumbbells 
0.75 1.11 4.33 4.40 (4.32) 11.37 11.48 20.88 21.61 38 
0.5 1.03 4.10 4.13 (4.10) 10.40 10.40 18.84 19.31 38 
1.0 1.23 4.69 4.80 (4.65) 12.93 12.92 24.21 24.80 38 
0.9 1.09 4.28 4.34 (4.25) 11.14 11.12 20.40 20.91 38 
0.6 1.12 4.37 4.43 (4.35) 11.50 11.51 21.16 21.70 38 

a From Ref. 37. 
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8. BOUBLIK Nonspherical Hard-Body Systems 185 

Defining (39) the quantity a 

a± = I Z* ± (y2 - 1)/8Z* (38) 

we can write 

V, = TT[1 + 7 3 + 3(72a+ + a_) - 4(a3
+ + a3_)WI\2 

S, = 7T a" (39) 

91, = - [7 - 1 + Z* + (7 - 1)2/4Z* + 2]a 

and the parameter a follows from Equation 15. The virial coefficients 
calculated from the relationships in Equation 15 are again in very good 
accord with the pseudoexperimental data. 

In Table V theoretical values of the compressibility factor are com­
pared with data (40) for hard homonuclear dumbbells of Z* equal to 0.6 

Table V. Compressibility Factor of Hard Dumbbells 

Homonuclear Dumbbells 
1* = 0.6 1* = 1.0 

Monte Monte 
y Theory Carlo" Theory Carlo" 

0.105 1.63 1.63 1.80 1.79 
0.157 2.11 2.13 2.44 2.46 
0.209 2.77 2.78 3.33 3.36 
0.262 3.66 3.67 4.57 4.62 
0.314 4.89 4.95 6.31 6.40 
0.366 6.63 6.69 8.82 8.95 
0.419 9.15 9.23 12.49 12.64 
0.445 10.82 10.89 14.97 15.12 
0.471 12.88 12.87 18.02 18.06 

Heteronuclear Dumbbells at y = 0.4084 
Monte Monte 

Type 7 a Theory Carlob Type 7 a Theory Carlob 

VI 0.5 1.30 9.74 10.0 IX 0.5 1.02 7.47 7.8 
VII 0.5 1.17 8.65 8.9 X 0.67 1.31 9.88 10.1 
VIII 0.5 1.08 7.92 8.3 XI 0.84 1.29 9.73 9.9 

a From Ref. 40. 
b From Ref. 41. 
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186 MOLECULAR-BASED STUDY OF FLUIDS 

and Z* equal to 1.0. The agreement in this case is perfect. Table V brings 
also a comparison of theoretical and Monte Carlo values for heteronuclear 
dumbells at a constant packing fraction y equal to 0.4084, and 7 equal 
to 0.5, 0.67, and 0.84. The final Monte Carlo data (41) are estimated to 
be accurate only to within about 7%. It is obvious that the theoretical 
compressibility factors agree well within this uncertainty with the pseu­
doexperimental compressibility factors. In addition to dumbells, hard 
triatomics were studied (42). Three models (related to carbon disulfide) 
were considered, all at y equal to 0.4697 and with the reduced distance 
of the outside sites Z* equal to 0.897. For the three models, the ratios 
of diameters of the central and the outside spheres were 0.857,* 1.0, and 
1.2. The compressibility factors from Equation 18 are 14.36, 13.54, and 
12.42. In comparison, the Monte Carlo data are 14.84, 12.84 and 12.88. 

The present author has also performed simulations in systems of 
linear and nonlinear triatomics (43). Both of the models considered are 
formed by equal spheres with the central-to-outside site distance Z*/2 = 
0.5. In the case of linear triatomics the theoretical compressibility factor 
12.69 at y = 0.4533 compares well with the pseudoexperimental one, 
12.88. In the case of nonlinear (< = TT/2) triatomics at y = 0.3981, the 
theoretical value is 8.19 and the Monte Carlo result is 8.34. Taking into 
account the lower accuracy of simulation results for triatomics in com­
parison with dumbells, the agreement can again be considered to be 
very good. 

Conclusions 

In summary, it can be said that the equations of state, Equations 
18 and 26, and the corresponding expressions for mixtures, represent an 
optimum description of the P - V - T behavior of fused hard-sphere and 
hard convex body systems. Both these equations have a sound theoretical 
background and reduce in the special case to the Carnahan-Starling 
equation (44). They yield reliable prediction of virial coefficients, and 
they are sufficiently general and accurate. Their extension to mixtures 
possesses a simple form, and comparison with the available pseudoex­
perimental data reveals the reliability of these expressions in the de­
scription of the equilibrium behavior of mixtures. It is believed that these 
equations will be useful in the characterization of the molecular fluid 
behavior, just as the Carnahan-Starling equation proved to be for simple 
fluids. 
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9 
Modeling of Simple Nonpolar 
Molecules for Condensed Phase 
Simulations 
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Surrey TW20 0EX, England 

I. R. McDONALD 

University of Cambridge, Department of Physical Chemistry, Lensfield Road, 
Cambridge CB2 1EP, England 

A number of simple potential models have been tested for 
their usefulness in the simulation of the condensed phases 
of nitrogen, carbon dioxide, fluorine, and chlorine. The 
properties studied systematically include the lattice energy 
and lattice spacing of the crystal, the zone center lattice 
vibrational frequencies, thermodynamic properties of the 
liquid, and the temperature dependence of the second virial 
coefficient. In particular cases, more stringent tests of an 
intermolecular potential are also considered, involving the 
orientational order of the α-phase and the cubic-tetragonal 
phase transition in nitrogen, the librational Grüneisen pa­
rameters, and the molecular tilts in the halogen crystals. 
For nitrogen and carbon dioxide, models consisting of site­
-site Lennard-Jones potentials plus point quadrupolar in­
teractions account moderately well for the properties listed 
above. For fluorine and chlorine, these simple models are 
adequate for the liquid and gas but fail to describe satis­
factorily the properties of the solid phase. 

T H E STUDY OF FLUIDS A N D SOLIDS BY COMPUTER SIMULATION requires 
as basic input simple and realistic interaction potentials. Ideally, the 

interaction potential should account for all observable properties. In 
practice, sophisticated potential models that account explicitly for many-
body forces and include large numbers of interaction sites would be 
difficult to construct and computationally very expensive to incorporate 
into a simulation. The motivation is therefore strong for searching for 
pairwise-additive effective potentials that can account for a wide range 
of properties. 

0065-2393/83/0204-0189$06.00/0 
© 1983 American Chemical Society 
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190 MOLECULAR-BASED STUDY OF FLUIDS 

For small, nonpolar molecules the most widely used models consist 
of short-ranged, Lennard-Jones (usually 6-12) site-site potentials plus 
electrostatic interactions based either on a point quadrupole moment or 
a set of fractional point charges. We shall refer to such models as nLJ + Q 
or nLJ + q, respectively, where n denotes the number of sites. In some 
cases, Buckingham (6-exponential) rather than Lennard-Jones potentials 
have been used. Models of this general type have been used extensively 
in lattice dynamics calculations (1-3) and in computer simulations of the 
condensed phases (4-7). Until recently, however, little effort had been 
made to obtain effective pair potentials that could account for a wide 
range of experimental data of both solid and liquid. Reasonably successful 
attempts to remedy this situation have been described for nitrogen and 
carbon dioxide (8, 9). In this chapter we summarize and extend this work 
and also discuss some recent results for fluorine and chlorine. We assess 
the adequacy of models proposed by ourselves and others to account for 
the structure and lattice energy of the solid, lattice vibrational frequen­
cies, thermodynamic properties of the liquid, and the second virial coef­
ficient of the gas (10). 

Our attention is focused mainly on nLJ + Q and nLJ + c/ models, 
with n equal to 2 or 3, though for nitrogen other semiempirical (11) and 
ab initio (12, 13) potentials are also discussed. The nLJ + Q (or nLJ + g) 
models are characterized by four parameters: the Lennard-Jones con­
stants e and a, the separation / of the Lennard-Jones sites, and Q, the 
quadrupole moment of the molecule. 

Nitrogen and carbon dioxide are conveniently treated together, partly 
because the low temperature solids have the same structure (cubic, space 
group Pa3). This work is described in the first section below. The results 
for fluorine and chlorine are then described, and a summary of our 
conclusions follows. 

Nitrogen and Carbon Dioxide 

Potential Models. Numerous potential models have been pro­
posed both for nitrogen and for carbon dioxide. The characteristic pa­
rameters for a number of these models are given in Table I. The potentials 
listed in the table fall into two groups. The first consists, with the ex­
ception of one ab initio model, of empirical intermolecular potentials 
fitted by workers other than ourselves to properties of the phases listed 
in the "Source" column in Table I. The second group, M S K M for nitrogen 
and the three MSM models for carbon dioxide, were constructed by us 
to fit as closely as possible the lattice parameter a of the Pa3 crystal, the 
lattice energy WL at 0 K, and the second virial coefficient at a low tem­
perature (75 K for nitrogen, 260 K for carbon dioxide). The experimental 
values of WL were estimated from the measured enthalpies of sublima-
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tion. In the fit, account was taken of the zero-point energy and its var­
iation with volume. In cases where this was not done, the potential is 
described in the tables as fitted to the lattice rather than to the solid. 

Table I includes six models proposed by others for nitrogen. Of 
these, the only one that ignores the quadrupole moment of the molecule, 
and that hence may be termed a 2LJ model, is the potential RGA (14). 
In this case, the parameters were obtained by requiring the spherically 
averaged potential to reduce to the isotropic Lennard-Jones potential 
derived from gas phase properties. Our own attempts to construct a 2LJ 
model led to essentially the same parameter values as those in model 
RGA, which are also close to those deduced by Huler and Zunger (15) 
from a detailed analysis of static and dynamic properties of the ordered 
solid phases (a and 7). Many other 2LJ models have been put forward 
as descriptive of nitrogen (16), and in spite of their very different origins, 
the parameter values proposed are remarkably similar. We find, how­
ever, that 2LJ models do not successfully reproduce the range of prop­
erties mentioned above. In addition, it is known from lattice dynamics 
calculations that 2LJ models give rise to lattice mode instabilities in the 
7-phase (17). It is also known from molecular dynamics simulations (8) 
that they lead to much too great a degree of orientational disorder in the 
cubic a-phase. For these reasons, we make no comparison here of their 
merits; model RGA is included only as an example of this class of po­
tentials. 

Model CP (the authors' quadrupolar model) (18) was derived by 
fitting to the experimental internal energy and equation of state of the 
liquid. Models K D (19) and T C (the authors' model A) (20) were fitted 
to the structure and lattice energy of the Pa3 crystal (the a-phase) and 
to the measured lattice vibrational frequencies. In the case of model K D , 
the fitted experimental quantities included the intensities of peaks in the 
inelastic neutron scattering spectrum. The special feature of these two 
models, in contrast to model CP, for example, is that the site-site sep­
aration is about 20% shorter than the internuclear distance. However, 
the larger values obtained for a indicate that the overall length of the 
molecule is comparable with that deduced from the 0.002 electron den­
sity contour (21). The results for model RG, and also for models 
MSM-A2 and MSM-C for carbon dioxide, show that the introduction of 
a third site at the bond center is similar in effect to a shortening of the 
site-site separation. The parameters of functions of the exponential type 
characterizing the short range repulsions in the several versions of model 
RG (11) were obtained by fitting to the experimental PV isotherm from 
0 to 3.6 kbar at 4.2 K and to molecular beam data, in addition to the 
quantities a and WL. 

Model BV (the authors' model I', for which the repulsive and at­
tractive sites are coincident with the nuclei) (12), was obtained by fitting 
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9. MURTHY ET AL. Modeling of Simple Nonpolar Molecules 193 

the results of ab initio calculations to a two-site Buckingham potential 
supplemented by point charge interactions. 

In the case of carbon dioxide, model STS (6) was parameterized to 
liquid-state thermodynamic properties, and model MSB (JO) to the sec­
ond virial coefficient and static lattice data. 

Thermodynamic Properties of the Liquid. The calculated values 
of WL are given in Table I. Table II contains some results for the con-
figurational internal energy U and pressure P obtained by molecular 
dynamics simulations of the two liquids. Overall, the agreement between 
calculation and experiment is consistent with the way in which the po­
tentials were parameterized. For example, models RGA and BV were 
not based on any experimental solid-state data and the results for WL are 
accordingly poor. Models CP (for nitrogen) and STS (for carbon dioxide) 
were both derived by fitting to liquid state properties; the fact that model 
STS is the less successful is not surprising, given the absence of any 
quadrupolar interaction. For nitrogen, liquid phase simulations have also 
been reported for one of the RG models (RG-5) (see the discussion in 
Reference 8) and for the ab initio potential of Jonsson et al. (13), with 
results that are about as good as those obtained for model CP. 

The main conclusion to be drawn is the unsurprising one that cal­
culation of thermodynamic properties is not a sensitive test of an inter­
molecular potential. However, it is notable that all the models of Table 
I that were fitted to solid-state properties work well for the liquid. How­
ever, the converse is not true, as can be seen in the results for model 
CP and, in particular, model STS. These are not isolated examples, and 
a body of evidence now exists that suggests that careful parameterization 
to the energy and structure of molecular crystals can be expected to yield 
a satisfactory potential for the liquid, but that the opposite route is less 
likely to be successful. 

Lattice Vibrational Frequencies. In previous articles (8, 9) we 
have discussed the results of lattice dynamics calculations in the Pa3 
structure for several of the models listed in Table I. Here we focus 
attention on the seven zone center modes, of which four are translational 
and three are librational in character; these are the modes for which 
most experimental information is available. Our earlier work has shown 
that all potentials considered give generally satisfactory results for the 
translational modes. This implies that it is relatively easy to model cor­
rectly the isotropic part of the intermolecular potential. However, the 
librational modes, all of which are Raman active, are sensitive to the 
anisotropy of the potential and are correspondingly more difficult to fit. 
Results for the librational modes are given in Table III. For carbon 
dioxide, the best agreement with experiment is provided by model M S M -
C, but it is reasonably good even for those potentials (MSB and STS) 
that were parameterized without appeal to any solid-state data. For ni-
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9. MURTHY ET AL. Modeling of Simple Nonpolar Molecules 195 

trogen, on the other hand, the situation is much less satisfactory. The 
one 2LJ model considered (RGA) yields much too low a frequency for 
the upper Tg mode, but the quadrupolar models, apart from K D and 
T C , all seriously overestimate the librational frequencies. In models K D 
and T C , the fit to the frequencies was achieved by reducing both the 
site-site separation and the quadrupole moment of the molecule. This 
has the consequence, as computer simulations have shown (8), that the 
molecules become orientationally disordered at temperatures in the re­
gion of 30 K. Experimentally, there is a transition at 35.6 K to a hexagonal 
close-packed structure, the (3-phase, in which the molecules undergo 
rotational diffusion. In the a-phase, however, although there is a large 
amplitude librational motion, orientational order persists up to the a-(3 
transition temperature. The reduction of the effective bond length in 
models K D and T C therefore succeeds in resolving the immediate prob­
lem, at the expense of introducing others. 

The reason for the difficulty in fitting the librational frequencies in 
nitrogen is at present unclear, but it may stem at least in part from the 
harmonic approximation used in the lattice dynamics calculations. Some 
evidence that this is so is given by the fact that there is apparently no 
similar problem for carbon dioxide, in which the librational amplitude 
is much smaller than in nitrogen. Estimates (11, 25-27) of the anharmonic 
corrections for certain models are included in Table III. The general 
effect is to improve the agreement with experiment. However, there are 
discrepancies even in sign between the corrections calculated for different 
models by different groups, and more work on this interesting question 
is clearly needed. 

Prediction of the volume dependence of the lattice frequencies, 
characterized by the Griineisen parameters (d ln vjd ln V)T, would pro­
vide a good test of a potential model if extensive and accurate experi­
mental data were available. Unfortunately, this is not the case at present. 
There have been suggestions in the past that a change from a Lennard-
Jones 6-12 to a 6-9 potential would lead to improved agreement with the 
available experimental data on the Griineisen parameters. While this 
may be true for a 2LJ model (22), there appears to be no case for such 
a change when allowance is made for quadrupolar interactions. For car­
bon dioxide, model MSM-C gives results in good agreement with the 
recently measured (23) Griineisen parameters for the zone center libra­
tional modes. In the case of nitrogen (24), the Griineisen parameters are 
well reproduced by the quadrupolar models of Table I. As we have 
already discussed, an acceptable model of nitrogen should also account 
for the persistence of orientational order in the a-phase up to the tem­
perature of the plastic crystal transition. In this respect, model MS K M 
is much superior to either the K D or TC potentials (8). Overall, we 
consider MS K M to be the best of the models we have constructed. 
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Second Virial Coefficients. Work reported earlier for nitrogen and 
carbon dioxide (8, 9) showed that models that are reasonably satisfactory 
for the liquid and solid phases also give good results for the second virial 
coefficient, at least at high temperatures where the behavior is deter­
mined by the size of the molecular hard core. At low temperatures, there 
are some deviations; the calculated values fall typically about 5% above 
the experimental ones. Since the second virial coefficient is a pair prop­
erty, the discrepancies at low temperatures provide some measure of 
the importance of many-body forces in the condensed phases, to which 
the potentials have been tailored. Monson and Rigby (28, 29) have cal­
culated that the dominant three-body interaction contributes about 6% 
to the static lattice energy of nitrogen and carbon dioxide, a percentage 
that is comparable with that found for argon (30). 

Although the calculation of second virial coefficients provides a useful 
check, in practice it may be of limited value in parameterizing a model. 
The problem lies in the fact that the anisotropy of the potential, partic­
ularly of the electrostatic interactions, has its effect mainly at very low 
temperatures. This is the region where experimental data on molecular 
systems are scarcest and, in general, least reliable. 

The Gamma Phase of Nitrogen. At least four distinct crystalline 
forms of nitrogen are known (16). This poses a considerable challenge in 
potential modeling, since a satisfactory model should be capable of ex­
plaining the variety of behavior observed in different phases. For this 
reason, there is interest in seeing how far models fitted to properties of 
the a-phase are able to describe the structure and dynamics of the or­
dered 7-phase. This has a tetragonal structure and is stable at pressures 
greater than about 3.5 kbar; the a-(3~7 triple point is at P = 4.6 kbar, 
T = 46 K. 

In Table IV we list the 7-phase zone center frequencies for models 
that, apart from TC-B, have already been considered in the discussion 
of the a-phase. To reproduce the librational frequencies in the 7-phase, 
Thiery and Chandrasekharan (20) found it necessary to increase either 
the site-site separation or the quadrupole moment adopted in their model 
A (model T C in Table I, model TC-A in Table IV); for model TC-B, they 
chose e/Jfc = 38.7 K, a = 3.300 A, I = 1.098 A and Q = -0.90 DA. 
Thiery and Chandrasekharan (20) conclude that it is not possible to fit 
the librational frequencies in both phases with a single 2LJ + Q model. 
They do show that if allowance is made for anharmonic corrections along 
the lines of Raich and Gillis (II), model TC-A gives results in satisfactory 
agreement with experiment. However, model TC-A was parameterized 
in part by fitting to the frequencies of the a-phase without regard for 
anharmonicity, so this result may be fortuitous. Until the reliability of 
different anharmonic corrections is established, it will be difficult to assess 
the merits of models either for the a- or the 7-phase. 
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9. MURTHY ET AL. Modeling of Simple Nonpolar Molecules 199 

Table IV shows that most of the models considered give good agree­
ment with a recent infrared measurement of the translational Eu fre­
quency (31). This again suggests that the models describe the isotropic 
part of the potential reasonably well. 

Filippini et al. (17) have pointed out that although it is possible to 
find a 2LJ model that predicts correctly the zone center frequencies, 
imaginary frequencies are found elsewhere in the zone, showing the 7-
phase to be unstable in such a model. They were able to eliminate this 
difficulty empirically by making the repulsive term of the 2LJ potential 
anisotropic. Even with this refinement, however, it did not prove pos­
sible to explain the occurrence of the a-7 transition. Though we have 
not found any such instabilities for model MSKM (32), modification of 
the potential is again necessary in order to describe the a-7 transition. 
The same appears to be true of the three-center models of Raich and 
Gillis (11) and of the Kihara type of potential (3). 

Fluorine and Chlorine 

Molecular fluorine and chlorine differ in many respects from nitro­
gen and carbon dioxide, but from the point of view of modeling them 
by simple potentials, two facts in particular should be noted: First, the 
quadrupole moments of fluorine and chlorine are positive, whereas those 
of nitrogen and carbon dioxide are negative. This reflects the fact that 
the electron distribution is very different in the two cases. Second, the 
stable, low temperature phases of the halogens are not cubic; chlorine 
crystallizes in the orthorhombic Cmca (33, 34) structure and a-fluorine 
is monoclinic (35), C2/c or C2/m. Molecules are tilted in opposite direc­
tions in alternate layers, towards nearest neighbors in Cmca and C2/c, 
or next-nearest neighbors in C2/m. The differences in electron distri­
bution and in crystal structure must, of course, be related. 

English and Venables (EV) (36) have made a thorough study of the 
most stable crystal structures for a series of diatomic molecular solids 
described by models of both the 2LJ and 2LJ + Q type. We have included 
their potentials in the present work, partly as a check on our own cal­
culations. Singer et al. (6) have modeled the interactions in fluorine and 
chlorine by 2LJ potentials (STS) and used these in molecular dynamics 
simulations. In addition, they have reported results for liquid bromine. 
Because chlorine has a large quadrupolar moment (37, 38), we have also 
developed (39) a 2LJ + Q model by fitting to thermodynamic properties 
of the liquid model MS. Kobashi and Klein (40) have used a 2LJ + g 
model in a study of the lattice frequencies of a-fluorine (model KK). 

We have used the models listed above as starting points in the search 
for effective pair potentials. It turns out that none of the models is able 
to account for all the main features of the low-temperature solid, namely 
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200 MOLECULAR-BASED STUDY OF FLUIDS 

the lattice symmetry, unit cell dimensions, molecular tilts and lattice 
frequencies. Our conclusions are similar to those of English and Venables 
(36). Details of the potentials are given in Table V; in the case of model 
KK, we have made the calculations for a 2LJ + Q potential rather than 
the published (40) 2LJ + q version. 

The difficulties encountered in modeling noncubic systems are high­
lighted by the results given in Table VI. The table contains results ob­
tained by unconstrained minimization of the energy, and by constraining 
either the cell parameters a, b, c and the angle between the a and c axes 
(the monoclinic angle (3) or the molecular tilts to have the experimental 
values. The constraints lead to results that are of interest in their own 
right; they are also necessary if the lattice dynamics calculations are to 
be performed with the correct lattice structure. 

The results for fluorine are shown in Table VI. The 2LJ model STS, 
which gives good results for liquid state properties and for the second 
virial coefficient, correctly stabilizes the monoclinic structure and gives 
lattice constants which differ by 5-10% from the experimental values. 
The calculated lattice energy is also in good agreement with experiment, 
but the molecular tilts are too large and the lattice frequencies (40) (not 
shown) are also poor. Model KK gives better results for the lattice fre­
quencies, but the molecular tilts are even larger than for model STS. 
With constraints on the molecular tilts, model STS gives a good value 
for the lattice energy and lattice constants with errors of 5-10% for C2/m, 
and gives an equally accurate value for WL and about 5% errors in the 
lattice constants for C2/c. The tilt-constrained model KK is marginally 
better for C2/c; it gives even better lattice constants but a poor lattice 
energy for C2/m. If constraints are placed on the cell dimensions a, b, 
and c, neither the lattice energy nor the molecular tilts are satisfactorily 
predicted by either model. Both potentials give good results for the 
monoclinic angle, except in the case of unconstrained minimization for 
the C2/m structure with model KK. The results for the EV potentials 
are poor, but they show the same general trend: a 2LJ interaction sta­
bilizes the monoclinic structures, whereas a 2LJ + Q model favors the 
Pa3 structure. 

The results reported for chlorine in Table VI are even worse. Un­
constrained minimization does not lead to the correct orthorhombic Cmca 
structure for any model, as would be expected on the basis of the results 
for fluorine. Nor do constrained minimizations lead to satisfactory results 
for the lattice energy, cell dimensions, or molecular tilts. In addition, 
one of the translational lattice mode frequencies is imaginary for both 
the STS and MS models. The only feature which is mildly encouraging 
is the fact that models STS and MS both yield satisfactory results for 
liquid-state thermodynamic properties and for the temperature depend­
ence of the second virial coefficient. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

09



MURTHY ET AL. Modeling of Simple Nonpolar Molecules 

1 

°5l 

"GO 

o 
CO 

•3 

CD I O "^f 
I O CO 0 0 

i—T oo" T CD 
l > 0 0 C7J 0 5 

0 0 
CM 0 0 

o o d 

© CO CO "Q 
0 0 ( M H M 

o 3 0 1 0 0 5 
CO CO o 
CT5 0 0 0 0 

i o o o i n 
o> o q d 
H i o CO 

8 3 
'•+2 P '43 

c 

C75 I O CO »-H 
CO CM CM CO 

CO 
CO 

O 

CO i o 
o o c o d 

+1 
o 
I O 

0 0 5 O -a 
( N 0 5 H 0 5 
H H O 0 5 

01 oi oi r-n 

i o o q TF 
CO CO N 

CO CO CO 

I O CO CO 
oi co ^ 
0 0 t> CD 
o q >-H «~H 

o 1 2 " 5 
'43 ' 3 ' 3 

J J J 

^ CO X 

CD 
• I s 

I a g 

CD 

"? 8 

3 £ 

C 
o S4^ 00 ft oo CD Tt* ^ CO CO 
h . ctf . . 

CCD (D C CD CD 
° pes ccj '5 en pc; 

2 s § 
Ji ^ ^ 3 ^ !H 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

09



T
ab

le
 V

I. 
O

pt
im

um
 S

tr
uc

tu
re

s 
fo

r 
Fl

uo
ri

ne
 a

nd
 C

hl
or

in
e 

M
od

el
 

St
ru

ct
ur

e 

C
el

l 
D

im
en

si
on

s 
(A

) 

a
 

b
 

c 

M
ol

ec
ul

ar
 T

il
ts

" 
(d

eg
re

es
) 

0 
<$>

 
-

w
L 

(k
j/

m
ol

) 

M
on

oc
li

ni
c 

A
ng

le
, 0

 
(d

eg
re

es
) 

Fl
uo

ri
ne

 
EV

 
Pa

3 
5.

23
 

20
.7

 
C

m
ca

 
5.

34
 

3.
22

 
8.

23
 

0 
(9

0)
 

20
.8

 
C

2/
c 

5.
48

 
3.

17
 

8.
86

 
0 

(9
0)

 
21

.6
 

11
4.

 4
 

EV
-Q

 
Pa

3 
5.

21
 

21
.6

 
(Q

 =
 1

.0
 D

A
) 

C
m

ca
 

5.
10

 
4.

73
 

6.
00

 
45

.1
 

(9
0)

 
20

.6
 

C
2/

c 
5.

47
 

3.
39

 
8.

61
 

23
.1

 
(9

0)
 

20
.6

 
11

6.
 5

 
ST

S 
Pa

3 
4.

99
 

9.
1 

C
m

ca
 

5.
14

 
3.

08
 

7.
89

 
0 

(9
0)

 
9.

2 
C

2/
c 

5.
23

 
3.

02
 

10
.4

2 
0 

84
 

9.
5 

13
2.

 1
 

(5
.5

0)
 

(3
.2

8)
 

(1
0.

01
) 

25
.3

 
80

.9
 

8.
9 

(1
34

. 7
) 

5.
22

 
3.

13
 

10
.1

9 
(1

8)
 

(9
0)

 
9.

4 
13

2.
 .3

 
C

2/
m

 
5.

23
 

3.
02

 
10

.4
2 

0 
0 

9.
5 

13
2.

 0
 

(5
.5

0)
 

(3
.2

8)
 

(1
0.

01
) 

22
.0

 
-2

5.
5 

8.
8 

13
4.

 .7
 

5.
29

 
3.

02
 

10
.4

3 
(1

1)
 

(-
11

) 
9.

5 
13

2.
 .7

 
K

K
 

Pa
3 

4.
92

 
12

.2
 

C
m

ca
 

4.
92

 
4.

38
 

5.
66

 
48

.5
 

(9
0)

 
11

.5
 

C
2/

c 
4.

93
 

4.
35

 
7.

52
 

48
.7

 
90

 
11

.5
 

13
1.

 .0
 

(5
.5

0)
 

(3
.2

8)
 

(1
0.

01
) 

31
.0

 
81

.8
 

10
.2

 
(1

34
. •

7)
 

5.
31

 
3.

14
 

10
.2

1 
(1

8)
 

(9
0)

 
9.

5 
13

3.
 4

 
C

2/
m

 
7.

49
 

3.
05

 
11

.9
0 

57
.0

 
-6

5.
5 

10
.8

 
15

3.
 0

 
(5

.5
0)

 
(3

.2
8)

 
(1

0.
01

) 
29

.8
 

-3
0.

9 
10

.0
 

(1
34

. •
 7

) 
5.

37
 

3.
10

 
10

.4
0 

(1
1)

 
(-

11
) 

8.
9 

13
3.

 .6
 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

09



Ex
pe

ri
m

en
t6 

C
2/

c 
5.

50
 

3.
28

 
10

.01
 

18
 

90
 

9 
6 

13
4.

7 
C

2/
m

 
5.

50
 

3.
28

 
10

.01
 

11
 

-1
1 

13
4.

7 

C
hl

or
in

e 

E
V

 
Pa

3 
6.

14
 

44
.3

 
C

2/
c 

6.2
2 

3.
66

 
10

.81
 

15
.5

 
(9

0)
 

46
.0

 
11

2.9
 

C
m

ca
 

6.
11

 
3.

75
 

10
.06

 
17

.5
 

(9
0)

 
44

.7
 

EV
-g

» 
Pa

3 
6.

14
 

44
.6

 
(Q

 =
 1

.0
 D

A
) 

C
2/

c 
6.2

2 
3.

69
 

10
.76

 
17

.9
 

(9
0)

 
45

.6
 

11
3.2

 
(Q

 =
 1

.0
 D

A
) 

C
m

ca
 

6.
09

 
3.

81
 

9.
95

 
20

.5
 

(9
0)

 
44

.6
 

ST
S 

Pa
3 

6.
08

 
28

.0
 

C
2/

c 
6.

16
 

3.
62

 
10

.71
 

15
.5

 
(9

0)
 

29
.0

 
11

2.
9 

C
m

ca
 

6.
04

 
3.

71
 

9.
97

 
17

.6
 

(9
0)

 
28

.2
 

(6
.2

4)
 

(4
.4

8)
 

(8
.2

6)
 

5.
82

 
4.

41
 

8.
79

 
(3

5.
2)

 
(9

0)
 

27
.4

 

M
S 

Pa
3 

6.
04

 
32

.1
 

C
2/

c 
6.

04
 

5.
20

 
9.

34
 

51
.1

 
(9

0)
 

30
.4

 
13

0.3
 

C
m

ca
 

6.
04

 
5.

20
 

7.
11

 
51

.1
 

(9
0)

 
30

.3
 

(6
.2

4)
 

(4
.4

8)
 

(8
.2

6)
 

5.5
1 

5.
23

 
7.

94
 

(3
5.

2)
 

90
 

28
.1

 

Ex
pe

ri
m

en
t 

C
m

ca
 

6.
24

 
4.

48
 

8.
26

 
35

.2
 

90
 

31
.3

 
N

ot
e:

 V
al

ue
s 

in
 p

ar
en

th
es

es
 f

ix
ed

 d
ur

in
g 

m
in

im
iz

at
io

n.
 

a  
If

 (0
i5
 <

b
i)

 r
ep

re
se

n
t 

th
e 

po
la

r 
an

gl
es

 o
f 

th
e 

m
ol

ec
ul

ar
 a

xi
s 

on
 t

h
e 

i-
th

 s
u

b
la

tt
ic

e 
(i

 =
 1

, 
2)

, 
th

en
 b

y 
sy

m
m

et
ry

, 
cj>

x 
=

 c
j>

2 
=

 0
° 

an
d 

0!
 a

nd
 6

2 

ar
e 

in
de

pe
nd

en
t 

of
 e

ac
h

 o
th

er
 f

or
 C

2/
m

; 
(0

i,<
|>

i) 
=

 (
6 2

, 
—

 c
j>

2) f
or

 
C

2/
c.

 
b  

Fr
om

 R
ef

. 
35

. 
c  

Fr
om

 R
ef

. 
33

. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

09



204 MOLECULAR-BASED STUDY OF FLUIDS 

Discussion 

Our work indicates that it is advantageous to base the search for 
effective condensed-phase potentials on the properties of the low tem­
perature solid. This is economical, because much can be done through 
minimization of the lattice energy and by lattice dynamics calculations 
before resorting to computationally expensive simulations. More impor­
tant is the fact that potentials that reproduce the low temperature crystal 
properties, at least of the simpler molecular systems, work well for the 
liquid, while the converse is not, in general, true. This obviously implies 
that certain properties of the solid state are much more sensitive to details 
of the potential than is the case in the liquid, where substantial averaging 
occurs, and that the overall effect of many-body forces is similar in solid 
and liquid phases. Calculations of the second vifial coefficient are less 
useful, but these also are cheap and easy to execute. 

Models of the 2LJ + Q (or 2LJ + q) type give a fair description of a 
wide range of properties of both nitrogen and carbon dioxide, and are 
certainly superior to the 2LJ type. A main reason for their success is that 
they correctly stabilize the Pa3 structure found experimentally in these 
systems. The difficulties inherent in the use of such simple models be­
come apparent when attention is turned to the noncubic structures. They 
are already to be seen in the case of 7-nitrogen, but are much more 
evident for the halogens; solid chlorine poses a particularly severe prob­
lem. Suggestions have been made in the past that some form of "chem­
ical" bonding characterizes the halogen crystals (36, 41), but this remains 
to be convincingly demonstrated. A possible refinement of the simple 
models is the introduction of anisotropic dispersion (AD) forces between 
molecular centers. The basis for this suggestion lies in lattice dynamics 
calculations for solid oxygen and fluorine (2, 40). In the case of chlorine, 
the A D + @ type of model has been shown (32) to destabilize the Pa3 
lattice relative to the observed Cmca structure, but the problem of un­
stable lattice modes has not yet been overcome. Inclusion of A D forces 
has also not been able to explain the a-7 transition in nitrogen (42, 32). 
Solid acetylene has a low-temperature crystal structure similar to that of 
chlorine; it is significant that attempts to develop a simple potential model 
for acetylene (52) have so far also been unsuccessful. 

We have concentrated here on the empirical route to potential mod­
eling. This is inevitable, since the construction of accurate pair potentials 
from ab initio potential energy surfaces is for the present an unrealistic 
goal for the type of system we have discussed. However, such calculations 
may be helpful in suggesting realistic functional forms (12, 13, 50). Both 
points are well illustrated by the recent work of Berns and van der Avoird 
on nitrogen (12). They fitted two models to the calculated potential energy 
surface; model I contained four and model I' only two short-range in-
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9. MURTHY ET AL. Modeling of Simple Nonpolar Molecules 205 

teraction sites, with the electrostatic interactions represented in each 
case by four point charges per molecule. Model I was found to give a 
better fit both to the potential energy surface (12) and to the experimental 
properties (27, 51) of nitrogen, but neither model is as satisfactory as the 
empirical potentials K D and MS K M . 

The results described here for nitrogen and carbon dioxide and 
elsewhere (7) for carbon disulfide probably bring us close to the limits 
of what can be achieved with nLJ + Q or similar models. Rather than 
stressing their deficiencies, it is worth pointing out that these crude 
representations of the intermolecular potential are in many respects sur­
prisingly successful. However, even for a molecule as apparently simple 
as carbon tetrachloride, recent calculations (53) based on 5LJ models 
have shown how difficult it is to account for details of the structure and 
dynamics of either liquid or solid phase. 

Further advances could well rest on the use of more realistic de­
scriptions of the electrostatic interactions. An interesting scheme whereby 
this could be achieved has recently been described by Stone (54). It 
should be noted that in several of the models detailed in Table I, either 
Q or Z, or both, are treated as adjustable parameters. Though there is 
some theoretical justification for this, the physical meaning of an effective 
quadrupole moment or an effective bondlength is obscure. The use of 
such concepts has an empirical value, but it may well not be necessary 
if more details of the molecular charge distribution were to be incor­
porated into the potential model. 

Key to Models Discussed in Text 

MSM 
RG 
RGA 
STS 
TC 
nLJ 

BV 
CP 
EV 
K D 
KK 
MS 
MSB 
M S K M 

Ref. 12 
Ref. 5 
Ref. 36 
Ref. 19 
Ref. 40 
Ref. 39 
Ref. 10 
Ref. 8 
Ref. 9 
Ref. 11 
Ref. 14 
Ref. 6 
Ref. 20 

nLJ + Q 
nLJ + q 

n-site Lennard-Jones potential 
As nLJ, with point quadrupole 
As nLJ, with point fractional charges 
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10 
Effects of Molecular Anisotropy 

FRIEDRICH KOHLER 
Ruhr-Universität, Institut für Thermo- und Fluiddynamik, D-4630 Bochum, 
Federal Republic of Germany 

                         NICHOLAS QUIRKE1 

Royal Holloway College, Chemistry Department, Egham, Surrey, England 

The effects of molecular anisotropy considered in this chap­
ter are the molecular shape (the anisotropy parameter being 
the elongation of two-center Lennard-Jones fluids), the di­
pole moment and the quadrupole moment. An attempt is 
made to scale density and temperature of two-center Len­
nard-Jones fluids in such a way that a comparison with the 
law of corresponding states is possible. With respect to 
electric moments, it is observed that their effect on ther­
modynamic and structural properties is less on two-center 
Lennard-Jones fluids than on spherical fluids. This is in­
vestigated in some detail. 

A L T H O U G H CONSIDERABLE PROGRESS has been achieved in under­
standing the behavior of molecular liquids (1-4), we are still far from 

having a complete picture of the way in which the molecular shape and 
electric moments contribute to thermodynamic and structural properties. 
For example, our understanding of the deviations from the law of cor­
responding states has not improved since Rowlinson's work in 1954 (5). 

One important difficulty is that of scaling temperature and density 
when comparing experimental and theoretical results. While theoreti­
cians use the characteristic parameters of the pair potential for scaling 
(e.g., the depth of the potential 8 and the zero potential separation a), 
experimentalists use critical data. At present a sound correlation between 
these different approaches exists only for one-center Lennard-Jones liq­
uids. In the first section of this chapter we suggest ways of extending 
this correlation to two-center Lennard-Jones liquids. 

The next section of this chapter gives a critical review of a 
computationally fast thermodynamic perturbation theory treatment of 
two-center Lennard-Jones liquids. While the Helmholtz energies are 
predicted accurately, some details of the structural properties are still 
missing. The subsequent two sections are devoted to the problem of 
treating molecules with electric moments within the framework of 
perturbation theory. The treatment given is in some respects preliminary 

1Current address: University of Maine, Department of Chemistry, Orono, ME 04469 

0065-2393/83/0204-0209$07.50/0 
© 1983 American Chemical Society 
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210 MOLECULAR-BASED STUDY OF FLUIDS 

and the results, for the moment, qualitative. One section deals with the 
thermodynamic properties, while the final section deals with those 
structural properties that are related to the static dielectric constant. We 
hope that the approach outlined in these sections will form the basis for 
future work on this topic. 

Scaling Parameters for Two-Center Lennard-Jones Fluids 

In this section we suggest methods of scaling densities in three 
regions—regions of low densities, critical densities and liquid densities. 
Low density scaling is considered first. Table I contains second virial 
coefficients for various elongations L = //a. This extends the table given 
by Wojcik et al. (6) for a limited temperature range2. In Figure 1, these 
results are plotted against the reduced temperature T/TB, where TB is 
the Boyle temperature. It can be seen that the curves for higher elon­
gations become progressively steeper. A more detailed comparison is 
provided by Figure 2, where the second virial coefficients are reduced 
by an effective O^CLJ in such a way that B/NAO-2CLJ is t n e same for all 
elongations at T/TB = 0.3. 

This scaling produces a single curve for all elongations in the tem­
perature range 0.3 < T/TB < 1.05; at lower temperatures the reduced 
curves begin to spread (Figure 3), with the higher elongations having 
the more negative second virial coefficients. This might at first suggest 
that the parameters L and a could be determined separately from such 
a plot of experimental second virial coefficients in the low temperature 
region (T/TB < 0.3). However, this is questionable for two reasons: (1) 
low-temperature second virial coefficients are in most cases subject to 
large errors and (2) the two-center Lennard-Jones model potential cannot 
accurately reproduce the low-temperature second virial coefficients of 
real substances. Returning to the problem of low density scaling, Table 
II shows TB,2CLJ/?B,ICLJ and Figure 4 shows cr 2 C L J /a 1 C L J using the values 
for effective a obtained by equalizing the reduced second virial coeffi­
cients at T/TB = 0.3. By chance, the plot in Figure 4 is almost a straight 
line. Figure 4 shows a similar plot for hard dumbbells obtained using the 
Boublik-Nezbeda equation of state (7), which gives 

2 Note added in proof: A table listing the second virial coefficients for the elongations 
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 is contained in Maitland, G. C . ; Rigby, M . ; Smith, E . B.; 
Wakeham, W . A . Intermolecular Forces, Clarendon Press, Oxford 1981. 

(i) 

°" lCL./ °"icLJ 
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10. KOHLER AND QUIRKE Molecular Anisotropy 211 

Table I. Reduced Second Virial Coefficients of Two-Center Lennard-
Jones Fluids 

J * 
j* 
T* 

B 
N A C T 3 

j * 
f * 

B 

L = 0.3292 L = 0.505 (continued) 

0.8 0.0908 -102.631 6.65 0.9989 -0.003 
0.9 0.1022 -71.376 6.6570 1.0000 0.000 
1.0 0.1135 -53.365 6.9813 1.0500 0.140 
1.25 
1.55 
2.0 

0.1419 
0.1759 
0.2270 

-31.189 
-19.905 
-12.276 

7.0 1.0515 0.148 1.25 
1.55 
2.0 

0.1419 
0.1759 
0.2270 

-31.189 
-19.905 
-12.276 L = 0.63 

2.6430 0.3000 -7.404 0.75 0.1330 -70.251 
3.0 0.3405 -5.871 1.0 0.1774 -33.674 
5.2860 0.6000 -1.745 1.25 0.2217 -20.856 
8.0 0.9081 -0.246 1.5 0.2661 -14.522 
8.75 0.9932 -0.017 1.6911 0.3000 -11.518 
8.8100 1.0000 0.000 2.0 0.3548 -8.326 
9.00 1.0216 0.050 2.5 0.4435 -5.305 
9.2505 1.0500 0.113 2.81 0.4985 -4.108 

L = 0.505 3.3823 
3.51 

0.6000 
0.6227 

-2.595 
-2.339 

0.8 0.1202 -71.037 5.25 0.9313 -0.263 
0.9 0.1352 -51.371 5.62 0.9970 -0.011 
1.0 0.1502 -39.503 5.6371 1.0000 0.000 
1.1 0.1652 -31.692 5.9190 1.0500 0.166 
1.2 
1.3 
1.4 

0.1803 
0.1953 
0.2103 

-26.213 
-22.181 
-19.101 

6.0 1.0644 0.211 1.2 
1.3 
1.4 

0.1803 
0.1953 
0.2103 

-26.213 
-22.181 
-19.101 L = 0.793 

1.5 0.2253 -16.677 0.6 0.1271 -113.160 
1.6 0.2403 -14.724 0.7 0.1483 -69.746 
1.7 0.2554 -13.118 0.8 0.1695 -48.612 
1.8 0.2704 -11.775 0.9 0.1907 -36.501 
1.9 0.2854 -10.637 1.0 0.2119 -28.773 
1.9971 0.3000 -9.686 1.1 0.2330 -23.457 
2.1 0.3155 -8.812 1.35 0.2860 -15.458 
2.2 0.3305 -8.071 1.4160 0.3000 -14.059 
2.3 0.3455 -7.417 1.5 0.3178 -12.543 
2.4 0.3605 -6.835 1.75 0.3708 -9.229 
2.5 0.3755 -6.316 2.0 0.4237 -7.019 
2.6 0.3906 -5.848 2.8321 0.6000 -3.097 
2.7 0.4056 -5.426 4.0 0.8474 -0.775 
3.28 0.4927 -3.602 4.7201 1.0000 0.000 
3.9992 0.6000 -2.224 4.755 1.0074 0.031 
4.1 0.6159 -2.069 4.9561 1.0500 0.197 
6.5 0.9764 -0.074 5.0 1.0593 0.232 
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212 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 1. The reduced second virial coefficients, B/Nj^a3, of one-center 
and two-center Lennard-Jones fluids, plotted against the temperature re­

duced by the Boyle temperature, with the elongation L as parameter. 
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10. KOHLER AND QUIRKE Molecular Anisotropy 213 

Figure 2. Plot similar to Figure 1, but with an adjusted a 2 C L j that equal­
izes all B/NACT^CLJ at T / T B = 0.3. The notation of the points corresponds 

to Figure 1. 
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214 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 3. Plot similar to Figure 2, for low values o/T/TB. 
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10. KOHLER AND QUIRKE Molecular Anisotropy 215 

Table II. Boyle Temperatures and Calculated Critical Temperatures of 
Two-Center Lennard-Jones Fluids Compared with the "United Atom" 

L T* /T* 
LB,2CLJ' 1 BJCLJ T* /T* 

Lc,2CLj' Lc,lCLJ 
\1c,2CLJ/ lc,lCLjlexp 

0 1 1 1 
0.329 0.644 0.676 0.633 
0.505 0.487 0.524 0.525 
0.630 0.412 0.451 0.450 

0.437 
0.793 0.345 0.386 0.358 

Note: Critical temperatures are calculated by Equation 3 with a = 0.15. Experimental 
quantities are calculated from experimental critical temperatures of liquids for which 
certain parameters L and e have been used successfully. 

The agreement between the 2CLJ curves and the hard dumbbell curves 
can be improved for large L if the reduced second virial coefficients are 
set equal at higher temperatures, T/TB = 0.6 or 1.05 rather than 0.3 (see 
Figure 4), but no such improvement can be achieved at small L . This 
small discrepancy between two-center Lennard-Jones fluids and hard 
dumbbell fluids is probably related to the different temperature de­
pendence of the effective sphere radius for hard spheres and hard dumb­
bells. Figure 5 shows results obtained from the perturbation theory re­
viewed in the next section. We have not been able to scale these results. 

Turning now to higher densities, we consider an approximate method 
of scaling the critical densities based on the generalized van der Waals 
model (8-10) 

-B- =(-?-] --22- (2) 
9NkT V P ^ / H a r d Fluid NhT 

dp d2p 
Applying the critical conditions — = 0 and —- = 0, two equations for 

dp dpz 

the two unknown pc and Ac = alTc are obtained. Using the Carnahan-
Starling equation for the hard sphere fluid and the Boublik-Nezbeda 
equation (7) for the hard dumbbell fluid, effective values for a 2 C L J can 
be found, which when used to reduce the critical densities of Table III 
make them all equal. Figure 4 shows the resulting values o 2 C L j/cr 1 C L j . 

For densities in the liquid range, we have attempted to scale the 
orthobaric density curve (effectively zero pressure densities) given by 
Wojcik et al. (6) as a function of elongation. In order to bring them into 
a form comparable to the law of corresponding states, we had to assume 

I*\ = (LL\ x (1 + ah) (3) 
^B/2CLJ \J>B) 1CLJ 
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Figure 4. Various scalings for <J2CLJ^ICLJ' Key: x x, based on 
equalization of reduced second virial coefficients at T/TB = 0.3; . . . ., 
based on equalization of second virial coefficients at T/TB = 0.6 and 
T/TB = 1.05 (A); o o, based on the relation between hard dumbbells 
and hard spheres (Equation 1); —•—•—, based on critical densities derived 
from a generalized van der Waals model (Equation 2); , based on 

scaling orthobaric densities. 

with a = 0.15 and the o- 2 C L J /a 1 C L J scaling curve given in Figure 4. How­
ever, the results of this scaling, given in Figure 6, are not perfect. Though 
we consider only the temperature range given by Wojcik et al. (6), some 
of the curves show inconsistent behavior near the ends of the temperature 
range. This behavior is such that it is difficult to explain on the basis of 
errors in scaling approximations. Further, from the known deviations 
from the law of corresponding states, the reduced density should be 
highest for the largest elongation at low temperatures, which is not the 
case so far. It could be achieved by making the parameter a in Equation 
3 larger, which would in turn lead to a O^CLJ/^ICLJ c u r v e a httl e lower 
than that in Figure 4. It would be impossible, however, to make a so 
large that the O-2CLJ/°"ICLJ c u r v e s w o u l d be coincident with the results 
from lower densities. It is probable that the scaling procedures described 
here require data of a higher accuracy than are presently available. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

10



d/
o 1.0

2 

1.0
0 

0.9
8 

0.9
6 

Fi
gu

re
 5

. 
T

he
 r

ed
u

ce
d

 d
ia

m
et

er
 d

/c
rf

or
 e

qu
iv

al
en

t 
ha

rd
 s

p
h

er
es

 a
nd

 h
ar

d 
du

m
bb

el
ls

 p
lo

tt
ed

 a
ga

in
st

 k
T/

e,
 

w
it

h 
e 

an
d 

a
 b

ei
ng

 d
ep

th
 a

nd
 z

er
o

 p
ot

en
ti

al
 s

ep
ar

at
io

n,
 r

es
pe

ct
iv

el
y,

 o
f e

it
he

r 
th

e 
on

e-
ce

nt
er

 o
r 

th
e 

tw
o-

ce
nt

er
 L

en
na

rd
-J

on
es

 p
ot

en
ti

al
. 

U
pp

er
 c

ur
ve

, 
o

n
e 

ce
n

te
r 

(B
H

1 
tr

ea
tm

en
t)

; 
lo

w
er

 c
ur

ve
, 

tw
o 

ce
n

te
rs

. 
K

ey
: X

, 
L

 =
 0

.3
29

; 
o,

 L
 =

 0
.6

3
; 

an
d 

+
, 

L
 =

 0
.7

93
. 

Fo
r 

de
ta

il
s 

o
f 

th
e 

B
H

1 
tr

ea
tm

en
t 

se
e 

Sm
it

h,
 W

. 
R

. I
n

 S
ta

tis
tic

al
 M

ec
ha

ni
cs

 V
ol

. 4
, S

in
ge

r,
 K

, 
E

d
; S

pe
ci

al
is

t 
P

er
io

di
ca

l 
R

ep
or

t,
 C

he
m

ic
al

 S
oc

ie
ty

, 
L

on
do

n 
19

73
, 

p
. 9

5.
 (R

ep
ro

du
ce

df
ro

m
 R

ef
. 

11
. C

op
yr

ig
ht

 1
98

1,
 A

m
er

ic
an

 C
he

m
ic

al
 S

oc
ie

ty
.)

 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

10



218 MOLECULAR-BASED STUDY OF FLUIDS 

Table III. Critical Densities of the Generalized van der Waals Model 

L y c 

0.2 0.12929 
0.4 0.12612 
0.6 0.12116 
0.8 0.11443 
1.0 0.10577 

Note: Critical densities are reduced by the volume of the hard body. Generalized 
van der Waals model is given by Equation 2. 

With the same scaling factors that we have applied for the orthobaric 
densities; i.e., the values of T* 2 CLJ/^*ICLJ from Equation 3, shown in 
Table II, and the curve of O- 2 CLJ/ ( JICLJ shown as the upper curve in Figure 
4, we plot in Figure 7 the results of residual Helmholtz energies derived 
by Fischer (11) on the basis of perturbation theory discussed below. As 
Figure 7 shows, the scaling is quite good, but not perfect. Curves for 
higher elongations are steeper at high densities, and the two lowest 
curves are a bit too far apart. However, the results indicate that our 
scaling factors are not far from the best values. We hope that this dis­
cussion, enabling better comparisons, will induce more accurate calcu­
lations on two-center Lennard-Jones fluids. 

A short concluding remark should be made on the physical sense 
of Equation 3. The work of Rowlinson (5) has clearly shown that TJTB 

of anisotropic molecules is increased in comparison with the same ratio 
for spherical molecules. Furthermore, for carbon dioxide, (TC/TB)C02 = 
0.427 (12), which is 1.16 times that of argon, (Tc/TB)Ar = 0.367 (13). The 
comparison with real substances is, of course, hindered partly by ex­
perimental uncertainties and partly by the unknown effects of the quad­
rupole moments of real substances. Therefore, it would be of much 
interest to extend the computation of critical points from one-center (14) 
to two-center Lennard-Jones liquids. Some work in this direction, al­
though primarily concerned with the coexistence line, has been reported 
recently (15). 

Perturbation Expansions for Two-Center Lennard-Jones 
Liquids 

The perturbation expansion is a generalization to molecular liquids 
of the Weeks-Chandler-Andersen (WCA) (16) expansion for atomic liq­
uids. This procedure assumes that the structure of the dense liquid is 
primarily determined by the repulsive forces. Those parts of the pair 
potential responsible for repulsive forces are separated out and used as 
a reference potential. The properties of the reference fluid interacting 
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Figure 7. The residual Helmholtz energies of two-center Lennard-Jones 
liquids plotted against reduced densities. Reduced temperatures are given 
as parameter. Scaling of densities and temperatures as in Figure 6. Key: 

, L = 0.329; , L = 0.63;———, L = 0.793. 

by the reference potential are obtained as those of an equivalent hard-
body fluid. Earlier attempts (17-19) at a generalization of the W C A 
approach were hindered by the lack of a suitable hard reference fluid. 
Current work has been made possible by the advent of an analytic expres­
sion for the thermodynamic properties of hard convex bodies and hard 
dumbbells (7). Two versions of the generalized WCA expansion for two-
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10. KOHLER AND QUIRKE Molecular Anisotropy 221 

center Lennard-Jones liquids have been developed, one based on the 
molecular potential (11, 20) and another on the site-site potential (21). 
In the molecular approach two developments combine to increase the 
speed of the calculations. The simplified solution of the Percus-Yevick 
equation for potentials of finite range introduced by Baxter (22), and an 
analytical expression for part of the Boltzmann factor of the hard dumbbell 
potential (23). 

In the treatment based upon the molecular potential, the first stage 
is to perform the WCA division of the potential. This is carried out for 
each orientation Cll f l 2 of the molecular pair, as illustrated in Figure 8. 

Denoting the minimum coordinates at each orientation rmin([l1 ft2) 
and umin(il1 ft2), we have then for the reference potential 

Mref(r, fix, fta) = u(r, [ll9 fl2) - umin r rmin(ft! fl2) 

ure£(r, [1,, a2) = 0 r > r^Jf l ! ft2) 
(4) 

and for the perturbation 

upert(r, H 1 ? ft2) = Mmin(ft1 fta) r ^ rmin(tli ft2) (5) 

(r, fi2) = «(r, ft,, n 2 ) r > r ^ f l , ft2) 

The perturbation expansion leads to the following expression for the 
Helmholtz energy of the molecular liquid 

A = A r e f + 2irp Jr 2 dr {yre(e~^ upert)nin2 (6) 

u r e f ( r . f i 1 . Q 2 ) 

u p e r t ( r , ^ 1 , Q 2 ) 

Figure 8. Decomposition of the molecular potential for different orien­
tations in the molecular perturbation theory (after Kohler, Ref. 4). 
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222 MOLECULAR-BASED STUDY OF FLUIDS 

where the brackets denote angle-averaging and y is the background cor­
relation function y = gle^u. The next problem is to obtain the properties 
of the reference fluid in terms of the adjusted hard-body fluid. In a fashion 
completely analogous to the WCA treatment of atomic liquids to first 
order we obtain, 

A r e f = Ad + 2TTP j r 2 dr (yd(e~^ - e~^)) (7) 

where the subscript d refers to a hard dumbbell fluid with diameter d. 
This implies that A r e f = Ad when 

jr2 dr (yd(e~^ - e~*Ud)) = 0 (8) 

and is the prescription for adjusting the hard dumbbell diameter ac­
cording to Kohler, Quirke, and Perram (20). The second hard dumbbell 
parameter, the elongation, has been kept equal to the elongation lm of 
the molecular liquid in all calculations to date. Now we come to a crucial 
assumption, which makes Equations 6 and 8 tractable and which has 
proved to be a reasonable approximation for some previous cases (24, 
25), that the background correlation function is effectively angle inde­
pendent and equal to its angle average 

y(r, Cll9 a2) = (y(r, fl2)> = y o o o (r) (9) 

(For an early recognition of some cases where this approximation is poor, 
see Ref. 26. A more thorough investigation of this approximation, giving 
methods of improvement, is in progress by W. A. Steele.) 

This assumption takes yd out of the angle-averaging bracket in Equa­
tion 8, yd = y r e f being the background correlation function for an assembly 
with interaction potential u(r) = — kT ln (e~^ud). The function yd is 
obtained by solving the Percus-Yevick equation for u(r) (20), giving the 
final result (cf Equation 6) 

A = Ad + 2TTP J r 2 dr yd (r) (upert e~^) (10) 

An alternative formulation is to expand the hard dumbbell Helmholtz 
energy about that of the reference fluid (11) 

Ad = A r e f + 2irp I r 2 dr yre{(r) ((e~^ - e~^)) (11) 
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10. KOHLER AND QUIRKE Molecular Anisotropy 223 

with yre{ determined from (e p"ref), which leads to 

A = Ad + 2irp J r 2 dr yre( (r) <upert e~^) (12) 

These two formulations give essentially the same results. Pressures cal­
culated by differentiating the theoretical Helmholtz energy have been 
found to be in very good agreement with computer simulation results 
for elongations from L = 0.33 (simulating nitrogen) to L = 0.793 (sim­
ulating carbon dioxide) (II). A more direct test is the comparison of the 
Helmholtz energy with results from computer simulations. This has be­
come possible because fast and economical Monte Carlo methods (work­
ing with a small number of particles) have been developed for obtaining 
differences in Helmholtz energy between a reference system and the 
system in question (27, 28). In Table IV, we have collected all the results 
for the Helmholtz energy of one state of the nitrogen simulation (10, 29, 
30). This extends a similar table given previously (10). Different computer 
methods, starting from different reference states, agree remarkably well 
with each other and with results from different perturbation theories. 
This good agreement extends also to other temperatures and densities 
typical for simulated liquid nitrogen (30). 

We have included in Table IV the results of the perturbation method 
for two-center Lennard-Jones liquids developed by Tildesley (21) in the 
site-site coordinate frame, which is again a generalization of the W C A 
approach. Instead of dividing the full molecular potential at each ori-

Table IV. Configurational Helmholtz Energy of Simulated Liquid 
Nitrogen at T* = 3.0, p* = 0.70 

Method A*/NkT Reference Fluid Reference 

Theory 
Equation 10 -3.00 Hard dumbbell 20 
Equation 12 -3.06 Hard dumbbell 11 
Tildesley -3.11 Hard dumbbell 32 

Simulation 
Bennett (32)* -3.07 Argon 10 
Virtual Overlap (32) -3.03 Hard dumbbell 29 
Marquee (32) -3.06 Hard dumbbell 29 
Bennett (32) -3.09 Hard dumbbell 30 
Marquee (32) -3.09 Hard dumbbell 30 
Bennett (108) -3.04 Hard dumbbell 30 

a Numbers in parentheses are the numbers of particles used in the computer simu­
lations. 
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224 MOLECULAR-BASED STUDY OF FLUIDS 

entation into repulsive and attractive components, the site-site potential 
is divided as in the case of the spherical Lennard-Jones potential along 
the site-site distances (Rss). Then the four site-site repulsive Lennard-
Jones potentials are recombined to produce the two-center Len­
nard-Jones reference system. 

Equation 6 now separates into four equivalent terms, each contain­
ing one of the truncated site-site potentials and a t/ref (fiss) term. This is 
the site-site background correlation function denned by 

J/ref(Rj = ^ « - < B " > g r e f ( R j (13) 

The properties of the repulsive two-center Lennard-Jones reference fluid 
are expressed, as before, in terms of a hard dumbbell fluid, the structure 
of which is given by a solution of a RISM (reference interaction site 
model) equation (2). This theory predicts the Helmholtz energy and site-
site distribution function for a two-center Lennard-Jones liquid. The 
pressures obtained using this expansion are also in a good agreement 
with simulation (21). 

Considering now the structural predictions of the perturbation meth­
ods, the centers correlation functions predicted by the molecular ap­
proach (Equation 9) 

goooM = t/ooo<e-pMref> (14) 

are in good agreement (11, 20) with the corresponding computer sim­
ulation results. However, higher spherical harmonic radial coefficients, 
i.e., averages of g(12) over spherical harmonics (I =/= 0), which are cal­
culated using the assumption of an angle independent y 

w = <^i^> <15) 

are found to be erroneous at large separations (r). This is because the 
reference potential is zero for all orientations r > Z + 21/6cr and therefore 
g(r, ft2) is angle independent outside this range. The true g(r, ill9 

ft2) i s angle dependent well beyond this separation. The short range 
angle dependence of g(r, Cllf ft2) from Equation 15 means that it cannot 
be used to calculate structural properties of the molecular liquid, such 
as the site-site correlation function, which even for small R s s depend on 
the value of g(r, ft2) over a range of center-center separations r, 
including those where the angle dependence is erroneous. The angle 
dependence of g (12) can be somewhat improved by using the exponential 
of the full molecular potential (25). The alternative formulation of the 
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10. KOHLER AND QUIRKE Molecular Anisotropy 225 

perturbation theory in terms of site-site functions just discussed yields 
gss(Rss) as its only structural prediction. These are in very good agreement 
with simulation (21). Part of the angle dependence of g(12) can be 
obtained from gss(Rss) using simple site superposition approximations of 
a type proposed recently (31). This enables properties such as the pres­
sure and mean squared torque, which depend upon integrals of the 
angular variation of g(r, ft1? ft2), t o be calculated from a knowledge of 
gss(Rss) alone. Not all the angular information can be reconstructed in 
this manner, for example, the light scattering factor G 2 is not predicted 
accurately (31). 

In conclusion, the thermodynamic properties of two-center Len­
nard-Jones liquids are predicted accurately by generalizations of the 
WCA perturbation expansion using a hard dumbbell reference fluid. The 
structural predictions are limited to the unweighted angle average of the 
angular correlation function g(r, Q,l9 ft2) in the coordinate frame em­
ployed. Using the molecular approach, we obtain the centers correlation 
function, and using the site-site approach, the site-site correlation func­
tion. These structural predictions can be extended to include part, but 
not all, of the angle dependence of g(12) by the use of further approx­
imations. 

Thermodynamic Effects of Adding Electric Moments to Two-
Center Lennard-Jones Liquids 

In this section we consider a rapid method of calculating the ther­
modynamic effects of electric moments, within the framework of the 
perturbation theory outlined in the section above. The aim is to obtain 
qualitative trends rather than accurate numerical results. 

The problems involved in treating the long range multipole forces 
have usually been considered for the case where the molecular shape is 
spherical. Two perturbation expansions, relating the properties of the 
fluid with electric moments to a reference fluid interacting with a spher­
ical potential, have been tried. The first (33, 34) obtains a reference 
potential from the angle averaged potential 

wref (r) = (u (r, ill9 n2)> (16) 

The second (35-37) angle-averages the Boltzmann factor 

(17) 

In both cases the resulting reference fluid has then to be treated by the 
usual W C A (16) perturbation method. The reference potential of Equa­
tion 17, unlike that of Equation 16, contains contributions from the 
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226 MOLECULAR-BASED STUDY OF FLUIDS 

electric moments and is therefore somewhat closer to the full potential. 
However, it still gives Helmholtz energies that are far too negative, 
whereas Equation 16 gives Helmholtz energies that are far too positive. 
The calculation of higher terms in the expansions requires a knowledge 
of three-body and higher correlation functions of the reference fluid, 
which have to be obtained from simulation or by superposition approx­
imation. For moderate to large electric moments, the expansion series 
have very poor convergence. However, the expansion based on Equation 
16, when combined with the use of a Pade approximant, works well (38, 
39), except for short-range force cases noted in Ref. 34. The Pade ap­
proximant procedure is impractical for two-center Lennard-Jones liquids 
and in this section we seek another method in the reference fluid. From 
the methods discussed above we obtain an effective dipole potential of 

- (Jfi4/r6 for small values of |x2/r3. The same result can be obtained, within 
3 
the framework of the perturbation theory of the last section, by splitting 
the dipole-dipole interaction into w D D f ° r attractive pair configurations 
and w D D e~ P M D D for repulsive pair configurations. However, for small dis­
tances r, the Boltzmann factor e~PWDD cuts out too much of the repulsive 
potential, making the resulting reference potential too negative, in a 
similar fashion to w r e f of Equation 17 or the first perturbation term of the 
expansion based on Equation 16. It is then necessary to replace the 
Boltzmann factor by a function that does not tend to zero for large values 
of (3Mdd. A convenient choice is the Langevin function L((3i/DD), 
which is linear for small (3wDD and approaches a constant for large values 
of P u D D . For spherical molecules with electric moments we have tried 
the following reference potential, 

u r e f (r, SI,, il2) = u I C L ] (r) + u D D e - 3 / 2 « 2 P u D D ) e o « D D > ( 1 8 ) 

The step function 6 ((3wDD) indicates that the exponential is applied only 
for positive values of (3Mdd. We have postponed a detailed analysis of 
the perturbation expansion about the reference potential of Equation 18, 
and have calculated the Helmholtz energies for the reference fluid only. 
We compared these results with those for two-center Lennard-Jones 
liquids with electric moments using the analogous reference potential 

" ref = "2CLJ (^ ilu H 2) + W D D (r, ft2) e ~ ^ ^ « ^ (19) 

A reference potential for quadrupole two-center Lennard-Jones liq­
uids can be obtained by replacing w D D by uQQ. The properties of these 
nonspherical reference fluids can now be calculated using the pertur­
bation theory outlined in the section above. Because our results apply 
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10. KOHLER AND QUIRKE Molecular Anisotropy 227 

only to the reference fluid for liquids containing electric moments, and 
no detailed analysis has justified the neglect of higher order terms, the 
results must be considered to be preliminary. 

Table V presents the residual Helmholtz energies reduced by JV/p. 
Table VI gives the differences between pA/Af values for liquids with and 
without moments. The results for L = 0 and u,*2 = 0.8696 and 3.478 
are slightly more negative than those of Verlet and Weis (40), who have 
pA/Af = - 0.535 and -4.40. This indicates that not all of the effects of 
the electric moments are incorporated into the reference fluids defined 
by Equations 18 and 19. From Table VI we see that the contribution of 
the dipole moments is reduced in going from L = 0 to L = 0.5, as 
explained later, after which it remains approximately fixed. The effects 
of elongation on the contribution of quadrupole moments are more com­
plicated. The quadrupole moments have been chosen so that the mul-
tipole potential has approximately the same effective influence in the 
dipolar and quadrupolar liquids. This is achieved by requiring that the 
potentials obtained from the angle-averaged Boltzmann factor for the 
dipole-dipole and quadrupole-quadrupole potentials have the same value 
at contact (r = a) 

- \ u.* 4 kT = -\Q*a kT (20) 

Table VI shows that the effect of elongation is to reduce considerably 
the contribution of the quadrupolar energy to $A/N at L = 0.5, but that 
there is a much smaller reduction for L = 0.8. We also note that the 
interference between elongation and electric moment is much more de­
pendent upon the size of the quadrupole moment than of the dipole 
moment. The origin of this difference between dipole and quadrupole 

Table V. Values of the Residual Reduced Helmholtz Energies A*/NkT 
for One-Center and Two-Center Lennard-Jones Liquids with Added 

Dipole or Quadrupole Moments 
Without With With With With 

L T* per3 Moment M* 2 = 0.8696 p* 2 = 3.478 Q* = 0.4243 Q * 2 = 1.697 

0 1.15 0.85 -1.70 -2.30 -6.83 -2.39 -5.21 
0.5 2.3 0.4517 -2.08 -2.60 -6.56 -2.44 -4.90 
0.8 1.587 0.3068 -2.08 -2.60 -6.45 -2.60 -5.56 

Note: T* equals kT/elCLi or kTIe2cLj- T* and per3 are varied according to the low-
density scaling factors described earlier in order to make the values of A*/NkT without 

moments comparable. The reduced moments are defined by |x*2 = . and Q*2 = 
crkT 

O 2 

-77- with o7A = 3.4 
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228 MOLECULAR-BASED STUDY OF FLUIDS 

Table VI. Contribution of the Electric Moments to A*/NkT 

L H* 2 = 0.8696 |X*2 = 3.478 Q* 2 = 0.4243 Q *2 ... 1.697 

0.0 -0.60 -5.13 -0.69 -3.51 
0.5 -0.52 (-29%)° -4.48 ( -29%) -0.36 (-51%) -2.82 ( -34%) 
0.8 -0.52 (-29%) -4.37 ( -30%) -0.52 (-38%) -3.48 ( -19%) 
Note: Calculated for the states given in Table V. 
a Values in parentheses indicate the percentage reduction compared with the con­

tribution in the L = 0 case, referred to A*INkT without moment. 

contributions to PA/N probably lies in the different symmetry of the two 
potentials. The quadrupolar potential, like the two-center Lennard-Jones 
potential, is invariant to a reflection of a molecule about the normal to 
the molecular axis, whereas the dipole-dipole interaction changes sign. 
For each allowed pair configuration of the molecules, the dipole-dipole 
potential can be attractive or repulsive while the quadrupole-quadrupole 
potential must be one or the other. The total contribution of the quad­
rupolar potential is therefore very dependent on the range of separations 
for which certain strongly attractive (T-shaped) or repulsive (parallel or 
end-to-end) orientations are allowed by the shape of the two-center Len­
nard-Jones molecules. This range will be different for different elonga­
tions, making the quadrupole contribution more elongation dependent 
than that of the dipole, as we see in Table VI. The above discussion can 
also be used to explain the variation of the quadrupolar contributions to 
pA/N shown in Table VI. The two elongations are L = 0.5 and L = 0.8, 
where for scaling reasons (discussed earlier) we have set o L = = 0 5 = 2.754 
A and a L = 0 8 = 2.421 A ( a L = 0 = 3.4 A). For L = 0.5, the attractive 
T-shaped configuration and the repulsive end-to-end configuration be­
come important for r x > 3.355 A and r E > 4.131 A, respectively. For L 
= 0.8 we have r x > 3.187 A and r E > 4.357 A. The range of r for which 
the T-shaped configuration will predominate is larger for L = 0.8. In 
changing from L = 0 to L = 0.5, in the presence of quadrupole moments, 
the quadrupole-quadrupole potential is forced to assume the repulsive 
parallel orientation near contact, causing the total quadrupolar contri­
bution to the Helmholtz energy to fall. Increasing the elongation to L 
= 0.8 for the scaled two-center Lennard-Jones potential considered here 
has the effect of increasing the range for which attractive T-shaped ori­
entations are allowed. The quadrupolar contribution to PA/N is therefore 
increased again, as shown in Table VI. 

Effects of Elongation and Quadrupole Moments on the Static 
Dielectric Constant and Related Structural Properties 

In this section we present qualitative results for the effect of elon­
gation and the quadrupole moment on the dielectric constant (e), Kirk-
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10. KOHLER AND QUIRKE Molecular Anisotropy 229 

wood g-factor (gK) and the structural correlation functions hA and/(r, A) 
of dipolar two-center Lennard-Jones liquids. Our results are based on 
the assumption that the background correlation function y (r, ft2) * s 

angle independent, as discussed in an earlier section. 
The static dielectric constant of a liquid can be obtained from the 

Kirkwood gK-factor using the relationship 

(e - l)(2e + 1) 4ir # . 
P* M-* gK (21) 9e 9 

where 

g K = 1 + 4TT £ | / i A (r) r 2 rfr (22) 

The function / i A (r) gives the average value of the cosine of the angle 
between the axis of molecules 1 and 2, A, in the liquid, at each separa­
tion r 

K (r) = <A(a1; a2) g (r, siu a2)) (23) 

In order to elucidate the various effects of elongation and electric moment 
we introduce a new function/(r, A), which gives the probability density 
for finding a pair of molecules whose axes are inclined at an angle arc 
cos A to each other, at the separation r 

M r ) = j dA A / ( r , A) (24) 

In order to obtain hA (r) we use the approximation 

g (r, il2) = y (r) e ~ ^ n ^ (25) 

where y (r) is calculated by solving the Percus-Yevick equation for the 
reference potential 

u (r) = -kT ln <<rWr.ni.iu>) (26) 

as discussed in the section on perturbation expansions. The potential 
u (r, illy fl2) is the full molecular potential containing the two-center 
Lennard-Jones term plus dipole-dipole, dipole-quadrupole, and quad­
rupole-quadrupole interactions. Equation 25 has been found to give e 
and hA (r) in good agreement with simulation for hard-sphere dipoles 
(41). For the moderate dipole moments considered here (see Table VII), 
the predicted dielectric constants for the Stockmayer fluid (spherical 
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230 MOLECULAR-BASED STUDY OF FLUIDS 

Table VII. Reduced Parameters for 2CLJ Liquids with Electric 
Moments 

State j * L p* p* 2 Q *2 g K 
e 

A 0.75 0.0 0.72 0.75 — 1.03 4.13 
B 0.75 0.0 0.72 0.75 0.37 0.73 3.13 
C 2.46 0.2 0.58 0.75 — 0.64 2.44 
D 2.46 0.2 0.58 0.75 0.37 0.46 1.99 
E 1.74 0.4 0.45 0.75 — 0.22 1.34 

Note: Temperatures, densities, and electric moments were selected according to the 
same principles as in Table V. 

Lennard-Jones plus dipole) are about 15% too low compared to simu­
lation results (42). Although we do not expect to obtain exact numerical 
results from Equation 25, we believe that the qualitative trends predicted 
will be reliable. This is especially useful because computer simulation 
results are not yet available for two-center Lennard-Jones liquids con­
taining dipoles and quadrupoles. Results are becoming available for di­
polar hard dumbbells, and these will be referred to below (43, 44). Table 
VII shows the states considered, chosen so as to make the liquids roughly 
comparable. Figure 9 shows the behavior of e with respect to that of an 

1.0 + 

e/e. 

0.5 

0.2 0.4 

Figure 9. Dielectric constants for 2CLJ liquids with dipole moment jx*2 

= 0.75, relative to the Stockmayer fluid (state A of Table VII). Key: + , 
with zero quadrupole moment; o, with Q*2 = 0.37. 
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10. KOHLER AND QUIRKE Molecular Anisotropy 231 

equivalent Stockmayer fluid as the elongation is increased. The trend is 
clearly to reduce e as L is increased. The effect of the quadrupole is to 
reduce e, but by a smaller amount for L = 0.2 than for L = 0. The 
effect on gK is similar, as can be seen in Table VII. As far as the dielectric 
constant is concerned, a quadrupole moment has the same effect as 
increasing elongation. In order to understand these trends it is useful to 
plot hA (r) as is done in Figure 10. We see that the Stockmayer fluid has 
a peak, increasing the elongation or imposing a quadrupole moment 
produces a trough, which becomes deeper and wider as L increases. For 
L =/= 0 and Q* = 0, small positive peaks occur around R* > 1 4- L. In 
this region the orientation of molecules is no longer hampered by the 
shape of the molecule and the curves show the expected Stockmayer 
fluid behavior. In the presence of the quadrupole, these small peaks 
disappear. The reduction in gK and hence e with increasing elongation 
shown in Figure 9 can therefore be traced back to the increasing depth 
of the trough in / i A (r), as has been pointed out previously for dipolar 
hard dumbbells (24). Recent simulation results for hA (r) of dipolar hard 
dumbbells also show this trend, but the positive peaks were found to be 
much larger than those of Figure 10 (44). This quantitative error is a 

Figure 10. The correlation function h A (r)/or the five states of Table VII 
(all with |x*2 = 0.75). Key , without quadrupole moment; — and 

with Q*2 = 0.37. The scale for the top curve is enlarged tenfold. 
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232 MOLECULAR-BASED STUDY OF FLUIDS 

feature of Equation 25. We expect therefore that computer simulation 
of the liquids studied in this section would produce higher dielectric 
constants and gK values, but show the same trends with L as given in 
Figure 9. 

Figure 11 shows the function / (r, A) normalized by the centers 
correlation function g (r) = (g(r, £ll9 fl2)) f ° r a separation of r / a L = 0 ~ 
1.1. This corresponds to the center of the troughs in Figure 10. In the 
absence of a dipole, / (r, A) is symmetrical about A = 0 and hA (r) = 0. 
If a dipole is placed at the center of a spherical Lennard-Jones molecule, 
/ (r, A) becomes asymmetrical. Two orientations are favored, the anti-
parallel and the head-to-tail, giving A = - 1 and A = + 1 respectively. 
In Figure 11, / (r, A) has small peaks at these values. The head-to-tail 
orientation has a more negative potential energy and therefore the peak 

Figure 11. The function f (r, A) = f (r, A)/ (g (r, ft2, ft2)) at r/(T1CLJ ~ 
1.1 for the five states of Table VII. Curves correspond to those in 

Figure 10. 
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10. KOHLER AND QUIRKE Molecular Anisotropy 233 

in/(r , A) is somewhat larger on the A = +1 side, leading to a positive 
peak in hA (r). Increasing the elongation to L = 0.2 leads to a much 
larger value off (r, A) at A = — 1 and a much reduced value off (r, A) 
at A = +1. This is due to the shape of the two-center Lennard-Jones 
molecule reducing the probability of head-to-tail orientations and favor­
ing antiparallel orientations which are much easier to pack in the dense 
liquid. The peak in / (r, A) is now on the negative side and as a conse­
quence hA (r) is negative around contact for all L =/= 0. Increasing L to 
0.4 produces an even higher value for / (r, — 1) but also increases / (r, 
+1) above the result for L = 0.2; this is due to the two-center Lennard-
Jones potential forcing some of the molecules to adapt the parallel ori­
entation (A = +1) even though it is unfavorable for the dipoles. (In the 
absence of a dipole the two-center Lennard-Jones / (r, A) curve is sym­
metrical about A = 0 with two equal peaks at A = n ± 1 . ) The effect 
of the quadrupole, like that of elongation, is to reduce the probability 
of head-to-tail orientations for the dipole moments. The increase near/ 
(r, — 1) is because of the existence of a range of antiparallel orientations 
which are favorable to each of the three multipole interactions present. 
(Note that there are many possible orientations corresponding to a fixed 
value of A). This again leads to a negative hA (r) around contact. 
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The RAM perturbation theory for molecular fluids is based 
on an expansion about a simple fluid whose Mayer function 
is the angular average of the Mayer function of the molec­
ular fluid. It is one of the few theories that potentially can 
compute the full angular-dependent pair correlation func­
tion, g(12), of a wide range of molecular fluid models. The 
basis of the theory is reviewed as well as its accuracy in 
predicting the structural and thermodynamic properties of 
a number of molecular fluid models, including hard and 
soft diatomics, hard convex-body models, multipolar simple 
fluids, and hard triatomics. The results are compared with 
those obtained from computer simulations of these fluids. 
The RAM theory, especially when used to compute reduced 
correlation functions, g(12)/g000(r12), produces quantita­
tively accurate results for a wide range of fluid models, 
even in cases of relatively large anisotropy. It is somewhat 
less satisfactory for the centers pair correlation junction, 
g000, but still quite accurate. 

I N SIMPLE FLUIDS composed of molecules whose pair potentials are 
spherically symmetric (i.e., atoms), the two most successful classes of 

theoretical approaches to date are perturbation theories and theories 
based on the use of integral equations. (This statement views computer 
simulations as "experiments" on model fluids with specified pair poten­
tials, with which theoretical results are to be compared.) In the case of 
molecular fluids, whose pair potentials depend on intermolecular ori­
entation as well as on distance, there is no general consensus as to which 

0065-2393/83/0204-0235$12.25/0 
© 1983 American Chemical Society 
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type of theoretical approach is to be preferred. Indeed, a widespread 
view seems to be that each different type of fluid model dictates the use 
of an associated special type of theoretical approach, and the organization 
of this volume reflects that viewpoint. However, in this review, we will 
discuss a general theoretical approach that can be applied in principle 
to any molecular fluid model. Thus, the present chapter could logically 
have appeared as part of a number of chapters of this book. 

Perturbation theories have been successfully employed for about the 
last 15 years to calculate the structural and thermodynamic properties 
of simple fluids and their mixtures. The basic theoretical developments 
occurred in the late 1960s (I) and early 1970s (2) and the topic has been 
reviewed several times (3-5). The application of integral equation theories 
to simple fluids began prior to 1970, with the derivations of the Born-
Green-Yvon (BGY) (6), hypernetted-chain (HNC) (7), Percus-Yevick (PY) 
(8), and mean spherical approximation (MSA) (9) approaches. Develop­
ments in the last decade have concentrated on determining the general 
characteristics of the pair potential which favor a particular form of in­
tegral equation theory, as well as refinements of the basic approaches 
(io). 

In the case of molecular fluids, direct extensions of the forms of 
perturbation theory successfully used for simple fluids have been only 
moderately successful, and only for restricted classes of fluid models (11). 
(The use of perturbation theory for molecular fluids actually predates its 
use for simple fluids (12), but it has only been in the past decade that 
detailed numerical calculations have been possible.) Integral equation 
approaches are very unwieldy numerically for general models, but for 
suitably restricted classes of models can even be solved analytically (13). 

A less direct extension of the simple-fluid integral equation ap­
proaches is the RISM theory (14), which applies to models consisting of 
atomic sites. Originally proposed as a type of extension of the Percus-
Yevick theory for hard spheres, RISM is at best qualitatively accurate 
(15), and furnishes only partial information concerning the fluid structure 
(the pair correlation function for the atomic sites). 

The RAM (reference average Mayer-function) theory, discussed in 
this review, is a general approach that applies to any molecular fluid 
model. It is a perturbation theory approach, and has its origins in attempts 
to unify the different types of perturbation theory approaches for simple 
fluids (16). We will demonstrate in this review that quite accurate struc­
tural and thermodynamic predictions are possible using this theory, even 
in cases of relatively large anisotropy. The models considered to date 
using this theory include atoms with imbedded point multipoles (hard-
sphere or Lennard-Jones atoms with imbedded point dipoles or quad-
rupoles), site-interaction models (hard-sphere and Lennard-Jones dia-
tomics, and linear hard-sphere triatomics), and hard-body convex models 
(hard spherocylinders). 
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11. S M I T H A N D N E Z B E D A RAM Perturbation Theory 237 

In this chapter, we first discuss the theoretical basis and relevant 
equations for the RAM theory in the section on general theory, wherein 
certain more general theoretical aspects of molecular fluids are also dis­
cussed. We then describe in detail the numerical results that have been 
obtained to date in the application of the theory. Finally, we discuss the 
accuracy of the results and the underlying reasons, as well as the pos­
sibilities for future research. 

General Theory 

R A M Theory. Any perturbation theory involves a choice of two 
main ingredients: the reference system and the form of the expansion. 
These choices are dictated both by convergence and by practical nu­
merical considerations. Thus, the properties of the reference system 
should be "close to" those of the system of interest, and the calculation 
of the terms in the perturbation expansion should be more easily per­
formed than the calculation of the properties of the system of interest 
itself. These considerations still leave a wide range of possibilities, and 
we maintain as much generality as possible at the outset, following the 
original derivation given some time ago by Smith (16). The theory is a 
general one, but the specific expressions given in the following sections 
apply only to linear molecules. 

We denote by u(12) the pair potential of the molecular fluid of 
interest, and by t;(12; 7) a smooth function of the parameter 7, with the 
properties 

where t;0 is some (at this point arbitrary) reference potential, and the 
notation (12) denotes the dependence on the positions and orientations 
of molecules 1 and 2. We next expand the properties of the system of 
interest about 7 = 0 in terms of a functional (also, at this point arbitrary) 
S[v], which in general satisfies 

This is equivalent to a functional Taylor expansion about the reference 
system in terms of S. 

For the Helmholtz free energy, A, and the pair correlation function, 
g(12), this yields, after setting 7 to unity 

i;(12;0) = i;0(12) 

v(l2;l) = i/(12) 

(1) 

(2) 

S[t;(12; 7)] = S[f>0(12)] + 7{S[u(12)] - S[v0(l2)]} (3) 

A = A 0 + [8A]0 + [82A]0/2! + . . . 

g(12) = g0(12) + [5g(12)]0 + . . . 

(4) 

(5) 
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238 MOLECULAR-BASED STUDY OF FLUIDS 

where 

[8A]„ = f //g0(12K(12)<flMR2 (6) 

[S2A]0 = | p 2 jJg0(12)[p^(12) - t^(12)]<flMR2 

-fp3///go(123)[t;7(12)t;7(13) 

+ u7(12)u7(23)]rfR1rfR2rfR3 

-^/ / / / [ g o(1234) 

-go(12)g0(34)]t;7(12)i;7(34)rfR1rfR2rfR3dR4 

[5g(12)]0 = -pg0(12)t;7(12) - pp|go(123)[U7(13) + c7(23)]dR3 

- | p2/|[go(1234) - g0(12)go(34)]t;7(34)<ttMR4 

2^ (l)0{̂ [^124 {̂ IÎ WW} (8) 

where 

3c(12;7) 
«T(12) = 

c77(12)_o = 
a2u(12;7) 

372 

= {S[«(12)]-S[eo(12)]y (9) 

In Equations 4-10, subscript 0 denotes the reference fluid, N is the 
number of particles, p the density, P the pressure and g(12), g(123), and 
g(1234) are the two-, three-, and four-body distribution functions, re­
spectively. The integrations in the above expressions are over all angular 
orientations of particles and over all spatial volume elements. We denote 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 239 

this by writing 

dR{ = dridiai ( I D 

where d(o{ denotes the orientational integration. 
As an alternative to expanding g(12), we may also consider the ex­

pansion of i/(12) = exp [(iw(12)]g(12). This yields 

Since t/(12) is generally expected to be less sensitive to the potential than 
g(12), we will make considerable use of Equations 12 and 13 (the 
(/-expansion) in the following. However, we will see that Equations 5 
and 8 (the g-expansion) are also useful in certain situations. 

To this point, Equations 3-13 are merely formalism. To perform 
calculations, one must make a choice of both S[*] and the reference 
system. To try to optimize the convergence of the expansion, two obvious 
methods present themselves for the latter. The first is to choose a ref­
erence system that, either on physical or mathematical grounds, one 
expects to have properties similar to those of the system of interest. The 
other is to choose a reference system on the basis of mathematical con­
siderations, and then determine the parameters of that reference system 
by annulling low-order terms in the expansion. The latter usually involves 
setting to zero Equation 6. These two strategies need not be independent. 
For example, Kohler et al. (17) expanded the properties of a Lennard-
Jones diatomic system modeling nitrogen about a "similar" system, one 
whose molecules have the same repulsive forces. They further expanded 
the properties of this system about those of a hard-sphere diatomic with 
sphere diameter determined by annulling Equation 6. 

The structure and properties of molecular fluids are generally very 

y(12) = y0(12) + [8y(12)]0 + . . . (12) 

where 

(13) 
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240 MOLECULAR-BASED STUDY OF FLUIDS 

different from those of simple fluids. One might therefore expect that 
the most appropriate choice of reference system would be one that is 
nonspherical. This approach has been followed by Mo and Gubbins (18), 
Tildesley (19) and Sandler (20), in addition to Kohler et al. (17). Since 
the properties of a nonspherical reference system can be as difficult to 
compute as those of the system of interest itself, the use of a spherically 
symmetric reference system is very attractive, especially in view of the 
fact that many very accurate methods are available for computing the 
structural and thermodynamic properties of such fluids (3-5, 10). How­
ever, some workers (19-21, 55) have claimed that such an approach is 
doomed to failure. We will subsequently see that, provided some of the 
"essential character" of the molecular fluid is incorporated within it, the 
use of a spherically symmetric reference system can furnish good results 
for both the structure and the thermodynamics for systems exhibiting 
quite markedly large anisotropics. 

The choice of expansion functional is not motivated by such obvious 
considerations as that of the reference system, and basically two choices 
have been made. Pople (12) and Gubbins et al. (11) have chosen 

S[u] = u (14) 

They annulled [8A]0 to give a reference system characterized by 

v0(r12) = <u(12))Wi,W2 (15) 

where r 1 2 = \rl — r2| and denotes an unweighted average over the 
orientations, and <o2, of molecules 1 and 2. This approach is suggested 
by potentials of the form 

u(12) = t?0(r12) + Ai*(12) (16) 

where v0 is the hard-sphere or Lennard-Jones potential and Aw(12) is of 
multipolar type. Good results are obtained for such systems for only 
relatively small anisotropics, but the Pade approximant to the Helmholtz 
free energy using [82A]0 and [83A]0 produces remarkably accurate results. 
The pair correlation function, however, is not blessed with such seren­
dipity. The usefulness of Equation 15 appears to be limited to this rather 
special class of potentials. It will not be useful, for example, for hard-
sphere diatomics, since the reference system will be one of hard spheres 
of diameter equal to the maximum distance of possible overlap. Indeed, 
Equation 15 is not likely to be useful for any interaction site model. 

Sung and Chandler (22) and Steele and Sandler (23), in their study 
of hard-sphere diatomics, have chosen 

S[u] = exp[-pti(12)] = e(\2) (17) 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 241 

They chose the reference system to be one of hard spheres, 

^0(^12) = 0 0 for r i 2 < d ^ 

^0(^12) = 0 for r 1 2 > d 

and determined the hard-sphere diameter, d, by annulling [8A]0. Since 
hard spheres are not necessarily "similar" to many systems of interest, 
good results were obtained only for systems with relatively small ani­
sotropics. 

The RAM theory attempts to incorporate some of the molecular 
fluid's anisotropy into the reference system, while maintaining its spher­
ical symmetry. Recognizing the fact that the angular integrations in­
volving t/(12) may be factored out of [8A]0 if g 0 is spherically symmetric, 
the reference system may be chosen to annul [8A]0 by setting 

1 ̂ (12)^! d<o2 = 0 (19) 

or, equivalently, by means of 

S[v0(r12)] = jjs[u(l2)]dMlda2 (20) 

This choice has the added virtue of always also annulling the most nu­
merically difficult terms in Equations 7, 8, and 13, those involving the 
four-body distribution function, as well as the terms involving the com­
pressibility of the reference fluid. 

The RAM theory uses Equation 17 for the expansion functional, 
resulting in the following expressions for t>0 and Equations 6-8 and 13: 

v0(r12) = -(1/P)ln(exp[-M12)]>M 1,W 2 (21) 

[5A]0 = 0 (22) 

[S2A]0 = |p2//g0(r12)[pt;2(12) - ^(12)]cttMR 2 

- § P 3 / / / ^ ! , ^ , ^[©,(12)15,(13) 

+ 0,(12)^(23)]^! dR2dR3 (23) 

[5g(12)]0 = -pg0(r12)o,(12) 

- Pp / go(ri, ̂ , ^ [ 0 , ( 1 3 ) + vy(23)]dR3 (24) 

[Sy(12)]0 = -ppexp[po0(r1 2)]Jgo(r1,r2,r3)[c,(13) + vy(23)]dR3 (25) 
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242 MOLECULAR-BASED STUDY OF FLUIDS 

From Equation 21, the Mayer-function (and the Boltzmann factor) of the 
reference system is equal to the angle-averaged value of this quantity 
for the system of interest. Equation 21 was apparently first suggested 
some time ago by Rushbrooke (24) and by Cook and Rowlinson (25). 
Perram and White (26) have also considered this choice of reference 
fluid, as have also Verlet and Weiss (27) and Steinhauser and Bertagnolli 
(28). 

To illustrate the type of reference system potential produced by 
Equation 21, we show in Figure 1 v0(r) for a homonuclear hard diatomic 
( H O H D ) fluid with sphere diameter a and sphere separation L. It is 
seen to be a purely repulsive potential of finite range. It has a hard core 
at the minimum distance of closest approach, (a 2 — L2/2)1/2, and a de­
caying repulsive outer shell that vanishes at the maximum distance of 
possible overlap, a + L. The term exp[ — Pf0(r12)] measures the fraction 
of the total angular volume available for rotation to two molecules a 
distance r 1 2 apart. Thus, at the minimum distance of closest approach, 
the molecules are restricted to adopt the crossed configuration, and 
exp[ — $v0(rl2)] = 0> yielding the hard core in Figure 1. As r 1 2 increases, 
the molecules enjoy more rotational freedom, exp[ — $v0(r12)] increases, 
and v0(r12) decreases. Finally, beyond r 1 2 = cr + L, the molecules can 
rotate completely freely, exp[ — |3t;0(r12)] = 1, and v0(rl2) = 0. 

By using Equation 17, Equations 9 and 10 become 

vy(l2) = (1 - exp{-p[u(12) - t>o(r12)]})/0 (26) 

1 (̂12) = K(12) (27) 

These yield the final form of Equations 23-25: 

[82A]0 = - £ HIAe(12)[8j/(12)]0dB1dR2dR3 (28) 

[8g(12)]0 = Ae(12)y0(rl2) 

+ p exp [ — Pt>o(r12 

)]jy0(rl,r2,r3){e0(r13)Ae(23) 

+ e0(r23)Ae(13)}dR3 (29) 
[8j/(12)]0 = pjy0(rur2,r3){e0(r13)Ae(23) + e0(r23)Ae(13)}dR3 (30) 

where 

J/ofo, r 2, r3) = exp{p[t;0(r12) + t>0(r13) + t;0(r23)]}g0(ri, r 2, r3) (31) 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 243 

Figure 1. Reference system pair potentials for the homonuclear hard 
diatomic system with L/a = 0.5. Key: , from Equation 21 using a 
center-of-mass molecular coordinate system; and , from using a 
coordinate system in which the reference points in each molecule are taken 
at the centers of hard spheres. (Reproduced with permission from Ref. 

45. Copyright 1979, North-Holland Publishing Co.) 

Ae(ij) = e(ij) - e0(r{j) (32) 

We immediately note that in first-order, because of Equation 21, 
the angular averages of [8g(12)]0 and [8t/(12)]0 vanish in their respective 
expansions. This means that, to first-order terms, 

ig(^))^2 = gooo(n2) = go(r12) (33) 
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244 MOLECULAR-BASED STUDY OF FLUIDS 

using the g-expansion, and 

<y(12)>„ l f t t a = J/oootaa) = JtoOu) (34) 

using the (/-expansion, where X ^ denotes the 000-spherical harmonic 
coefficient of the quantity X (See next section). It should be noted, how­
ever, that if the (/-expansion is used to calculate g(12), via 

g(12) = exp[-pu(12)](t/0(r12) + [8y(12)]0 + . . .) (35) 

then Equation 33 holds only in zeroth-order. 
Finally, in order to numerically evaluate the above expressions, we 

must make some approximation to the triplet term, y0(ri,r2,r3). In all 
the calculations made to date, we have used the superposition approx­
imation 

yo(ri,r2,r3) = y0(r12) y0(rl3) y0(r23) (36) 

This type of approximation in similar integrals produces accurate results 
(29). 

Final expressions suitable for numerical computation have been ob­
tained to date only for linear molecules. Expanding Ae(ij) in spherical 
harmonics and simplifying the results, Equations 29 and 30 become 

[8g(12)]0 = Ae(12)y0(r12) + e0(r12)[by(12)]0 (37) 

[8y(12)]0 = 2irp«/0(r12) £ (2l+iy%(r12)[Pl(cos 8}2) 

+ P,(cos e2
2)] (38) 

where 

Ji(r 12) = r?3y0(rl3)em(rl3)drl3 Jo 

• \[ Hx)K{(r\2 + r? 3 - 2rl2rl3xy/2}dx (39) 

Subscript ij denotes that the polar axis is along the line joining the centers 
of particles i and j, e/oo(ry) is the 100 spherical harmonic coefficient of 
e(ij), and Fz is a Legendre polynomial. 

We see from these expressions that, to first-order, y(12) is inde­
pendent of the azimuthal angle c))12, and that, using either the g or the 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 245 

y expansion, the dependence of g(12) on 4>12 arises only from the Boltz­
mann factor. 

The final expressions for g(12) are given, to first-order, by 

gRAMc(12) = y0(rl2){e(12) + e0(rl2)yi(12)} (40) 

gRAMv(12) = t/0(r12)Ml2) + ^12)̂ (12)} (41) 

where 

yi(12) = [ot/(12)]0/t/0(r12) (42) 

Orientational Structure of Molecular Fluids. R E D U C E D PAIR C O R ­
RELATION FUNCTIONS. Since, even for linear molecules, g(12) is a func­
tion of four variables (one distance and three angles), it is impractical to 
compute and store it over a densely spaced set of points in any computer 
simulation of such a system. Two representative subsets of g(12) have 
thus been computed, spherical harmonic expansion coefficients, g&m(r12), 
and radial slices through the g(12) surface at fixed orientations, gn(r). 

The spherical harmonic expansion of g(12) for linear molecules, using 
molecule-fixed coordinates in which the z axis is taken to be the line 
joining two reference points, one in each molecule, is given by (48) 

g(12) = 4TT 2 g^(r12)Y^(o)1)Y(m(o>2) (43) 
k,l,m 

where m = — m and Ylm is a spherical harmonic, defined by 

"Ue,<t>) = 
4ir(J+|m|!) 

P,m(cos 6) e i m* (44) 

Ptm is the associated Legendre polynomial, defined by 

sinmfl dt+m 

P ^ ^ — ^ - ^ J o o s H - V (45) 

for l,m 3s 0, and 

P,,_m = (-l)mPlm (forZ>0) 

and (46) 

Plm = 0 (for I < 0) 
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246 MOLECULAR-BASED STUDY OF FLUIDS 

Since P / m is defined in terms of the derivative of order l + m of a poly­
nomial of degree 21, it vanishes unless |ra|̂ Z. The spherical harmonics 
{Yg} form an orthonormal set over the sphere, satisfying 

J^<t> J o c o s e ) YdQ.WJPA) = 8 i ( tsm n (47) 

where b{j is the Kronecker delta. 
The spherical harmonic coefficients are thus given by 

Sklm(ri2) 
= JJg(12)Y^(co1)Y/m(a>2) dMaldia2/4m 

1 f l 

gkiJrl2) = - J o d$i2 J_ id(cos6i) 

• \[ rf(cose2)g(12)Y,-(ei;0)Y(m(e2><(>12) (48) 

If the reference points are at the centers of mass, and the molecules are 
symmetric with respect to this point, then, since 

g(r i2, 81, 62, <|>12) = g ( r l 2 ^ Y , i : - Q 2 , 2 i ; - ^ l 2 ) 

= g ( r l 2 ^ - ^ ^ ^ - ^ > 1 2 ) (49) 

only even values of k and / yield nonvanishing harmonic coefficients and 

gklmiXm) = gikm(rl2) (50) 

Finally, using further symmetry considerations, the coefficients may be 
evaluated numerically via 

gkim(rl2) = 4 ^ d ^ l 2 J V o s O : ) J ^ c o s e 2 ) g ( 1 2 ^ (51) 

Examination of typical computer simulation results for gUm, illus­
trated for homonuclear hard-sphere diatomics (HOHD) in Figure 2, shows 
that the initial maximum (or minimum) in g k i m occurs at approximately 
the same location as the first peak in gooo(r). In addition, in computer 
simulations, computations may be arranged in such a way that the primary 
statistics calculated in the course of determining g k l m are actually the 
ratios of g k l m to gooo (30-37) via 

gkiJr) = 47Tgooo(r)<Y^-YZm)shell (52) 
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248 MOLECULAR-BASED STUDY OF FLUIDS 

where (X(12))shell denotes an average over all orientations in a narrow 
radial shell at the distance r from a central molecule. More precisely, 

fcfrrtx Jrfco2X(r12,<o1,co2)g(12) 
/do*! Jdco2g(12) 

(X(12))shell = r j (53) 

Finally, Melnyk and Smith (38) have shown that the ensemble averages 
in Equation 52 satisfy some exact asymptotic results. For these reasons, 
it is appropriate to investigate the behavior of the reduced spherical 
harmonic coefficients, g£ m (r) , defined by (38) 

gtiJr) = gWm(r)/gooo(r) (54) 

Some typical results for the reduced harmonic coefficients are shown in 
Figure 3, where it is seen that they are much more smoothly varying 
functions of r than the unreduced coefficients, especially at small dis­
tances. 

Reduced full pair correlation functions, g*(12), may be similarly 
defined, via 

g*(12) = g(12)/go0o(r12) (55) 

In Figure 4a and 4b, we show some results for g$ for H O H D , obtained 
from the computer simulation results of Cummings et al. (39). 

One of the most important aspects of the reduced correlation func­
tions is the fact that they obey some exact asymptotic results for molecules 
that are restricted to adopt a unique relative orientation at closest ap­
proach. For example, H O H D are restricted to adopt the crossed ori­
entation (Q1 = 02 = c|>12 = IT/2) at the minimum closest approach distance, 
rr, where 

In this case, 

rc = (a 2 - L2/2)1/2 (56) 

* , v 47Tf/g(12)Yfe-(co1)Yfm(<o2)rfco16Zco2 

g U r ) = //g(12)<*V<o2
 ( 5 ? ) 

As r approaches rc from above, the numerator and denominator of Equa­
tion 57 both approach zero. However, the mean-value theorem for in­
tegrals allows the cancellation of the g(12) terms in the limit of closest 
approach, yielding (38) 

lim gfjr) = 4TT Yx
m Yx

lm (58) 

r l rc 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 249 

L< = 0.4 L* - 0.6 

+ 0.5 -

J I I L 

1.0 1.2 1.4 1.6 1.0 1.5 2.0 

r * r * 

Figure 3. Reduced spherical harmonic expansion coefficients for the 
homonuclear hard diatomic fluid at the same density for two of the elon­
gations in Figure 2. Key: ®, asymptotic limit of Equation 58; other symbols 
as in Figure 2. (Reproduced with permission from Ref. 38. Copyright 

1980, Taylor and Francis, Ltd.) 
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250 MOLECULAR-BASED STUDY OF FLUIDS 

g 

1.0 1.5 2.0 
Figure 4a. Reduced g(12) as a function of distance for homonuclear hard 
diatomics at L * = 0.6 and p* = 0.5. Key: crossed orientation; +, 

parallel orientation; h, T-shaped orientation; and , (eooo)'1. 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 251 

1.10 

Figure 4b. Results at small distances on a logarithmic scale. Key: —, 
closest approach distance in the parallel orientation; other symbols as in 

graph 4a. 

where X denotes the crossed orientation. Equation 58 is an exact result, 
and hence may be used to test the accuracy of computer simulation 
results; Figure 3 shows the limiting values, with which the simulation 
results appear to agree. 

A related result may be obtained for g$(r) (40). For H O H D , we 
have 

g*(r) = 
167T2t/x(12) 

ff e(12) y (12) d^dtoz 
(59) 

Since, for small values of r, the only contributions to the integral in the 
denominator arise from values of y(l2) near the crossed orientation, we 
have 

gx(r) * [eoooM]"1 (r-*rc), (60) 

which means that g*(r) approaches the quantity on the right side asymp­
totically. It is seen in Figure 4b that Equation 60 is remarkably accurate 
for values of r greater than rc, indicating that the dependence of y(l2) 
on relative orientation is not overly strong at small distances. In addition, 
the close agreement of the crossed and parallel ga results in Figure 4b 
indicates that y(l2) is relatively independent of <t>12 at 6i = 6 2 = ir/2. 
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252 MOLECULAR-BASED STUDY OF FLUIDS 

Even when the molecules are not restricted to adopt a unique ori­
entation at the minimum closest approach distance, approximate results 
analogous to Equations 58 and 60 may be obtained. For example, for 
hard spherocylinders (41), if we neglect the dependence of t/(12) on <j>12, 
then Equation 58 becomes 

lim gflm(r) ~ 5m0{(2* + l)(2l + 1)1^(0)^(0) (61) 
rl 1 

and Equation 60 continues to hold approximately. In Figures 5 and 6 
are shown some typical gflm and g$ for hard spherocylinders, using the 
computer simulation results of Nezbeda (37). Equation 61 is obeyed quite 
well, further indicating that the dependence of t/(12) on <]>12 is not overly 
strong at small distances. 

0.0 
9200 

-1.0, 

1.0 
9220 

0.0 

1.0' 
9400 

0.0 

»7 = 0.30 
y = 2.0 
t] = 0.3879 r] = 0.50 

1.0 2.0 

- i 1 1 1 1 — r 

_ i i i i _ -Hh 

i — i — i — i — i — i — r -

1.0 2.0 1.0 2.0 
r/o 

Figure 5. Reduced spherical harmonic expansion coefficients for the hard 
spherocylinder fluid. Key: computer simulation results (37, 65); —, 
RAMY(0) results; , RAMY(l) results; M, the approximation of Equa­
tion 61. (Reproduced with permission from Ref. 41. Copyright 1981, Taylor 

and Francis, Ltd.) 
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5 . 0 

1 . 0 

3 . 0 

2 . 0 

1 . 0 

FIGURATION 

y = 2 . 0 

rj = 0 . 3 8 7 9 

T - S H A P E CONFIGURATION 

y = 1 . 6 

rj = 0 . 3 8 7 3 

y = 2 . 0 

r) = 0 . 3 8 7 9 

1 . 0 1 . 3 2 . 0 1 . 0 1 . 5 

r/o 
2 . 5 

Figure 6. Radial slices through the reduced g(12) surface for the hard 
spherocylinder fluid. Key: •, computer simulation results of Nezbeda (37); 
—, RAMY(O) results; and , RAMY(l) results. (Reproduced with per­

mission from Ref. 41. Copyright 1981, Taylor and Francis, Ltd.) 

For non-hard-core molecules, similar approximate results may be 
obtained; their degree of accuracy depends on the particular molecular 
model considered. Further results of this type will be discussed in the 
section on comparison of R A M theory with computer simulation. 

R A M THEORY RESULTS. The full g(12) for any intermolecular sep­
aration and orientation may be calculated from Equations 40 or 41 and 
42 of the previous section. The spherical harmonic coefficients are given 
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254 MOLECULAR-BASED STUDY OF FLUIDS 

by (38) 

= y0(r){ekim(r) + 2irpe0(r)5m0[8to/((r) 

+ W*(r)]} (62) 

gRAMY,fcZm to = yo(r)[eklm(r) + (r)] (63) 

where RAMG and RAMY denote, respectively, the RAM theory results 
using the g and y expansions, and 

i+k i+l 
2 ejlm(r)Qkijm + 2 ejkm(r)Qlijm 

j=H-k\ j=n-i\ ViMmir) = P 2 / i t o 
t>0 

In the above, r denotes r 1 2 , and the quantity () is given by 

Qnijm = 4TT 3 / 2[ Yn-(co)Yio(co)Y,m(co)rfco 

(64) 

(65) 

Q can be expressed directly in terms of factorials (42, 43), or in terms of 
Clebsch—Gordon coefficients 

2TT 
(2i + l)(2j+l) 

(2n + l) 
C(jin,mOm)C(jin,000) (66) 

using the convention of Rose (43). 
As special cases of the above results, we have 

gRAMG.OOoM = goW 

gRAMY,OOoM = go(r) l + 4TTP2^oo(r)/̂ ) 

(67) 

(68) 

where e%o = e^le^. 
For completeness, we note that the spherical harmonics of y(l2) are 

given in the RAMY theory by 

!/RAMY,fc/rn to = tfotoB^iS^^o + 27rp[8fc0//(r) + 5/0/,(r)]} (69) 

No computer simulation results are available for ykim, although these 
would be useful, especially in view of the poor convergence of the ex­
pansion of g(12) in the repulsive region of the potential (30-37). 

We note that gRAMG,Wm yields a nonzero first-order contribution to 
only gfc()o (as is also true for y^MYMm). However, gRAMY,*/™ gives a nonzero 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 255 

first-order contribution to all gUm. If r is greater than the range of the 
angular-dependent part of the potential, then gRAMG.Wm a n d gRAMY,«m 
become identical, since at these distances the only nonvanishing har­
monic coefficient of e(12) is e^. * n general, for all gkim except those of 
the form g ^ , the zeroth-order RAMY and the first-order R A M G results 
are identical. 

The asymptotic results discussed previously, in addition to testing 
computer simulation results, can also be used as a basis for testing the­
ories. In the case of H O H D , for the zeroth-order R A M G theory, since 
g(12) = g0(r12), the asymptotic results are not obeyed. For the zeroth-
order RAMY theory, we have 

g^MY(12) = e(12)j/0(r12) (70) 

and hence that 

lim gU§Y,kim(r) = lim 
rirc rirc 

ekimir) 

(r) = lim eftjr) 
r\rc 

(71) 

which can be shown to be identical to the exact result of Equation 58. 
Similarly, Equation 60 is obeyed. In view of both these results, we expect 
the zeroth-order RAMY theory to yield good results at small r for g(12) 
in the case of H O H D . This is generally true, as shown later in this 
chapter. 

For the first-order forms of the theory, we have 

gRAMG,fcZmto = e%Jf) 

+ 27TP8m0g0(r)[5W)/z(r) + bl0Jk(r)] (72) 

. (1) (r) _ eJiJf) + yi,him(r)/e0Ur) n . 
&RAMY,klm\r) — ^ j 7~T~, 7~7 \<̂ ) 

1 + yi,ooo(r)/eooo(r) 
where i / 1 ) W m is given by Equation 64. We see that the first-order R A M G 
theory cannot in general satisfy Equation 58 unless the second term on 
the right side of Equation 72 vanishes as r approaches rc. Since this term 
is always zero except for the Z:00 harmonic coefficients, the asymptotic 
result is obeyed for coefficients other than those of the form kOO. This 
is a further consequence of the fact pointed out earlier that, for all gkim 

except those of the form g ^ , the zeroth-order RAMY and the first-order 
R A M G results are identical. The first-order RAMY theory will satisfy 
Equation 58 only if 

hm yl>klm(r) = lim [eftjr) ylt0O0(r)] (74) 
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256 MOLECULAR-BASED STUDY OF FLUIDS 

and this is unlikely to be true in general. Even though these expressions 
do not satisfy the asymptotic results exactly, they may approximate them 
well numerically. We will examine this later. 

Similarly, for H O H D , the zeroth-order RAMY theory satisfies Equa­
tion 60 exactly. The zeroth-order RAMG theory does not satisfy this 
result, and the first-order RAMG theory is again identical to the zeroth-
order RAMY theory for g x . For the first-order RAMY theory, 

If the second terms in the numerator and denominator of Equation 75 
are small, then the asymptotic result will be obeyed approximately. 

Numerical results for the tests of Equations 58 and 60 are given 
later in this chapter. 

Alternative Molecular Coordinate Systems for Molecular 
Fluids. The relative position of two molecules is described by the dis­
tance apart of suitably chosen reference points in the molecules and the 
orientations of one or more intramolecular axes with respect to the line 
joining the two reference points. For homonuclear diatomics, for ex­
ample, most computer simulation studies to date have used the coor­
dinate system in which the reference points are chosen to be at the 
molecular center of mass. The relative molecular positions are described 
by the center-of-mass distance, the angles 0̂  made by the molecular axes 
of each molecule with respect to the line joining the centers of mass, 
and the angle <|)12 between the planes formed by the molecular axes and 
the center-of-mass line. 

However, the location of the reference points in each molecule need 
not be restricted to the centers of mass, and it is clear that any convenient 
locations provide a valid coordinate system and a g(12) with respect to 
this coordinate system. For any of these coordinate systems, g(12) may 
be obtained from that in any other by means of appropriate transfor­
mations. Although the RAM theory was originally developed with the 
center-of-mass coordinate system in mind, g(12) discussed in the previous 
sections of this paper may be taken to refer to an arbitrary coordinate 
system with arbitrarily chosen reference points in each molecule, pro­
vided that these lie on the axis of rotational symmetry. 

In general, for any physical problem, an appropriately chosen co­
ordinate system may considerably simplify subsequent calculations. For 
example, if the moment of inertia of a rigid body is not calculated with 
respect to the principal axes, it has, in general, nine nonvanishing com­
ponents rather than three. For site-interaction molecules, a convenient 
choice of location of the molecular reference points is at the centers of 

i>0 (75) 

t>0 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

11



11. SMITH AND NEZBEDA RAM Perturbation Theory 257 

atomic sites. This gives rise to a pair correlation function denoted as 
GaP(12), wherein the reference points are at atomic sites a and (3 in each 
molecule. Such a coordinate system was first suggested by Nezbeda (44). 
Like g(12), GaP(12) may be expanded in spherical harmonics, and one of 
its properties is 

<G^(12))Mi,W2 - GSfe(r) = gaP(r) (76) 

where g a p is the conventional site-site distribution function, whose cal­
culation is addressed by the RISM theory (14), and for which computer 
simulation results are available (30-36). We note that, in general, even 
for homonuclear diatomic molecules, many of the symmetry properties 
are associated with the choice of reference points at the molecular centers 
of mass; for example Gg^ =/= Gf*j^ in general. One of the advantages of 
using such a site-centered coordinate system for site-interaction molec­
ular fluids is that the equation of state is directly related to a single 
spherical harmonic coefficient, in contrast to the case for the center-of-
mass system, as we shall see in the next section. 

All the RAM theory expressions given earlier remain formally un­
changed in the site-centered coordinate system, as do the general expres­
sions for the spherical harmonic coefficients of GaP(12). Only the details 
of the reference system potential, v0(r), defined in Equation 21, are 
different. In Figure 1 are shown the different v0(r) for the H O H D system 
using the center-of-mass and the site-centered coordinate system (45, 
46). Note especially the apparent cusp in v0 for the latter coordinate 
system, which produces a cusp in g0(r). Another interesting feature of 
t;0 is its finite value at the hard core. This property is responsible for the 
complicated dependence of g 0 on density (47). 

Equation of State. The equation of state is given in general by 
(48) 

v'p = 1 - f / / G - ( 9 1 ' ^ ^ ( 7 7 ) 

where Gm is a general pair correlation function referring to a coordinate 
system with the position and orientation of molecule i being denoted by 
q{. Then u(ql,q2) is the pair potential in that coordinate system, and R 1 2 

is the distance between two reference points of the molecules 1 and 2. 
If the center-of-mass coordinate system is used, and the pair cor­

relation function and the derivative of the potential are expanded in 
spherical harmonics, one obtains in general (35) 

3P/p = 1 - 2^p/3 £ [* ^ T 2 g " » r 3 d r (78) 
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258 MOLECULAR-BASED STUDY OF FLUIDS 

Alternatively, the equation of state can be computed by using a site-
centered coordinate system, which yields the much simpler result (49) 

PP/P = 1 - 2TTpp/3 X r (r){rg„p(r) - 31'2[RaG1t,(r) 

~ RPG0f0(r)]}r2 dr (79) 

where R( is the intramolecular distance between the interaction site and 
the center of mass of molecule i. For hard-sphere interaction site models 
(ISM), Equation 79 becomes 

pP/p = 1 + 2 V 3 2 cr 3
p g a P(a a P){l - 3 1 / 2[R aG*^(a a P) 

- RpG0Yop(aaP)]/aap} (80) 

Equations 79 and 80 involve only a single harmonic coefficient of GaP(12), 
in contrast to Equation 78, which requires all harmonic coefficients of 
g(12) as well as of the potential. 

The equation of state may be calculated by means of the RAM 
perturbation theory by substituting the appropriate results in Equations 
78 or 79. Since the main contribution in Equation 79 arises from the 
region of small r, the reduced zeroth-order RAM theory may be usefully 
employed, which produces the especially simple result given by 

PF/p = 1 - 2TTPP/3 2 f* gaP(r){r - 3ll2[Raet$?(r) 

- Vo*iop(r)]}r2 dr (81) 

Equation 81 requires only the site-site distribution functions, g a P . 
Finally, the equation of state may be calculated by differentiating 

the Helmholtz free energy. In the RAM theory, this is given from the 
results in the section on RAM theory by (41) 

P (A-A 0 ) /N = - 4 T T V 2 P r^eUr)y0(r)h(r) dr (82) 
k>o Jo 

which, in the first-order RAM theory, is numerically equivalent to 

(3(A-A0) = - ̂  JJm12) exp[|3ti(12)]g(12) dR,dR2 (83) 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 259 

Finally, Smith and Nezbeda (41) employed the approximation 

g(12) = gLMv(12)go(r12) (84) 

in Equation 83, where g R A M Y is the reduced total pair correlation function 
obtained from the first-order RAMY theory, yielding 

0 (A-A o ) = - 4 V 2 f r W r ) ! f o t o / t ( r ) ^ dr (85) 

In a later section in this chapter, we will show results obtained from 
these different routes for the equation of state, where they will be com­
pared with computer simulation results for various molecular fluid models. 

Comparison of RAM Theory with Computer Simulation Results 

Results for goooto. Smith et al. (50) calculated gooo(r) using zeroth-
order RAMY (which is identical to first-order RAMG) for the fluid of 
hard spheres with imbedded point quadrupoles. They used the Barker-
Henderson perturbation theory for simple fluids (3-5) to compute g0(r). 
Good results were obtained up to very large reduced quadrupole mo­
ments. Figure 7a shows the dependence of v0(r) on the quadrupole mo­
ment, and Figure 7b shows some typical results for g(r) = goooto- Smith 
(51) performed similar calculations for Lennard-Jones atoms with imbed­
ded point dipoles, quadrupoles (LJQQ), and anisotropic overlap forces, 
and obtained similar good agreement up to large anisotropics. 

Nezbeda and Smith (52) and Labik et al. (53) considered the cal­
culation of gooo for H O H D , Smith and Nezbeda (41) studied hard sphero­
cylinders (HSC), and Melnyk et al. (54) and Quirke et al. (55) considered 
Lennard-Jones diatomics (LJD). In all of these cases, the result g 0 = 
gooo w a s shown to be quite accurate. 

In the cases of H O H D and HSC, convenient analytical approxi­
mations may be obtained for v0(r). For H O H D , Oelschlaeger (56) showed 
that 

exp[-Pfj0(r)] = 2(1 + L - r)2(2 - L + r)/(3L2r) 

for 

- L + V l - L2/4 = fi ^ r ^ 1 + L (86) 
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260 MOLECULAR-BASED STUDY OF FLUIDS 

where r is measured in units of a. For small r, the following approximate 
result may be obtained (57) which is asymptotically valid as r approaches 

exp[-0t>o(r)] = (2/3<TT)(B/LR)2 sin- 1 (2B/L 2 ) ; rc ^ r < 1 (87) 

where 

B = R2 - (1 - L 2/2) (88) 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 261 

I I I I I I I I l_ 
1 1.1 1.2 1.3 1.4 

r/o-

Figure 7b. Results for g(r) = gooo(r) • The reduced quadrupole moment, 
Q*, is 1.000. Key: o, experimental Monte Carlo results; , theory and 

—, hard spheres. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

11



262 MOLECULAR-BASED STUDY OF FLUIDS 

Kohler et al. (58) employed Equation 86 and constructed an ap­
proximation that went smoothly to zero at rc and that agreed with Equa­
tion 86 and its first two derivatives at rv This yields 

vhere 

exp[-0t?o(r)] = a 2 Ar 2 + ^ A r Y A ^ + a 4Ar 4/Arf (89) 

Ar x = r - rc 

Arx = rx - rc 

a2 = 8/2 - 37 + 6|x 

a3 = - 8 + 57 - 8ji (90) 

a4 = 8/2 - 27 + 3|x 

8 = r(2 + 3L - L 3 + r3)/(3L2r3) 

7 = [4(1 - r?) + 6L(1 + rf) - 2L3)/(3L2rf) 

u, = ( r i )- 2 [l - 2(1 + L - r,)2(2 - L + r ^ L V J ] 

Equation 89 may be used to obtain exp[ - $v0(r)] over the entire range 
without appreciable error. 

For hard spherocylinders with ratio of length to breadth of 7, over 
the upper part of the range we have (57) 

r 2 — L — 1 
exp[ - pt;0(r)] = 

rL 

+ -^-[(1 + L - r)(L2/4 - 1) - l/3(r - L/2)3 

rL 2 

+ 1/3(1 + L/2)3] (91) 

for 

L/2 + (1 + L2/4)1/2 = r 2 ^ r ^ 7 

where L = 7 — 1 and r is measured in units of a. For small r, we have 
the asymptotically correct approximation 

exp[-0t;o(r)] = (2/ir)(r2 - ljtan" 1 (r) (92) 

for 

1 ^ r < (1 + L2/4)1/2 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 263 

Typical results for g 0 0 0 are shown in Figure 8, where it is seen that 
gooo(r) is given quite accurately by g0(r), except in the case of 7 = 2 and 
the extremely high density T| = 0.50. As noted previously, RAMY(O) 
and RAMG(l) both yield g0(r) = gooo(r). The main conclusion to be drawn 
from these studies is that the approximation 

is very accurate, and that this result is yielded by the RAMY(O) and 
RAMG(l) expressions. These studies also found that the first-order RAMY 
results generally produce a deterioration in the accuracy. 

Results for gWm(r). In this section, we discuss the results of the 
various forms of the theory, and draw some general conclusions. 

In Figure 2, we show some selected gkim(r) for H O H D . It is seen 
that RAMY(O) is quite accurate at small r. This is a consequence of the 
fact that RAMY(O) obeys the asymptotic results discussed in the section 
on orientational structure of molecular fluids. RAMG(l) is also quite 
accurate, and is everywhere superior to RAMY(l), except for g22o(r) a n d 
g400(r) at large r. Recall that, except for g ^ , RAMG(l) = RAMY(O). 

From the discussion above where it was noted that RAMY(l) gives 
poor results for g ^ , we conclude that this contributes to its poor per­
formance at small r in Figure 2. When the reduced harmonic coefficients 
are considered, as shown in Figure 3, the change in accuracy is dramatic. 
RAMY(l) is superior to all other forms of the theory, and produces good 
agreement with the exact results. Recalling the discussion on orienta­
tional structure of molecular fluids, we see that RAMG(l) fails to repro­
duce numerically the asymptotic result at closest approach, (especially 
in the case of g200) whereas RAMY(l) is only slightly in error at small r 
in all cases. We conclude from these results for H O H D that RAMY(l) 
is the superior form of the theory for gflm. 

In Figures 5, 9 and 10, we show selected g*Zm(r) for other model 
fluids. The agreement of RAMY(l) with the exact results is seen to be 
excellent, even, for example, in the case of HSC at 7 = 3. As for the 
case of H O H D , RAMY(l) is very accurate numerically at small r. 

For the LJQQ and LJD models, no exact asymptotic results exist 
at small r, mainly because there is no "closest approach distance" for 
such models. For the LJQQ model, the T-shaped orientation is favored, 
although not heavily so, except at very low temperatures (54). The asymp­
totic result corresponding to Equation 58, if the T-shaped orientation 
were uniquely favored, would be 

goooto = g0(r) (93) 

lim gklm(r) = 4irYT
k„YT

h (94) 
r | 0 
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T 1 / / 1 — i 1 1 1 I ' 1 « r 

1.0 1.5 1.0 1.5 
r/o 

Figure 10. Spherical harmonic expansion coefficients for the Lennard-
Jones diatomic fluid at p* = 0.5, T* = 0.59, and L* = 0.5471. Points 
are the computer simulation results of Streett and Tildesley (31). Key: —, 
zeroth-order RAMY results; , first-order RAMY results; and 
first-order RAMG result. (Reproduced with permission from Ref. 54. Co­

pyright 1982, Taylor and Francis, Ltd.) 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 267 

The resulting values are zero for the 222 harmonic and —2.50 for the 
220 harmonic. These would appear to be not inconsistent with the curves 
in Figure 9. However, the resulting value of zero for g 2 2 i would appear 
to be at variance with the corresponding curve in the figure. This may 
be because sufficiently small values of r are not displayed, or because 
the temperature is too high. For the LJD model, one would expect the 
crossed orientation to be heavily favored at sufficiently small separations, 
and hence that Equation 58 would hold in the limit r —» 0. In Figure 
10, the limiting values are indicated. It would appear that the simulation 
and theoretical results are approaching these. 

The main conclusion to be drawn is that g&m is most accurately given 
by RAMY(l). 

Results for g n . Computer simulation results for g n are available 
for the H O H D , HSC and LJQQ models. In Figures 4, 6, and 11, we 
show typical results. As can be seen, RAMY(l) is generally good in the 
case of the HSC models, although the agreement in the case of the 
T-shaped orientation begins to break down at large distances. For the 
LJQQ model, the agreement with computer simulation results is excel­
lent everywhere. 

The results of this and the preceding section suggest that g*(12) is 
given very accurately by RAMY(l). This suggests, in turn, that the ap­
proximation 

should be very accurate. We may combine this with Equation 93 to yield 
the further approximation 

where g 0 is the reference fluid pair-correlation function in the RAM 
theory. Equation 96 is to be preferred over Equation 95 if computer 
simulations are to be avoided and calculations are to be performed by 
using the theory from first principles. 

Results for G a p . Computer simulation results are available for 
Ggio f ° r t n e H O H D and LJD models considered previously, as well as 
for heteronuclear hard diatomics (HTHD) and symmetric hard triatomics 
(SHT), and for homonuclear diatomics whose atoms interact according 
to the purely repulsive part of the Lennard-Jones potential (RLJD). 
Results for G^ and G 2 0o are available only in the case of LJD. 

In view of the results discussed earlier for the center-of-mass co­
ordinate system, we would expect g a P = Ggio t o be accurately given by 
RAMY(O). In Figures 12-14 are shown a selection of results. 

g(12) = g0oo(r12)ggAMY(12) (95) 

g(12) = g0(r12)g*AMY(12) (96) 
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268 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 11. Radial slices through g(12) for the Lennard-Jones quadru­
polar (LJQQ) fluid at Q = 1IV2, T = 0.719, and p = 0.80. Key: o, 
computer simulation results of Gubbins (67); and , the zeroth- and 
first-order RAMY results. (Reproduced with permission from Ref. 54. 

Copyright 1982, Taylor and Francis, Ltd.) 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 269 

In the case of H O H D , shown in Figure 12, the results for g a p are 
uniformly excellent, even at the large elongation and high density. The 
RISM results, shown for comparison, are everywhere inferior to RAMY(O). 
The cusps (slope discontinuities) in the computer simulation results for 
g a P are reflected in similar discontinuities in v0(r), the reference system 
potential (shown in Figure 1). Apparently, v0 is qualitatively similar to 
the actual force field experienced by the molecular sites, especially at 
small distances. 

In Figure 13, we show g a p for the two models based on the Lennard-
Jones potential, LJD and RLJD. The results are again very good, similar 
to those for the H O H D model. 

For the SHT model shown in Figure 14, RAMY(O) is good for both 
gBB (which is identical to gooo in this case) and g A B , and poor for g^. 
RISM is of similar accuracy in the former two cases, and much better in 
the latter. 

The only models for which spherical harmonic coefficients are avail­
able from computer simulations are several LJD models, for which 
Giio and Ggfi) have been computed. In Figure 15 some results are shown 
for RAMY(O). As might be expected from the results for ggm, this is fairly 
accurate. 

Equation of State. The equation of state may be calculated by any 
of Equations 78, 79, 82, or 85. Equation 78 is not useful, since it requires 
all spherical harmonic coefficients of g and of the potential. 

For H O H D , Kohler et al. (17) used Equation 82 only. They used 
the Percus-Yevick theory (8) for the reference system and concluded that 
the RAM theory gave poor results. However, Smith and Nezbeda (41) 
showed that this poor performance of the RAM theory was likely due to 
using it directly instead of using it in reduced form. When Equation 85 
is used, the theory produces much better results, which are in very good 
agreement with the simulation data over a wide range of anisotropy and 
density, as shown in Table I. 

The most straightforward way to calculate the equation of state seems 
to be via Equation 79, or its simplified form, Equation 81. Nezbeda and 
Smith (49) considered Equation 81 for the equation of state, using the 
exact computer simulation results for gaP(r), and these are displayed in 
Tables II and III. 

The results are again seen to be excellent when the exact results for 
g a p are used. This indicates that GfoJf at contact, which is required in 
the calculation of the equation of state, is very accurate. In view of the 
fact that the RAMY(O) results in the center-of-mass coordinate system 
are very accurate at short distances for the H O H D model, this accuracy 
in the site-centered coordinate system at short distances is to be expected. 
The results for the SHT model (49) lead to similar conclusions. 

For the LJD and RLJD models, knowledge of G% is required over 
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1.0 1.5 2.0 2.5 

1.0 1.5 2.0 2.5 
r/o 

Figure 12. The site-site pair correlation function for homonuclear hard 
diatomics at the indicated state points. Key: o, computer simulation results 
of Morriss (68) (L/a = 0.5), Streett and Tildesley (30) (L/a = 0.4) and 
Chandler et al. (15) (L/a = 0.6); •, g^A, the simulation results for the 
BAM reference fluid; and , result of the RISM theory (15). (Repro­
duced with permission from Ref. 46. Copyright 1982, Taylor and Francis, 

Ltd.) Continued. 
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Figure 12. Continued. 
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REPULSIVE LENNARD-JONES DIATOMIC 

1.5-

1.0 
o o 

1.0 1.5 2.0 
rlo 

— i r-

2.5 

LENNARD-JONES DIATOMIC 

Figure 13. The site-site correlation functions of the RLJD and LJD fluids, 
at the state points (L*, T*, p*) = (0.5471, 0.524, 2.18) and (0.5471, 0.5, 
2.36) respectively. Key: o, computer simulation results of Streett and Til­
desley (31); and •, RAMY(O), obtained by means of the simulation results 
for the RAM reference fluid. (Reproduced with permission from Ref. 54, 

Copyright 1982, Taylor and Francis, Ltd.) 
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SYMMETRIC TRIATOMIC 0 J 0 . = 0.857 L/oA = 0.897 

0.7 • 

\ • M • 0 

1.0 1.5 2.0 2.5 

Figure 14. The site-site correla­
tion functions for the linear sym­
metric hard triatomic fluid. Key: o, 
simulation results of Streett and Til­
desley (33); RAMY(O) obtained by 
means of simulation results for the 
RAM reference fluid; and , re­
sult of the RISM theory. This figure 
is a corrected version of Figure 7 of 
Ref. 46, where the RISM results 
shown are incorrect. (Reproduced 
with permission from Ref. 46. Co­
pyright 1982, Taylor and Francis, 

Ltd.) 
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R/O 

Figure 15. Selected reduced spherical harmonic expansion coefficients 
for G(12) in the site-centered coordinate system for the Lennard-Jones 
diatomic fluid at (p*, T*, L*) = (0.622, 2.90, 0.329). Key: o, computer 

simulation results of Tildesley (69); and , RAMY(O) result. 

the entire distance range, rather than just at contact, as for the hard-
sphere ISM models. We show the results for the RLJD model in 
Table IV. 

Discussion and Conclusions 

We have seen that the RAM perturbation theory provides an ac­
curate tool for calculating the structural and thermodynamic properties 
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Table I. Equation of State of the Hard Spherocylinder Fluid 

P/pkT 

Zeroth-
Reduced Unreduced Order 

7 RAM" RAMb RAM0 RAMd 

1.4 0.20 2.47 2.48 2.48 2.44 
0.25 3.17 3.19 3.18 3.10 
0.30 4.12 4.15 4.11 3.95 
0.35 5.42 5.43 5.33 5.03 
0.40 7.22 7.12 6.89 6.41 
0.45 9.80 9.35 8.86 8.15 

1.6 0.15 1.98 1.99 1.98 1.95 
0.20 2.53 2.54 2.54 2.47 
0.25 3.26 3.29 3.26 3.11 
0.30 4.25 4.28 4.17 3.89 
0.35 5.60 5.57 5.32 4.84 
0.40 7.49 7.30 6.72 5.99 
0.45 10.17 9.64 8.39 7.36 

2.0 0.15 2.07 2.04 2.05 1.99 
0.20 2.67 2.63 2.63 2.50 
0.25 3.47 3.43 3.35 3.10 
0.30 4.56 4.43 4.21 3.78 
0.35 6.04 5.64 5.20 4.55 
0.40 8.10 7.19 6.32 5.40 
0.45 11.02 9.34 7.55 6.33 

a Calculated from Nezbeda equation of state (70). 
b First-order reduced R A M theory, obtained using Equation 85. 
0 First-order unreduced R A M theory, obtained using Equation 82. 
d Compressibility factor of the spherically symmetric reference fluid. 

of a wide range of molecular fluid models. The theory is most accurate 
if reduced structural quantities and the first-order form based on the y 
expansion are used. Somewhat surprisingly, this holds for all quantities 
except for gooo, for which the zeroth-order form of the theory is the most 
accurate. 

The least accurate part of the theory is apparently gooo- As noted in 
the discussion of this term, the first-order theory produces a deterioration 
compared to the zeroth-order results. For H O H D , however, the zeroth-
order theory is extremely accurate. For heteronuclear molecules the 
accuracy deteriorates somewhat, as shown in Figure 14. For molecules 
with attractive forces, for example LJD, the accuracy of the approximation 
gooo = go apparently deteriorates at large elongations (59). However, 
provided that an accurate gooo can be obtained from some other source, 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

11
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Table II. Equation of State of Hard Homonuclear Diatomics 

PP/P 

pd3 L* = 0.2 L* = 0.4 L* = 0.6 L* = 0.8 L* = 1.0 

0.3 2.01 2.04 2.13 2.26 2.46 
2.04 2.05 2.24 2.49 

0.4 2.59 2.64 2.78 3.01 3.36 
2.63 2.65 2.82 3.05 3.43 

0.5 3.36 3.49 3.67 4.05 4.62 
3.40 3.51 3.71 4.12 4.80 

0.6 4.45 4.59 4.95 5.48 6.40 
4.51 4.63 5.01 5.62 6.67 

0.7 5.95 6.21 6.69 7.52 8.95 
6.02 6.27 6.84 7.77 9.47 

0.8 8.02 8.42 9.23 10.54 12.64 
8.14 8.53 9.49 11.00 13.70 

0.9 11.17 11.67 12.87 14.88 18.06 
11.20 11.77 13.21 15.49 19.80 

Note: For each density, the first row is the Monte Carlo result of Streett and Tildesley 
(30). The second row is the zeroth-order R A M result, using Equation 81 and the computer 
simulation results for g a P . The term d is the diameter of a sphere having a volume equal 
to that of the molecule. At L* = 0.6 and pa 3 = 0.3, no result is shown since no ga(5(r) 
is available. 

Table III. Equation of State of Hard Heteronuclear Diatomics 

pp/p 

L/o a MCa BNb RAMC 

0.75 0.5 10.0 ± 0.7 9.74 10.38 
0.625 0.5 8.9 ± 0.65 8.65 9.04 
0.50 0.5 8.3 ± 0.6 7.92 8.45 
0.375 0.5 7.8 ± 0.6 7.46 7.80 
0.75 0.67 10.1 ± 0.7 9.88 10.52 
0.75 0.84 9.9 ± 0.7 9.73 10.31 

Note: All the compressibility factors are at the reduced density p* = pd3 = 0.78 
where d is the diameter of a sphere having a volume equal to that of the diatomic. 

a Monte Carlo data of Streett and Tildesley (32). 
h From the Boublik-Nezbeda semiempirical equation of state (71). 
c Zeroth-order R A M theory, using Equation 81 and the computer simulations results 

for 
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11. SMITH AND NEZBEDA RAM Perturbation Theory 277 

Table IV. Equation of State of the Repulsive Lennard-Jones Diatomic 
Liquid 

Parameters P(r7e 

L/o- per2 MD" RAMh 

0.5471 0.524 0.545 12.69 13.1 
0.610 13.48 13.7 

0.6288 0.500 0.320 8.56 9.1 
a Molecular dynamics data of Streett and Tildesley (31). 
b Zeroth-order R A M theory, using Equation 81 and computer simulation results for 

g a P (31). 

the reduced form of the theory provides an accurate route to computing 
the angular-dependent properties. One possible approach might be to 
use the RAM theory for the repulsive part of the molecular interaction 
and then to treat the attractive part of the potential as a perturbation to 
the nonspherical reference system. 

Since the reference fluid in the theory is spherically symmetric, its 
properties are readily computed in principle using relatively well-de­
veloped theories for such fluids. However, it is clear that these calcu­
lations must be very accurate in order to achieve good accuracy for the 
molecular fluid. To date, most of the calculations appearing in the lit­
erature and discussed in this review have used computer simulation 
results for g 0 for these reference systems, in order to provide unambig­
uous tests of the theory itself. This aspect of the RAM theory should 
serve to focus interest on the feasibility of rapidly and accurately com­
puting g 0 for simple fluids. Provided this is possible, the RAM theory 
will provide a practical tool for computing molecular fluid properties. 

The theory is currently being studied for molecular mixtures (60). 
Computer simulation results are available (61, 62) for such systems and 
the RAM theory provides one of the few theoretical means available for 
investigating such fluids. 

Another application of the theory which has not been investigated 
is for molecular fluids whose molecules are nonlinear. The working equa­
tions of this paper will require some revision for such cases. 

Finally, the theory is being investigated for the study of interfacial 
phenomena. Thompson et al. (63) have applied the theory to study vapor-
liquid interfaces, and Nezbeda and Smith (64) have studied hard diatom­
ics at a hard wall. 
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12 
The Contribution of High Frequency 
Intermolecular Motions to the Structure 
of Liquid Water 

PETER J. ROSSKY and FUMIO HIRATA1 

The University of Texas, Department of Chemistry, Austin, TX 78712 

A representation of liquid water structure obtained from a 
computer simulation in which the high frequency, hindered 
translational and rotational motions have been averaged 
out is analyzed with respect to geometrical and energetic 
characteristics of structure. The resulting average structure 
manifests a substantially higher degree of hydrogen bond­
ing than is apparent in the vibrating structure, and it is 
shown that the observations are consistent with the removal 
of thermal excitation from an underlying distorted hydro­
gen-bonding network. Inferences with respect to the inter­
pretation of structural variation in liquid water as a func­
tion of temperature and of perturbation by solutes are 
discussed, and it is suggested that such analyses can provide 
new insights into the molecular description of such systems. 

T H E MOLECULAR DESCRIPTION OF LIQUID WATER has been rapidly re­
fined over the last decade with the ever increasing use of computer 

simulation as a standard research tool (I). 
The structural and dynamical features of the liquid observed in 

simulation are in sufficiently good agreement with corresponding results 
from experimental studies that there is now little question that the sim­
ulation is rather faithful in its mimicry. Correspondingly, it has become 
possible to refine either or discard numerous structural inferences that 
had been made prior to the availability of this picture (2). 

Among the earlier pictures that appear to have survived rather well 
is the continuum, distorted-hydrogen-bond view employed by Pople (3). 
According to this view, the structure is treated as fully hydrogen bonded 
but with substantial geometrical distortions present in the hydrogen bond 
network. A refined but corresponding picture, based on a random net-

1Current address: NASAC, Nishikanda 2-3-18, Chiyoda-Ku, Tokyo, Japan 

0065-2393/83/0204-0281$06.00/0 
© 1983 American Chemical Society 
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282 MOLECULAR-BASED STUDY OF FLUIDS 

work description of the liquid intermolecular hydrogen bonds, has been 
developed in some detail by Rice and coworkers (4-7). 

The basic hydrogen bond networks characteristic of such descrip­
tions can be thought of in dynamical terms as corresponding to the so-
called V-structure of Eisenberg and Kauzmann (8). That is the structure 
that would be seen in the liquid if one averaged over the very rapid 
hindered local translational and librational motions, but not over the 
structural differences associated with net translational diffusion or re­
orientation. It is well established that the vibrational and net diffusional 
motions occur on well separated time scales (J, 8), and thus that such a 
picture is a physically interesting one. 

One of the goals of the present consideration is to characterize quan­
titatively the V-structure of the liquid. However, the motivation for 
refining the available description of the pure liquid is not limited to an 
interest in pure water per se. With reasonable models for pure water 
available (i), detailed studies have grown naturally into the description 
of solvation and of solvent mediated solute-solute interaction (I, 9-14). 
In such solution studies, an essential element in the proper analysis of 
phenomena is an accurate and detailed description of the bulk solvent. 
It is the latter that must serve as the basis for comparison in any discussion 
of solute induced effects. 

The purpose of the present chapter is to discuss the view of liquid 
water that one obtains from a realization of V-structure obtained from a 
computer simulation of the liquid (15) and to discuss some inferences 
that can be drawn from the results and that bear on solution structure. 
In the next section, we discuss the methodology employed in our study 
to obtain such a realization, and in the section on results we present 
representative results for the pure liquid structure. A further section 
presents a discussion of the implications regarding the study of both pure 
water and aqueous solutions. We include a consideration of hydrophobic 
and ionic hydration as well as comments on the interpretation of solvent 
isotope effects. The final section presents the conclusions. 

Methodology 

The numerical results presented here (15) were obtained from a 4-
ps molecular dynamics computer simulation of bulk water at a temperature 
of 281 K and a density of 1 g/cm3 using the ST2 potential (I) and a sample 
of 216 molecules. 

The transformation from the sequence of instantaneous positions 
(I-structure) generated by the simulation to those representative 
of V-structure involves some subtleties, which are discussed elsewhere 
(15). The basic procedure involves dividing the dynamical history into a 
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12. ROSSKY AND HIRATA High Frequency Intermolecular Motions 283 

number of segments, each of a length T a of the order of an intermolecular 
vibrational period. The desired information consists of the sequence of 
mean molecular positions, each mean obtained from an average over the 
time T a of each segment. The averaging of coordinates was carried out 
in the six-dimensional space consisting of the center-of-mass position and 
the Euler angles (<|>, 0, (16). From the mean center-of-mass positions 
and Euler angles obtained, we then recover a set of Cartesian coordinates 
for the sample of molecules. From the sequence of such sets, the analysis 
of the liquid structure proceeds in precisely the same manner as would 
analysis of the initial sequence of positions. 

The choice of T a , the averaging time, is dictated up to a point by the 
dynamics inherent in the liquid, as reflected in the power spectrum for 
translational and rotational motion (17). The present result is shown in 
Figure 1. In the figure, the separate components associated with center-
of-mass translational velocity and the rotational velocities of the principal 
axes are given. The librational motion is evident in the range from about 
50-200 ps" 1, while the hindered translations span the range from nearly 
zero to about 70 p s - 1 . The translational motions of highest frequency are 
apparently associated with local pairwise intermolecular vibrations (8, 17, 
18), while the strong feature at approximately 10 ps" 1 has been tentatively 
identified with three-body O - O - O bond-angle bending (4). 

I M 

0.06 

0.05 TA=0.2psec TA=0.lpsec 

1 1 
0.04 - / 

0.03 1 f\ X 

0.02 \y \ / *"—x 
\ / / > 

\ / / 

\ / / 
\ / / \A 
JK 

. z 

\ \ \ \ 
0.01 

\y \ / *"—x 
\ / / > 

\ / / 

\ / / 
\ / / \A 
JK " \ \ \ V v. 

* ^ x 

0 40 80 120 160 
a;(psec~ ) 

Figure 1. Velocity power spectra of single molecule for center-of-mass 
translational velocity (left-most curve) and principal axes rotational ve­
locity (x, y, z). (Reproduced with permission from Ref. 15. Copyright 1981, 

American Institute of Physics.) 
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If T a is chosen to be too small (say, T A — 0.05 ps) then it is clear 
that incomplete averaging of even the librational motion will occur. If 
T a is chosen to be large, say T a ^ 1 ps, then the averaging will incorporate 
significant net reorientation. Further, to average effectively over the 
slower, many-molecule vibrations (co ^ 10 p s - 1 , T ^ 0.6 ps - 1 ) would 
require an averaging time of at least 0.6 ps, and preferably longer. Since 
such times are not widely separated from the time over which net re­
orientation occurs, nor from estimates of hydrogen bond lifetimes (T — 
0.6 ps) (19), we have averaged only over the rapid librational motions 
associated with hindered rotation and, accordingly, the more rapid trans­
lational motions associated with pairwise vibrations. This suggests an 
averaging time T a in the range of about 0.1 to 0.2 ps, indicated in Figure 
1; for T A — 0.2 ps, even the slowest librations experience roughly two 
periods. In the following analysis we have examined both T a = 0.1 ps 
and T a = 0.2 ps, with primary emphasis on the latter. For T a = 0.2 ps, 
one obtains 20 V-structure configurations from the 4-ps simulation. 

Results 

In this section we describe the results obtained from an analysis of 
the generated V-structure and compare them with a corresponding analy­
sis of the original simulation (I-structure). We consider both geometric 
and energetic measures of structure. 

Geometric Analysis of V-Structure. We consider first intermolec­
ular atomic radial pair correlation functions. In Figure 2 we show the 
results for g0o( r) and gHH(r)- The solid line shows the result obtained 
from the original simulation and corresponds to that obtained in previous 
studies (20). The average structure obtained using T a = 0.2 ps, and the 
corresponding result for T a = 0.1 ps are both shown. Beyond r O Q = 3.5 A 
and r H H = 4.5 A the three cases are indistinguishable, a result con­
sistent with the longer time scale associated with the response of weaker, 
longer range correlations (21). 

The averaging over rapid nearest neighbor vibrations leads to the 
expected predominant effect in these results, namely, a narrowing of the 
peaks associated with nearest neighbor molecules. This result is in agree­
ment with earlier interpretations of O - D and O - H Raman bands (18). 
From a comparison of the results for T a = 0.1 ps and T a = 0.2 ps, it is 
also clear that the change associated with the vibrational averaging is 
basically developed after 0.1 ps, although some additional narrowing 
occurs for the larger value of T a . That some further narrowing occurs is 
not surprising, since (see Figure 1) the larger value incorporates a sig­
nificantly larger portion of the hindered translation region of the power 
spectrum. 

In accord with the averaging over librational motion, one expects 
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(r) 

Figure 2. Intermolecular atomic radial pair correlation functions for 
0-0 pairs (left) and H-H pairs (right). Key: —, I-structure; -—, V-struc­
ture, T A = 0.2 psj and •, V-structure, T A = 0.1 ps Beyond rQO = 3.5 A 
and r H H = 4.5 A, the three cases are indistinguishable, and only one is 
shown. (Reproduced with permission from Ref. 15. Copyright 1981, Amer­

ican Institute of Physics.) 

that the linearity of hydrogen bonds should be correspondingly en­
hanced. The relevant angle is 6O Ho formed by the pair of oxygen atoms 
and the shared proton. To avoid an a priori biasing of the results toward 
linear hydrogen bonds (e.g., by considering only pairs of molecules that 
are hydrogen bonded according to an energetic criterion), we consider 
all nearest neighbor pairs of molecules, with O - O separations less than 
3.5 A. For each pair, that proton (of the four associated with the molecular 
pair) which is nearest to the O - O line is located, and the angle 0 O H O is 
evaluated with that proton. This procedure does not discriminate against 
librationally distorted pairs. There is, however, a natural bias against 
acute angles (cos 8 > 0), which is associated with the choice of the single 
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286 MOLECULAR-BASED STUDY OF FLUIDS 

proton nearest to the O - O line; hence we expect almost no density for 
positive values of cos 0. The calculated distribution is given in Figure 3. 

The strongly hydrogen bonded pairs occur in the neighborhood of 
cos 6 = — 1 (linear hydrogen bonding), and as expected there is a sub­
stantial narrowing of the distribution. That is, the V-structure has sig­
nificantly straighter hydrogen bonds; the occurrence probability of a 
linear hydrogen bond is enhanced by approximately 50%. 

The shoulder in the distribution of Figure 3, centered at cos 0 — 
0.5, is probably associated with the longest O - O distances included in 
this distribution, and correspondingly with nonbonded molecular pairs. 

Figure 3. Probability distribution function for hydrogen bond angle 9OHo • 
Key: —, I-structure, rOQ < 3.5 A; — , V-structure, T A = 0.2 ps and rOQ 

< 3.5 A; and V-structure, T A = 0.2 ps and 3.5 A ^ rOQ ^ 4.2 A. 
(Reproduced with permission from Ref. 15. Copyright 1981, American 

Institute of Physics.) 
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To see this, we have evaluated the corresponding distribution for the 
region of O - O distances in the range 3.5 A < r O Q ^ 4.2 A (cf. Figure 2). 
This result is also shown in Figure 3 and overlaps quite well with the 
shoulder in the original nearest-neighbor distribution. 

Energetic Analysis of V-Structure. It is clear from the results given 
that the averaging procedure leads to a geometric structure with the 
anticipated sharpening of intermolecular bond length and bond angle 
distributions. However, although one expects correspondingly more neg­
ative hydrogen bond energies, it is not a priori clear how this will be 
quantitatively manifest in the structure. We therefore examine several 
energetic measures of the liquid structure. 

We consider first the distribution of pair interaction energies. Figure 4 
shows the probability of finding a pair of molecules interacting with a 
potential energy e. The notation corresponds to that in Figure 2. As is 
clear from the figure, in the V-structure the pair energies are shifted to 
more negative values (the peak by approximately 0.7 kcal/mol) and the 
distribution is somewhat sharper. The observed shift is qualitatively very 
similar to that found to result from a decrease in temperature in bulk 
water (20). As for the geometric analysis, we find that the energetic 
structure is not sensitive to the choice of T a . Corresponding behavior has 
been found in the distribution of molecular binding energies (15). 

A more graphic characteristic of the bonding structure is the pro­
portion of molecules participating in a given number of hydrogen bonds. 
As has been discussed elsewhere (17, 20, 22), such a quantity is not an 
absolute but depends strongly on the assigned definition of an intact 
bond. This is true both of geometric (6) and energetic criteria. For geo­
metric criteria, it appears possible to develop a less sensitive definition 
(6), which permits a bond to be defined in the Pople sense (3) even when 
intermolecular arrangements are highly distorted from the optimal en­
ergetic geometry. Such an approach is advantageous if one desires to 
construct a formal network theory (5, 6), but for the present purposes it 
does not offer any overriding advantages. Here we use the pair interaction 
energy as a criterion. However, we note that with a geometric definition, 
the numbers and locations of "intact" hydrogen bonds may vary sub­
stantially from that obtained using an energetic one, and these alterna­
tives can provide complementary descriptions. 

In Figure 5, we show, in the form of histograms, the results obtained 
for three different criteria for the most positive energy to be associated 
with an intact bond; the original simulation and V-structure are shown. 
Perhaps the most satisfactory energetic criterion is approximately 
— 4 kcal/mol; it has been shown (20) that the population for more negative 
pair-energies decreases with increasing temperature, while the popu­
lation for more positive pair-energies increases with increasing temper­
ature. The right-hand distribution in Figure 5 corresponds closely to this 
value. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

12



288 MOLECULAR-BASED STUDY OF FLUIDS 

f 

T / **** 

-6 -4 - 2 0 

€ (kcal/mole) 
Figure 4. Probability distribution for intermolecular pair interaction en­
ergy E . The key is the same as in Figure 2. (Reproduced with permission 

from Ref. 15. Copyright 1981, American Institute of Physics.) 

The results in the figure show the enhancement in the degree of 
hydrogen bonding in the V-structure. With increasing stringency of the 
energetic criterion, the enhancement also increases. For the most neg­
ative criterion, which is a reasonable choice, the change is dramatic; the 
number of unbonded molecules (n H B = 0) is reduced by a factor of four, 
and the number of four-bonded molecules is increased by a factor of 
three. 

The enhancement in the degree of hydrogen bonding has a corre­
sponding influence on the description of connectivity, via such bonds, 
in the liquid. As one measure of this, we have carred out an analysis of 
polygonal connectivity for the V-structure corresponding to that pub­
lished earlier by Rahman and Stillinger (22). We have evaluated the 
number of non-cross-linked (non-short-circuited) polygons of different 
edge sizes (n = 3-11), with edges formed by intact intermolecular hy­
drogen bonds. The analysis is carried out in precisely the same manner 

0.0132 
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as described in detail previously (22). An exhaustive search is made for 
polygons formed from sequentially connected molecules, and each poly­
gon is tested to assure that no two members of the ring are short-circuited 
by a series of one of more hydrogen bonds that connect them by a shorter 
route. 

A set of 20 configurations was used for the analysis, with resulting 
error estimates of about 10% for each population. The results are shown 
in Figure 6. The value Np gives the number of polygons of edge size n 
per liquid molecule. The I-structure results agree with those published 
earlier (22) within our estimates of statistical uncertainty. 

The connectivity analysis shows a dramatic increase in the frequency 
of ring structures in the V-structure, in parallel with the increase in the 
number of hydrogen bonds per molecule, shown above. For the most 
negative hydrogen bond criterion, the enhancement is more than 400%. 
It is therefore also fairly certain that other measures of connectivity, such 
as the percolation threshold (33), will manifest this change as well. 

- € = -2.727 - € = -3.333 

i 

t l 

r"i 
i 
i 

€= -3.939 

i 
i 

0 2 4 6 0 2 4 0 2 4 

HB 

Figure 5. Fraction f of molecules participating in nHB hydrogen bonds, 
for various definitions of the maximum energy associated with an intact 
hydrogen bond zHB. Key: —, I-structure; and —, V-structure, T A = 0.2 
ps. The hydrogen bond criteria are indicated above each histogram (kcall 

mol). 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

12



290 MOLECULAR-BASED STUDY OF FLUIDS 

€ = - 2 . 7 2 7 

0.2 

€ = -3 .333 
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n 

h 

€=-3 .939 
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4 6 8 10 
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Figure 6. Number of non-short-circuited hydrogen bond polygons N p of 
edge length n (per liquid molecule) for various hydrogen bond energy 
criteria Ehb. The key is the same as in Figure 5. (Reproduced with per­

mission from Ref. 15. Copyright 1981, American Institute of Physics.) 

We note that a study using a related methodology but having a 
different main objective from the present work has recently appeared 
(7); the quantitative results obtained from structural analysis appear con­
sistent with our own. 

Discussion 

In this section we consider the interpretation of the changes that 
are manifest after averaging out the high frequency intermolecular vi­
brations, and we consider the implications of this picture for solution 
phenomena. 

Pure Liquid. We first address the question of how best to view 
the physical origin of the enhanced intermolecular interactions in the V-
structure. It is clear that the existence of such enhancement is, at least, 
consistent with the averaging over rapid motion around a relatively stable 
point (a local minimum) on the many-body potential surface, so that the 
V-structure corresponds closely to that local minimum. If this is correct, 
it follows that the bonding characteristics observed for the V-structure 
with a given bond criterion e H B should correspond to that in the absence 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

12



12. ROSSKY AND HIRATA High Frequency Intermolecular Motions 291 

of averaging but with a criterion 6 H B that is more lenient by an amount 
typical of the energy associated with the vibrational excitation. 

To test this, we have reconsidered the bonding analysis presented 
above and, for representative cases, examined the dependence of the 
populations on eH B- The results are shown in Figure 7. The upper graph 
gives the fraction of molecules / participating in n hydrogen bonds for n 
= 2 and n = 4. The lower graph gives the polygon populations Np for 
polygons of edge sizes n = 5 and n = 9. I-Structure results and cor­
responding V-structure results are shown. The solid lines are simply 
smooth curves drawn through the I-structure values; the dashed curve 
is equivalent, but it is shifted to more negative values of e H B by exactly 
kBT (kB is Boltzmann's constant). The latter value is an expected typical 
thermal excitation energy. Except for the most lenient choices of eH B , 
the V-structure results conform rather closely to the adjusted I-structure. 

This comparison supports the view that the averaging procedure 
effectively averages out the local vibrational excitation and demonstrates 
that the V-structure is representative of the same hydrogen bond network 
structure as is the I-structure, despite the dramatic differences in the 
quantitative measures of the degree of bonding. 

We have noted that the qualitative effect of the vibrational averaging 
is comparable to that of a substantial change in temperature, at least for 
energetic properties. This view is consistent with the analogy invoked 
elsewhere (4, 8) between the structure of the liquid and that of amorphous 
solid water. Our analysis has demonstrated that the observed enhance­
ment in hydrogen bonding is, in fact, consistent with the removal of a 
typical thermal excitation energy from the intermolecular vibrational 
degrees of freedom. The residual disorder obtained here is, however, 
greater than that in the solid, particularly at longer range than nearest 
neighbors, a result of the time scale considered in the averaging (see the 
section on geometric analysis of V-structure). 

In light of this analogy, it is interesting to ask about the temperature 
variation of V-structure. Although we have not examined this aspect in 
the present study, the discussion above suggests that the quantities ex­
amined (e.g., the distribution of bond energies and numbers of bonds) 
obtained from the V-structure should be significantly less temperature-
dependent than are the corresponding features of I-structure. The re­
sidual dependence would reflect primarily the temperature dependence 
of the configuration of the underlying hydrogen bond network, rather 
than that of the degree of vibrational excitation present in that network. 
It is the former effect that leads, for example, to what Eisenberg and 
Kauzmann term the configurational contribution to the heat capacity of 
the liquid (7). Thus it appears that the present approach provides a fruitful 
avenue for the investigation of the structure of the pure liquid. 
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Figure 7. Hydrogen bonding description in V-structure and I-structure 
as a function of hydrogen bond energy criterion eHB. Top, fraction f of 
molecules participating in n hydrogen bonds; left, n = 2; right, n = 4. 
Bottom, number N p of non-short-circuited hydrogen bond polygons of 
edge length n; left, n = 5, right, n = 9. Key: I-structure; •, V-structure, 
T A = 0.2; , smooth curve drawn through the I-structure values; and 
—, equivalent curve, shifted by kBT. (Reproduced with permission from 

Ref. 15. Copyright 1981, American Institute of Physics.) 

Aqueous Solutions. As indicated in the introduction to this chap­
ter, one important motivation for the present study is to provide an 
information base needed to interpret aqueous solution phenomena. We 
comment here on several inferences that can be made at this point, 
although they are somewhat speculative. 

Considering first apolar solutes, it is interesting to note a similarity 
between energetic quantities observed here in V-structure and those 
observed in the structure of water in some recent simulation studies of 
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solutions of such solutes (9-13). In those studies, it has been generally 
observed that for water molecules vicinal to the solute, there is a small 
shift to more negative solvent-solvent pair interaction energies, and ap­
parently a slight sharpening of the corresponding distribution functions. 
This behavior is apparently enhanced for water molecules located be­
tween a pair of nonpolar solute molecules (9,11) and involved in a solvent-
separated hydrophobic interaction (24, 25). 

It has been suggested that the interaction between nonpolar solutes 
and water leads to a sharpening of the water-water pair correlation func­
tions (25). The similarity between the V-structure energetics and that of 
the solvation water is consistent with this view. The clathratelike ori­
entational structure associated with nonpolar hydration (26) arises from 
the inability of the solute to participate in hydrogen bonding. One cor­
respondingly expects that the local orientational potential associated with 
librational deformations in which a solvent hydrogen bonding group be­
comes increasingly directed toward the apolar solute should be typically 
narrower than that for a corresponding deformation in bulk water. The 
implication is that one would expect the associated V-structure to be 
geometrically more similar to I-structure for the solvation region than it 
is for bulk water. 

A corresponding argument can be made with regard to ionic solutes. 
That is, in solvation regions that are typically characterized as "structure 
broken" (27), because of balanced competition between solute-solvent 
and solvent-solvent interactions, one anticipates increased librational 
freedom, compared to the bulk. Correspondingly, we infer that the 
V-structure of such water regions should differ more from the I-structure 
than it does in bulk water. 

If these inferences are correct, the comparison of the solvent 
V-structures manifest by pure water and by various solutions should 
produce significant new insight into the molecular structure of these 
systems that is not readily available from an analysis of I-structure. 

A consideration of solvent isotope effects further supports the idea 
that V-structure may have substantial utility in describing solution struc­
ture. The difference between liquid H 2 0 and D 2 0 and between solution 
phenomena in the two solvents has been used by many authors as a 
probe of local molecular structure (28-33). It is important to note that, 
in the present context, the principal effect of the isotopic difference 
between the two arises from a difference in moments of inertia. The 
difference in total mass (affecting translational motion) is only about 10%, 
and differences in internal vibrational degrees of freedom affect solvent 
properties only indirectly. Further, one can account for the average 
differences in observed librational spectra between the two pure liquids 
simply in terms of the difference in the moments of inertia, without 
resort to changes in effective force constants (29). For lower frequencies 
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(see Figure 1) one expects that classical behavior will be a rather good 
description. In accord with this view, we are led to the conclusion that 
the V-structure evaluated from the classical trajectory should be a char­
acteristic of both D 2 0 and H 2 0 , while the classical I-structure is not 
truly characteristic of either. 

It is reasonable to suppose that the same connection can be made 
for solutions; that is, that the V-structure is a characteristic of both H 2 0 
and D 2 0 solutions. In fact, this hypothesis is supported by available 
experimental evidence (28-33). A description of transfer thermodynamics 
(H 2 0 —» D 2 0) obtained by including librational frequency shifts due only 
to changes in the solvent moments of inertia, and ignoring any possible 
differences in the underlying liquid structure, are consistent with ex­
perimental results (29). That is, for "structure making" solutes (27) (e.g., 
Li + , F~, and apolar solutes), near room temperature, the enthalpy and 
entropy for transfer are both typically negative, while for "structure 
breaking" solutes (larger univalent ions) the sign is reversed (28). Using 
a simplified model, and the isotopic differences in moments of inertia, 
these trends have been shown to be consistent with an isotope-
independent shift to larger effective librational force constants for the 
former case and smaller force constants in the latter (29). 

Conclusions 

We have presented results obtained from the analysis of a coarse­
grained dynamical average of a classical trajectory of liquid water. The 
results manifest a consistent picture of the liquid V-structure, and this 
picture is not sensitive to the averaging time within reasonable limits. 
The energetic structural features, which reflect most sensitively the short 
range structure, manifest a dramatic enhancement in the degree of hy­
drogen bonding. This enhancement has a substantial influence, for ex­
ample, on the degree of connectivity ascribed to the hydrogen bond 
network. 

The results obtained, and a comparison with previous observed be­
havior in both experimental and simulated aqueous systems, have led 
us to suggest a number of avenues where the analysis of V-structure may 
well be very fruitful. Each of these is based on the ability of such an 
analysis to separate librational excitation from the structure of the under­
lying network. These areas include the structural changes in pure water 
associated with changes in pressure and temperature, the solvation struc­
ture present in aqueous solutions, and the interpretation of solvent iso­
tope effects. 

Correspondingly, we expect that the dynamics of net translation and 
reorientation in aqueous systems can be profitably studied by focusing 
on the rearrangement dynamics of the V-structure. 
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The extension of the analysis employed in the present study to the 
investigation of liquid water and of model aqueous solutions along these 
lines is presently underway in our laboratory. 
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13 
Monte Carlo Computer Simulation 
Studies of the Equilibrium Properties 
and Structure of Liquid Water 

DAVID L. BEVERIDGE, MIHALY MEZEI, PREM K. MEHROTRA, 
FRANCIS T. MARCHESE, GANESAN RAVI-SHANKER, THIRUMALAI 
VASU, and S. SWAMINATHAN 
Hunter College of the City University of New York, Chemistry Department, 
New York, NY 10021 

This chapter reviews recent research studies of the struc­
ture of water at ordinary temperature and pressure and 
presents an opinion on the state of knowledge about this 
system. Current positions on the comparison between cal­
culated and experimental properties of liquid water are 
presented, as well as current interpretation of these results 
in terms of structure at the molecular level. The application 
of large-memory, high-speed digital computers to the cal­
culation of intermolecular interactions and the structure of 
liquids is discussed. 

T H E EXTENSIVE USE OF LIQUID WATER as a solvent and reagent in chem­
ical reactions, the widespread occurrence of water on the planet 

Earth, and the unique role of water as a biological life-support system 
combine to make an understanding of the properties of liquid water in 
terms of structure a matter of central importance to chemistry, the earth 
sciences, and biology. The focus of this chapter is to review recent re­
search studies of the structure of water at ordinary temperature and 
pressure, and to present an opinion on the state of knowledge about this 
system considered both as a structural problem in physical chemistry 
and as a methodological problem in computer simulation of the liquid 
state. 

Studies of liquid water are among the earliest recorded research 
investigations in physical chemistry, and interest in this subject has re­
mained strong throughout the past century. Diverse experimental data 
on the thermodynamic and physical properties of water have been ob­
tained, but the unequivocal interpretation of these data in terms of struc­
ture remains today an area of active research. Now, as molecular detail 
in the liquid state becomes accessible to study at a high level of precision 

0065-2393/83/0204-0297$14.25/0 
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298 MOLECULAR-BASED STUDY OF FLUIDS 

via diffraction experiments and by computer simulation, water structure 
problems are being carried to a new level of understanding. One aim of 
this review is to present current positions on the comparison between 
calculated and experimental properties of liquid water and current inter­
pretation of these results in terms of structure at the molecular level. 

Liquid water is presently studied not only to gain new knowledge 
about the properties and structure of the system, but also to understand 
better the capabilities and limitations of the methods of study. Just as 
the Lennard-Jones fluid has become the prototype system of study for 
simple liquids, water has become the prototype system for the study of 
associated liquids. New advances in intermolecular potential functions 
and liquid-state simulation techniques are now invariably applied to water, 
since it is useless to proceed to the study of more complex chemical 
systems if this central problem cannot be treated reasonably well. Liquid 
water has thus become the testing ground for new methods of study for 
molecular liquids. The second aim of this review is to describe in detail 
computer simulation methodology, particularly Monte Carlo calculations, 
as currently applied to liquid water. 

First in this chapter, the historical background for the problem is 
briefly reviewed. Next, the problem of describing intermolecular inter­
actions among water molecules is considered, and the development of 
intermolecular potential functions for water molecules is reviewed. In 
the section entitled "Theory and Methodology," aspects of liquid state 
theory pertinent to computer simulation are reviewed. The emphasis in 
this chapter, as in our own research in this laboratory, is on the theoretical 
and computational approaches to the problem, particularly Monte Carlo 
computer simulation. Detailed description of the Monte Carlo method 
is given as presently implemented for studies on molecular fluids. Results 
from diverse studies on liquid water are then given in the next section, 
and are considered in the perspective of available experimental data. An 
analysis of simulation results based on quasi-component distribution func­
tions is given in the section entitled "Analysis of Results." The final 
section gives a summary and conclusions. 

Background 

A vast amount of physicochemical experimentation and theoretical 
work has been carried out on the liquid water system. The multivolume 
series of review articles edited by Franks (I) is recommended as a point 
of departure for the original literature. A condensed, informative view 
is presented in the monograph by Eisenberg and Kauzmann (2). The 
collection of review articles on water and aqueous solutions edited by 
Home (3) and the textbook by Ben-Nairn (4) are other useful resources. 
We extract here selected points in the historical development pertinent 
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13. BEVERIDGE ET AL. Monte Carlo Computer Simulation 299 

to the relationship between properties and structure relevant to current 
liquid-state simulation studies. 

The physical properties of liquid water have been studied in detail 
in diverse experimental investigations. Water gained quite early a rep­
utation for anomalous behavior in its physical properties relative to simple 
liquids. The increase in density of water on warming from 0 to 4 °C and 
commensurate anomalous changes in the compressibility, thermal ex­
pansion, and viscosity were recognized by the turn of the 19th century. 
The 1912 monograph by Henderson (5) describes simply and elegantly 
how the anomalous physical properties of water are the basis for its unique 
suitability as a biological life support system. Measurements of the various 
thermodynamic and physical properties of liquid water are currently 
available (6). The experimental data most pertinent to the structural 
studies of liquid water are the intermolecular atom-atom radial distri­
bution functions obtained from X-ray (7, 8, 9), electron (10), and neutron 
(11-13) diffraction studies and vibrational spectra, particularly from Ra­
man measurements (14). 

The earliest recorded ideas about the structure of liquid water de­
veloped as variations on ideas about the structure of ice. Ordinary ice 
has a lower density and a correspondingly larger void space than liquid 
water. This fact we know from X-ray crystallography (15) to be a con­
sequence of the disposition of water molecules on a tetrahedral lattice 
in the solid, stabilized by the cohesive energy produced by intermolec­
ular hydrogen bonds. In the most regular polymorphic form of the solid, 
ice Ic, the hydrogen bonds are essentially linear. Deviations from line­
arity in the hydrogen bonds are observed in ice II and other high pressure 
forms of the solid. Interactions other than those of hydrogen bonds are 
observed in ice VII, for example, which consists of interpenetrating net­
works of hydrogen-bonded water molecules. Clearly, considerable struc­
tural diversity is possible in interactions among water molecules. 

The behavior of density as a function of temperature for water and 
the crystal structures of ice serve as a focus for introducing alternative 
conceptual models for the structure of the liquid. An early explanation 
of the anomalous behavior of density as a function of temperature is that 
of Roentgen in 1892 (16), who conceived of the system as a literal mixture 
of a low-density low-energy icelike form in equilibrium with a higher 
energy fluid polymorph. Interpretation of the density data follows from 
Le Chateliers principle, with the density increase on melting seen as a 
consequence of the interconversion of the bulky icelike form to the denser 
fluid form. On further increase in temperature, the density decreases 
because of the thermal expansion of the fluid. 

Roentgen's two-state view of the system is the simplest of the so-
called mixture models of liquid water, and many subsequent quantitative 
theoretical studies of this problem are in one way or another elaborations 
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300 MOLECULAR-BASED STUDY OF FLUIDS 

of this idea. Ising models related to the system are due to Levine and 
Perram (17), Bell (IS), and Angell (19), who developed an interesting 
two-state model based on configurational excitations. The extensive lit­
erature on mixture models of liquid water, reviewed by Davis and Jar-
zynski (20), shows how diverse definitions of "mixture" have been used, 
and how more than a few have been found to be partially successful for 
calculating liquid properties. This approach takes its most refined form 
in the five-state flickering cluster theory of Nemethy et al. (21). A mixture 
model was used in the interpretation of the IR spectrum of water by 
Luck (22) and of the Raman spectrum by Walrafen (23). The observation 
of isopiestic behavior in the temperature dependence of the Raman spec­
tra of water was initially considered supportive of the mixture model. It 
was subsequently shown that this arises from possibly fortuitous circum­
stances and does not necessarily indicate a redistribution of associated 
species (24). A review (25) of vibrational spectra covers this and other 
detailed aspects of the vibrational spectra. Also, two-state models inev­
itably lead to contradictions with experimental data when diverse prop­
erties are considered (26). 

Theories that hold that liquid structure involves contributions from 
structures in which voids in the icelike lattice are occupied lead to the 
so-called interstitial models for the system (27-29). Pauling (30, 31) used 
a modification of this idea in his clathrate model of water. Narten et al. 
(8) used the interstitial model for the interpretation of their early X-ray 
diffraction data on liquid water. The mathematical representation of the 
mixture and interstitial models in statistical mechanics have much in 
common. 

An alternative explanation for the manner in which density increases 
as ice melts was initially put forward by Bernal and Fowler in 1933 (32), 
on the idea that the intermolecular hydrogen bond between water mol­
ecules could be bent without being broken. They interpreted the melting 
phenomenon in terms of a hydrogen-bonded lattice with bent hydrogen 
bonds. The distribution of hydrogen-bond angles could be altered by 
changes in pressure and temperature. A statistical mechanical represen­
tation of the idea was given by Pople (33) and gave rise to the present 
line of thought known as the continuum model for liquid water. "Con­
tinuum" is used here in the sense of an energetic continuum and not as 
a dielectric continuum representation of liquid water in the Kirkwood-
Onsager sense (34). Continuum models for liquid water have been re­
viewed recently by Kell (35). Lentz et al. (36) showed that for a multistate 
model to have wide applicability, a broader distribution of cluster sizes 
was required, which, they noted, has much in common with the contin­
uum model. 

From a contemporary point of view, the mixture, continuum, and 
related approaches described above are considered to be ad hoc models 
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of the system. In an ad hoc approach, a model (energetic or structural) 
is assumed that allows estimates of the energy states of the system. These 
energies depend parametrically on the quantitative characteristics of the 
assumptions. From the energies and the temperature of the system, the 
partition function is computed as a Boltzmann sum-over-states and, in 
the more eleaborate forms, involves the maximum term method. The 
thermodynamic indices follow from the partition function. At this point, 
the values of the disposable parameters are chosen to give best agreement 
between calculated and experimental values of observable quantities. 
However, agreement between observed results and those calculated from 
a theoretical model does not necessarily validate the model, and infer­
ences are weak when the number of disposable parameters necessary to 
characterize the model is not sufficiently less than the number of ex­
perimental observations available. For these reasons, calculations based 
on ad hoc models, often involving very sophisticated statistical mechanics, 
still led to controversy about the nature of liquid water at the molecular 
level. 

An obviously preferred approach to the theoretical computation of 
water structure would be to represent the system explicitly as a molecular 
assembly (a Hamiltonian model) and to develop the computation of the 
partition function, thermodynamic indices, and molecular distribution 
functions of the system in terms of intermolecular interactions. This can 
be considered to be an ab initio approach to the problem, noting that 
approximations may still be present, but that they enter at the level of 
intermolecular interactions, a more fundamental point in the theory. In 
the ab initio approach the structure of the fluid emerges as a result of 
the computation rather than entering as an assumption, as in the ad hoc 
methods, and diverse microscopic information on structure not accessible 
to direct experimental measurement can be computed. The ab initio 
alternative was not pursued in the early work since the intermolecular 
interactions were not known accurately, and precise calculation of the 
partition function for a molecular assembly of sufficient size to represent 
the liquid was essentially intractable. 

The application of large-memory, high-speed digital computers to 
the calculation of intermolecular interactions and the structure of liquids 
now makes an ab initio, Hamiltonian approach to the problem feasible. 
The interaction of water molecules has been studied extensively, and 
analytical potential functions describing these interactions have been 
developed from both experimental data and quantum mechanical cal­
culations. For the calculation of partition functions, even with high speed 
digital computers, the convergence of the sum-over-states was found to 
be too slow for molecular liquids, a consequence of the relatively small 
volume of configuration space that contributes significantly to the par­
tition function integral. The calculation of thermodynamic and structural 
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quantities has been accomplished successfully by statistical mechanics 
procedures developed in terms of intermolecular interactions but focused 
on the calculation of thermodynamic internal energy rather than the 
partition function. Configurational integration for internal energy and 
other average properties can be carried out numerically with reasonable 
precision, and calculations to a desired degree of accuracy on liquids 
have proved to be accessible to the present generation of digital com­
puters. This numerical integration is the essence of liquid-state computer 
simulations. 

Computer simulation of liquids, although based on statistical ther­
modynamics or kinetics, can be viewed in the framework of simulation 
theory in general. Procedures can be developed in either deterministic 
or probabilistic form. The deterministic approach reduces to Newtonian 
equations of motion for the particles of the system and is called molecular 
dynamics. Extensive studies on liquid water from this point of view have 
been carried out (37), and extensions of this work are being actively 
pursued (38—45). Molecular dynamical studies on liquid water have been 
reviewed by Stillinger (46) and by Wood (47), and methodological detail 
is particularly available in Woods article. Analysis of molecular dynamics 
results on liquid water at the level of Eisenberg and Kauzmann's 
V-structure is given by Rossky and Hirato elsewhere in this volume. 
Results from molecular dynamics relevant to equilibrium properties and 
the water structure problem will be quoted at appropriate junctures in 
this review. 

The probabilistic form of computer simulation in liquid-state theory 
is the Monte Carlo method, first applied to liquid water by Barker and 
Watts (48). An early application was reported by Sarkisov et al. (49). 
Subsequent studies of liquid water by Monte Carlo computer simulation 
were carried out by Clementi et al. (50), Owicki and Scheraga (51), and 
Swaminathan and Beveridge (52). Extensive further studies have been 
reported by Jorgensen (53, 54) and from our laboratory (56-59). Monte 
Carlo methodology as applied to the water structure problem was ad­
vanced by Rao et al. (60, 61) with the introduction of the force-bias 
method for convergence acceleration. 

The theoretical study of the equilibrium properties and diffusionally 
averaged structure of a fluid can be approached by either Monte Carlo 
or molecular dynamics. Molecular dynamics gives dynamical as well as 
equilibrium properties of the system, but the calculations are usually 
done in the microcanonical ensemble, with the determination of tem­
perature an empirical problem. Anderson (55) devised an approach for 
extending molecular dynamics to other ensembles; this has yet to be 
applied to liquid water. The Monte Carlo method is defined by conven­
ient statistical thermodynamic ensembles and allows for various exten­
sions necessary for the study of solvent effects on intermolecular and 
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intramolecular interactions and for the calculation of the free energy, but 
it does not yield access to dynamical properties. Results on equilibrium 
properties of liquid water from Monte Carlo and molecular dynamics 
have been compared and found to agree closely (56, 60-62). The effi­
ciencies of the two methods in computing equilibrium properties were 
also compared, and were similar (60, 61). Thus, for equilibrium properties 
and structure, either method of study is acceptable. 

Research studies from our laboratory have used the Monte Carlo 
method. Convergence and convergence acceleration behavior in Monte 
Carlo calculation of conflgurational integrals have been studied (56) and 
procedures for the analysis of the results of Monte Carlo simulations as 
applied especially to water (58) and aqueous solutions (63, 64) have been 
developed and used. The emphasis in this review is on the Monte Carlo 
side of liquid-state computer simulation studies on liquid water. 

Several significant contributions to the water structure problem have 
used methods other than computer simulation. In current work by Rice 
et al. (65), the amorphous ice system has been studied as a prototype 
for liquid water. In a series of articles they extended and refined the 
continuum model of liquid water. Their "random network model" treats 
diverse properties of the liquid by treating libration and hindered trans­
lation in a quasi-static network of hydrogen-bonded molecules, repre­
sented by a random network potential developed from spectroscopic data. 
Quantum dynamical effects are introduced. Good descriptions of the 
oxygen-oxygen radial distribution function, the dielectric constant, and 
bulk thermodynamic properties have been obtained. The results have 
been compared and are consistent with those obtained from computer 
simulation, providing a theoretical framework for quantitative extensions 
of the continuum model. 

In another development, a generalized Ising model called poly­
chromatic percolation theory was applied to the problem of water struc­
ture by Stanley et al. (67). A main motivation for this work was to further 
the understanding of supercooled water and the nature of cooperative 
effects in the pseudo-second-order phase transition in the system. Studies 
have now demonstrated that, for any reasonable definition of the hydro­
gen bond, at ordinary temperatures water is well above the percolation 
threshold. Stanley has shown that in spite of this, the main features of 
the hydrogen-bonded networks can be anticipated by percolation theory, 
which can provide a framework for further interpretation and extension 
of simulation results. 

Several articles on water structure problems have been produced 
by integral equation methods. Rossky and Pettitt (68) reported a suc­
cessful extension of the RISM method to waterlike systems. Patey re­
ported studies of water based on the hypernetted-chain formalism (69). 
In general, the associated nature of waterlike liquids makes these systems 
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relatively difficult to treat by integral equation methods (4) and this 
progress is quite significant. 

Intermolecular Interactions 

The individual characteristics of a molecular system are introduced 
into a computer simulation via the configurational potential energy. To 
define this quantity formally, let us specify an N-particle configuration 
of a molecular assembly by the configurational coordinate vector XN 

XN = {Xi, X 2 , X 3 , . . ., XN} (1) 

where each X f is a product of position R{ and orientation il( 

X, = {R{, i i j (2) 

The configurational potential energy in this notation is E(XN), and rep­
resents the energy of the N-molecule system in configuration X N relative 
to the energy of N isolated molecules. The configurational energy may 
be expanded in terms of successive orders of interaction as 

E(XN) = 2 E2 (X,, X,) + i A £ 3 (X,, X,, Xk) + . . . (3) 
i<j i<j<k 

where £ 2 is the energy of dimerization 

E 2 (X„ Xj) = E(Xf, X,) - 2£(X f) (4) 

and A £ 3 is a correction term for three-body effects 

A£ 3 (X i ? X,, X,) = E(X{, X,, X,) - 3 £(X f ) ( 5 ) 

- [£ 2 (X f , X,) + £ 2 ( X i ? X,) + £ 2 (X„ X,)] 

Analogous terms A £ 4 , A £ 5 , and so forth can be developed to represent 
even higher order effects. The terms A £ n for n > 2 introduce cooperative 
effects into the configurational potential. When all of these terms are 
neglected, the configurational energy is expressed as a sum of interaction 
energies for molecular pairs, an assumption referred to as "pairwise ad-
ditivity." 

Computer simulation requires rapid evaluation of the configurational 
energy for a large number of Af-molecule complexions of the system. 
This task is accomplished by means of potential energy functions, simple 
analytical expressions for interaction energy as a function of configura-
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tional coordinates and a set of disposable parameters. Potential functions 
for intermolecular interaction energies can be grouped for purposes of 
discussion into three classes: model, empirical, and quantum mechanical. 
Typical model potential functions are the hard-sphere and Lennard-Jones 
potentials, both studied extensively in the formal development of liquid-
state theory. Empirical potentials result when the disposable parameters 
of a function are selected on the basis of experimental data. In quantum 
mechanical potentials, disposable parameters are determined on a best 
fit criterion from a discrete data base of quantum mechanically calculated 
interaction energies. 

Both empirical and quantum mechanical approaches have been used 
for the determination of potential functions describing the interaction 
energy of water molecules, and there are advantages and disadvantages 
to both. The construction of functions based on experimental data has 
the decided advantage of building all possible observed information about 
the intermolecular interactions into the function. In addition, the ex­
perimental nature of the data partially compensates for the assumption 
of pairwise additivity in the functional form, leading to so-called effective 
pair potentials that include higher order effects in some averaged form. 
There are extensive experimental data to draw upon in this approach, 
including electric moments, vibrational frequencies, lattice constants, 
and so forth. However, the available experimental information corre­
sponds only to certain limited regions of intermolecular configuration 
space, and a function determined from experimental data only is not 
necessarily accurate in regions not represented in the data base; i.e., the 
behavior of the interaction energy in the configuration space is consid­
erably underdetermined by the available data. In practice, a sensible 
functional form partially compensates for this problem. 

On the quantum mechanical side, the nonempirical calculation of 
intermolecular interactions for small and modestly sized systems using 
molecular quantum mechanics is now feasible. The main advantages here 
are that interaction energies can be determined at rigorously defined 
levels of approximation, and that any possible geometrical arrangement 
of molecules can be considered. Various reasonable approaches to sam­
pling configuration space have been suggested and used effectively, and 
fitting functional forms to data can be accomplished with reasonable 
precision. However, the task of generating the data base of quantum 
mechanically calculated interaction energies becomes prohibitively ex­
pensive as the size of the system under consideration increases, when 
larger basis sets are necessary, or when electron correlation must be 
included. Compromises in the quality of the quantum mechanical cal­
culations used for the data base remain, of course, inherent in the re­
sulting intermolecular potential function. A particular problem in quan­
tum mechanical calculations of intermolecular interaction energies is the 
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basis set superposition error, whereby small basis sets result in spuriously 
inflated interaction energies and commensurate errors in other proper­
ties, particularly a foreshortening of the calculated equilibrium inter­
molecular separation. 

A succession of potential functions has been developed for the pair-
wise interaction energy of water molecules, from which configurational 
energy can be computed assuming pairwise additivity. The first empirical 
potential functions developed for water-water interactions were based 
on a point-charge model for the attractive part of the function joined 
smoothly to a repulsive core term representing Pauli forces. The basic 
idea is expressed in the function of Bernal and Fowler (31) in their early 
work on water. Geometrical aspects of the intermolecular interaction 
energy are very easily dealt with in point-charge models, and generali­
zations of the model to systems other than water are usually straightfor­
ward. An early significant contribution in this vein was that of Rowlinson 
(70). His RLS2 potential described water interactions by four point charges 
and a Lennard-Jones term, parameterized on virial coefficient data and 
the molecular dipole. An adaption of Bjerrum's four-point charge model 
for water (71) was used by Ben-Nairn and Stillinger (72) in the devel­
opment of the BNS potential (73), first used in molecular dynamics sim­
ulation studies. Initial results prompted a minor revision of the function 
into what is now known as the ST2 potential (74), which, at this time, 
is the most widely used empirical potential for water interactions in 
computer simulation work. Transferable empirical potentials based on 
point charges for electrons and nuclei (EPEN) were developed by Scher-
aga and workers (75). Results have been obtained with three-point-charge 
models which significantly reduce the computation time required for 
energy evaluations. Jorgensen (54) introduced a water potential of this 
type in his set of transferable intermolecular potentials (TIPS), and he 
developed parameters for treating interactions of organic molecules in 
the liquid state. Berendsen et al. (40) developed a three-point simple 
point charge (SPC) potential for computer simulation studies on biological 
water. Jorgensen (76) proposed a very promising extension of his TIPS 
model called TIPS2, where, analogously to the MCY potential discussed 
later, the negative charge is displaced from the oxygen site along the 
H O H bisector towards the hydrogens, and the oxygen site is retained 
for the Lennard-Jones interaction. The similarity of MCY and TIPS2 
functional forms to that of Bernal and Fowler has been pointed out by 
Klein (75). 

Stockmayer's potential for water (78), used in virial coefficient cal­
culations, was the first of a genre of functions based on the multipolar 
expansion of the molecular interaction energy, and involves point dipole 
terms. An ab initio approach using high-order multipole expansion of 
the quantum mechanically obtained charge density of water coupled with 
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the representation of cooperativity by induced dipoles was developed by 
Campbell and Mezei and applied to small clusters (79) and various ice 
forms (80). Barnes et al. developed the polarized electropole (PE) po­
tential (81), which includes the permanent dipole and quadrupole in­
teractions as well as the induced dipole interactions in the energy terms, 
parameterized from experimental data, and applied to small clusters and 
several ice forms as well as to the liquid state. 

Another class of empirical potentials incorporates intramolecular as 
well as intermolecular effects. The central force model introduced by 
Rahman et al. (82) was the first of this type and has gone through several 
modifications (83). Watts developed an interesting potential (84, 85) cou­
pling the intermolecular force field of the water molecule to a description 
of intermolecular interactions. Further modifications of this potential, 
the RWK1 and the RWK2, have appeared (86). The current sequence 
of polarization models (87, 88) is designed to accommodate both the 
cooperativity via the polarization and the molecular dissociation of H 2 0 
smoothly into H + and O H ~ , and thus provide an entry into reaction 
chemistry. 

The development of quantum mechanical potentials describing the 
interaction of water molecules has been pursued mainly by Clementi et 
al. (89). Functions describing pairwise interactions over all configuration 
space were successfully developed from data bases of 0(100) quantum 
mechanical calculations and produced functions representative of mo­
lecular orbital calculations near the Hartree-Fock (HF) limit and for 
several levels of electron correlation via electronic configuration inter­
action (CI). These models place positive charges on the hydrogen atoms 
and a negative charge at a point on the bisector of the H O H angle. The 
repulsive core is represented by exponential terms centered on the in­
dividual atoms, making the repulsion anisotropic. The quantum me­
chanical potential due to Matsuoka et al., [MCY-CI(l)] (90), based on 
intermolecular CI calculations, is the most widely used of the quantum 
mechanical potentials in computer simulation studies of liquid water. A 
potential based on intramolecular configuration interactions, MCY-CI(2) 
was also determined. In the following discussions, the MCY label will 
denote the MCY-CI(l) potential exclusively. Considerable work on po­
tential functions representative of molecular orbital calculations has been 
reported by Jorgensen et al. (91), and references therein. The E P E N 
functional form was successfully fitted, in our laboratory (57), to the ab 
initio water dimer energies obtained by Clementi et al. (90) and is labeled 
by Q P E N . Table I contains the information required to compare the 
relative computational expense in evaluating interaction energies from 
the various potential functions. 

The experimental results from microwave spectroscopy of water di­
mer (93) and from second virial coefficients serve as useful points of 
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reference for considering the calculated properties of the various inter­
molecular potential functions for water. The equilibrium geometry found 
experimentally for the water dimer, Figure 1, features a linear hydrogen 
bond involving a proton of the donor molecule and the oxygen atom of 
the acceptor, with R e q = 2.98 ± 0.04 A and <|>eq = 60° ± 10°. The 
binding energy of the water dimer has been estimated to be 5.44 ± 0.07 
kcal/mol (92). 

Before further discussion of the intermolecular potential function 
for liquid water, we consider some relevant calculations on the water 
dimer based on ab initio molecular quantum mechanics. Quantum me­
chanical calculations at the near Hartree-Fock level (see Ref. 94 for a 
review) of the equilibrium separation R e q in (H 20) 2 are found to be in 
the range 2.98-3.02 A, in close agreement with the microwave values. 
Improving the wavefunction calculation by including electron correlation 
as described by Matsuoka et al. (90) and Diercksen et al. (95) produced 
a significantly smaller value for R e q (2.86-2.92 A) and an anomalously 
larger discrepancy with experiment. Newton and Kestner studied this 
discrepancy vis-a-vis the basis set superposition error (94). They found 
the superposition error to be significant, and that correcting for it results 
in R e q values in the range of 2.98-3.0 A, in close agreement with the 
observed dimer value. The superposition error in energy was found to 
be in the range of 1.0-1.8 kcal/mol, and correcting for it produced cor­
respondingly lower dimerization energies, closer to the experimental 
value. 

The potential energies of the linear water dimer calculated from the 
potential functions just described are shown as a function of the R-
coordinate (with optimized (^-coordinates) in Figure 2 and as a function 
of the (^-coordinate (with optimized R-coordinates) in Figure 3. The ST2 
potential with a binding energy of -6.84 kcal/mol at R = 2.85 A and 
<\> = 54° is seen to have the strongest emphasis on tetrahedral character 
of the potentials in the set. The MCY potential has a binding energy of 
-5.67 kcal/mol at R = 2.78 A and (|> = 37°, and is quite close to the 

Table I. Factors in Computational Expense for Various Water-Water 
Potentials 

Factor ST2 MCY TIPS SPC EPEN TIPS2 

Charge centers 4 3 3 3 7 3 
van der Waals 

centers 1 3 1 1 4 1 
Distances 17 9,16a 9 9 49 10 
Exponentials 0 0,9a 0 0 0 0 

a The two numbers given for M C Y water reflect the difference in the cutoff used for 
the Coulombic and exponential terms in the potential. 
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Figure 1. Structure of the linear water dimer as determined from mi­
crowave spectra (93), and definition of the structural parameters R 

and (j). 

very large CI results reported by Diercksen et al. (95). The corresponding 
characteristics of the H F potential show a binding energy of —4.60 kcal/ 
mol at R = 3.00 A and c|> = 30-45°. Comparison of the CI and H F 
results shows the importance of correlation effects on the water-water 
hydrogen bond to be 1 kcal/mol, but Newton and Kestner (94) point out 
that correcting for the superposition error reduces the calculated cor­
relation effect to 0.3-0.4 kcal/mol. The TIPS potential (E 2 = -5.70 kcal/ 
mol at R = 2.78 A and cf) = 27°) and SPC potential ( £ 2 = -6.59 kcal/ 
mol at R = 2.75 A and <\> = 27°) are essentially two different parame-
terizations of the same functional form. The TIPS2 potential (not shown 

2.8 3.0 3.2 3.4 
Oxygen-oxygen distance 

3.8 

Figure 2. Plots of calculated E2(R) vs. R as determined from the ST2 
(_ MCY (—), TIPS (• and SPC (- - -) potentials. 
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310 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 3. Plots of calculated E2(<f>) vs. (|> as determined from the ST2 
(—), MCY(-), TIPS(--), and SPC (—) potentials. 

in the figures) has E2 = -6.20 kcal/mol at R = 2.79 A and (|> = 47°. 
The PE potential (not shown) has E2 = -5.00 kcal/mol at R = 3.0 A 
and (() = 52°. The (^-dependence of E2 is similar for MCY, TIPS, and 
SPC potentials, and shows a single broad minimum. The ST2 potential 
exhibits a double minimum in E2($). 

The second virial coefficient, B(T), of steam is related via statistical 
mechanics to the pairwise interaction potential for liquid water. Virial 
coefficient data were used to parametrize the Watts potential and to 
check the MCY, ST2 and PE potentials. The PE potential performs well 
for B(T). Both the MCY and ST2 deviate significantly in B(100° C), giving 
values of —827 and —1023 mL/mol, respectively, to be compared with 
the experimental estimates ranging from —580 to —450 mL/mol (89, 
90). Although improved agreement is obtained for higher temperatures, 
some question of the reliability of these functions as pure pair potentials 
is indicated. An extensive comparison of virial coefficient performance 
on various potentials has been carried out by Reimers et al. (86). The 
best pure dimer potential is not necessarily optimum for describing the 
condensed phases under the assumption of pairwise additivity, if coop­
erative effects are significant. 

Morse and Rice (96) tested the accuracy of most of the popular water-
water pair potentials by comparing calculated and observed crystal struc­
tures of four polymorphic forms of ice. The MCY potential consistently 
gave the most accurate predictions for calculated and observed O - O - O 
angles and hydrogen-bond network topologies. The MCY potential tested 
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there was the potential fitted to intramolecular CI results [MCY-CI(2)], 
not the one used successfully in liquid water computer simulations. The 
densities of the ice crystals were uniformly too low by ~20%, and the 
O - O separations were too large by ~7%. The ST2 potential performed 
well on ice Ih and II but was found to have hidden flaws, which are 
exhibited when it is used to predict the structure and density of ice IX 
and ice VII. Serious discrepancies were found in all the central-force 
potentials. The Watts and Lemberg-Stillinger potentials did not produce 
an arrangement of hydrogens that satisfies the Pauling rules for ice Ih, 
while the RLS2 potential led to spurious bifurcated hydrogen bonds in 
ice VIII. The various pair potentials are thus found to perform incon­
sistently with experiment for calculations on the ices and similar per­
formance can be expected in simulations on liquid water. Reimers et al. 
(83) reported a comparison of a wide range of gas, solid, and liquid 
properties using several potential functions; they found that no one model 
gives a satisfactory account of all three phases. 

The study of cooperative effects among water interactions and their 
effect on liquid state structure is a matter of considerable interest. The 
importance of the cooperative effects in condensed phases of H 2 0 is 
clearly indicated by comparing R observed in the water dimer, 2.98 A, 
with that for ice, 2.76 A. Two basic approaches to developing potential 
functions including cooperative effects are the n-body expansion method 
and the polarization model. In the n-body potential, functions for A£ 3 , 
A£ 4 , . . . are constructed, most likely from quantum mechanical calcu­
lations. The basic features of three-body cooperativity were described 
by Hankins et al. (97). They considered hydrogen-bonded water trimers 
where the central water is double donor, double acceptor, or a donor-
acceptor. In the Hartree-Fock approximation, the three-body term was 
found to stabilize donor-acceptor trimers by 0.94 kcal/mol at RQO = 2.76 
A. Both the double donor and the double acceptors are destabilized by 
the three-body contributions by 1.30 and 0.77 kcal/mol, respectively. 
The most recent studies have been reported by Clementi et al. (98). 
Considering 29 trimer configurations, the nonadditive component of the 
interaction energy was quantified at ~1 kcal/mol and attributed to dipole-
induced dipole interactions. Problems with basis set superposition errors 
and compensations using the counterpoise (ghost orbital) method were 
also discussed. Considerable interesting literature exists on quantum 
mechanical calculations of water clusters (99-102), but is beyond the 
scope of this review. 

The n-body method can be rigorously extended to include all sig­
nificant A £ n , at least in principle. No higher order ab initio potential 
functions have been reported as yet, although work is in progress in this 
area. The limiting factors in the development of cooperative potentials 
include the size of the quantum-mechanical calculations required and 
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details of the form of the analytical fitting function. The four-body con­
tribution to clusters of small molecules was estimated by Murrell (103) 
and was an order of magnitude smaller than the three-body contributions 
for most cases studied. 

Polarization functions introduce cooperative effects via the induced 
electric moments in the multipolar expansion of the interaction energy, 
and include contributions from all A £ n for n ^ N. Cooperative contri­
butions to the repulsive contributions to the potential are neglected. 
Updating the induced moments at each Monte Carlo step significantly 
increases the computational overhead in calculation of the configurational 
energy using a polarization function. Barnes et al. showed in their 
N-body PE potential that the three-body terms are the dominant non-
additive contribution. For the polarization model of Campbell and Mezei 
(79), Campbell and Belford (104) found that for both small clusters and 
ice Ih the four-body contributions amount to 10-15% of the three-body 
contributions. Also, by optimizing the geometry of various trimers, te-
tramers, and hexamers, they found that the induced dipole approximation 
to the cooperative effects can account for the decrease in the O - O dis­
tance found in liquid water and ice. 

Theory and Methodology 

A theoretical description of liquid state properties and compositional 
characteristics of a system at a temperature T and density N/V (number 
of particles, N, per unit volume, V) follows from the semiclassical ca­
nonical ensemble partition function 

Here q is the partition function for internal degrees of freedom and A 
is the one-dimensional translational partition function for each particle. 
The quantity E(XN) is the configurational energy of the system defined 
in the preceding section by Equation 3. The integration ranges over the 
configurational coordinates XN of the N particles of the system. The 
formalism is developed here in the context of the (T, V, N) ensemble. 
Parallel developments can be given for the (T, P, N) and (T, V, \x) en­
sembles (4, 105). 

The thermodynamical properties of the system follow from the sta­
tistical thermodynamic definition of the Helmholtz free energy 

Q(T, V, N) = (qN/(8ir2)A3NN\) Z(T, V, N) (6) 

(7) 

si = - f c T l n Q(T, V, N) (8) 
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and its derivatives; the thermodynamic internal energy (much dis­
cussed herein) is given by — T(dsildT)v^ N. On substitution, differentia­
tion, and management of terms, ^/can be partitioned into "ideal" and 
"excess" contributions, with the latter expressed as the configurational 
average of E(XN) 

U = j ••• j E(XN) P(XN) dXN = (E(XN)) (9) 

where P(XN) is the Boltzmann probability for the system to be found in 
configuration XN 

P(XN) = exv[-E(XN)/kT]/Z(T, V, N) (10) 

Other thermodynamic properties can be expressed in an analogous man­
ner. Of particular interest here will be the constant volume excess heat 
capacity, given by 

Cv = ((E(X»)*) - (E(X»))*)/kT* (11) 

pressure, given by 

P = (kT/V) (N - • 6E(X»)/dRi))) (12) 
i=l 

and atom-atom spatial distribution functions 

gaP(R) = Nap(R)/(p4irR2AR) (13) 

where R is the interatomic separation, Na P(R) is the average number of 
(3 neighbors of an a atom in a spherical shell between R and R + AR 
and p is the bulk density. 

An alternative expression for the Helmholtz excess free energy, 
advantageous for computer simulation, is 

A = f1 dl- (14) 
Jo 

Here the integrand [/((•) can be expressed as an ensemble average 

U(Q = /"•/ E(XN)P(XN/§dXN (15) 
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where P(XN/Q is the probability of observing the system in configuration 
XN, conditional upon the value of the parameter £ 

P(XN/§ = exp[-E(XN/i;)/kT]/ j - j exp[-E(XN/i~)/kT]dXN (16) 

when the system is coupled by the auxiliary parameter through the 
expression 

E(XN/Z) = i;E(XN) (17) 

the free energy is defined with respect to an ideal gas reference state of 
liquid density (106, 107). Mezei, following Torrie and Valleau (108), has 
studied the use of other reference states for tractability and computational 
efficiency (109). Results from this work are quoted below. Methods for 
calculating free energy in computer simulation remain the subject of 
active research (110-112). With the internal energy and free energy 
available, the excess entropy can be easily obtained from the expression 

S = (A - U)/T (18) 

The additional equilibrium properties of the system accessible to 
calculation in the (T, P, N) ensemble simulation are the constant-pressure 
heat capacity: 

Cp = ((H2) - (H)2)/kT2 (19) 

isothermal compressibility 

K = ((v2) - (V)2)/(kT2(V)) (20) 

and coefficient of thermal expansion 

a = «VH> - (V)(H))/(knV)) (21) 

where H is the enthalpy of the system. 
Liquid-state computer simulation is based on the simultaneous nu­

merical integration of integrands analogous to the internal energy expres­
sion, Equation 9. This integral is well-known to be ill-conditioned for 
direct numerical integration, since the integrand E(XN) P(XN) is large in 
only a very restricted region of configuration space. The integration can 
be successfully carried out as suggested by Metropolis et al. (113) by 
sampling from the Boltzmann distribution in order to automatically con­
centrate the effort in the important regions of configuration space. In the 
Metropolis method, the N-molecule configurations of the problem are 
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taken to be the states of an irreducible Markov chain. The one-step 
transitions between any two states k and I of the chain have the probability 

P H = Pr[X?+1 = l\X? = k] (22) 

The pki terms can be collected in array form as a stochastic transition 
probability matrix, P = [pw]. Integration in the Metropolis method is 
carried out by means of a stochastic walk through configuration space, 
generating a realization of an irreducible Markov chain whose unique 
limiting stationary distribution TT is the Boltzmann distribution, i.e. 

TP — TTP (23) 

where TTF = P(Xf). In a realization of this process, the configurations, 
XN, are then sampled with a frequency proportional to P(XN), and the 
determination of average properties reduces to a simple summation over 
the property of the individual configurations X f , for example 

M 

EW) = (l/M) 2 E[X?] (24) 
t= 1 

Provided the system is ergodic, as M —» oo, E(XN) —> (E(XN)), the cu­
mulative average energy becomes an increasingly good estimator of the 
energy expectation value. The computation of heat capacity and other 
configurational properties of the system take analogous form. 

To implement this procedure in practice, a particle is selected, and 
a trial move is attempted from configuration X* to X f . The change in 
energy of the configurational energy of the system is used to calculate 
the quantity 

R = ( W W exp[-(E(X?) - E(Xk»))/kT] (25) 

If R is greater than or equal to one, the move is accepted. If R is less 
than one, then the move is accepted with the probability R and rejected 
with the probability 1 - R. To do this, one compares R with a random 
number on the interval (0, 1). If R is greater than the random number, 
the move is accepted; otherwise the move is rejected. Repeated appli­
cation of this process forms a sequence of configurations that is a reali­
zation of the desired Markov process, and any configurational average 
property of the system may, in principle, be calculated by averaging over 
these configurations. Optimum sampling for a property other than energy 
may require sampling from a modified Boltzmann or even non-Boltzmann 
distribution (108, 114). 
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The convergence and statistical error bounds of Metropolis Monte 
Carlo calculations are generally monitored according to the method of 
block averages (also known as the method of batch means) (106, 107). 
Here the Monte Carlo realization is partitioned into several nonoverlap-
ping blocks of equal lengths, and the averages of the property under 
consideration (e.g., mean energy) are computed over each block. Letf{ 

denote the average of thejproperty / computed over the block i. Under 
the assumptions that the//s are independent and normally distributed, 
and that the Markov chain is ergodic, the error bounds for the property 
/ at a ~95% confidence level are 2a, where 

a 2 = (1/B(B - 1)) £ [ff - ft)2] (26) 
1 = 1 

and the summation runs over the B blocks. In computer simulations of 
small lengths, the assumptions are honored more in the breach than in 
observance, and thus computed error bounds by the method of batch 
means are to be taken with caution. To ensure the validity of the estimate 
by the batch means method, the block size has to be increased until 
reliable statistical tests show that the batch means are indeed independ­
ent. Other methods have also been proposed to estimate the confidence 
intervals of Monte Carlo estimates of this type. Good reviews can be 
found in Refs. 118^120. 

The details of the Metropolis method and subsequent elaborations 
thereof can be specified in the following general notation: The elements 
of the one-step transition probability matrix of the Markov chain, pkl, 
are written as a product of two terms, 

Phi = Qki^ki (27) 

The first factor, qkl, is dependent on the method of generating the state 
/ from the state k in a single-step transition. The second factor, akl, 
depends also on the way in which state I is accepted. The Metropolis 
choice 

a „ = min(l, F(Xf) qlkl PQQ) qkl) (28) 

has been shown by Peskun (121) to be asymptotically optimum. The 
elements of the one-step transition probability matrix for the Markov 
chain can be rewritten into a more popular notation 

Pki = Qki min(l, Piqik/pkqki), k =/= I (29) 
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and 

Pkk = 1 " 2 Pki (30) 

The various sampling methods discussed herein differ essentially in 
the definition of qkb i.e., the way in which state / is generated from state 
k in a single-step transition. In principle, all the sampling schemes allow 
for more than one-particle moves. However, in practice, for convergence 
efficiencies, the moves are restricted to a single particle. Thus, the con­
figurational coordinates of the state / are related to the configurational 
coordinates of state k by 

Xf = X% + 8" (31) 

where 

8" = {0,0, . . 8(XJ, 0, . . .} (32) 

and 8(Xm) is a displacement vector for the molecule m selected for the 
move. For rigid polyatomic molecules 

8(XJ = {8xcm, by^, bz^, 8co, in} (33) 

where Sx^, 8t/cm, bzcm are the displacements for the center of mass and 
So) is the rotation around a chosen axis, i\, passing through the center 
of mass of the molecule m. The magnitudes for the center-of-mass dis­
placement and for the rotation angle are further restricted by certain 
step-size parameters Ar and A(o, which are optimized in the initial stages 
of the simulation. In Metropolis sampling, the components of the dis­
placement vector 8(Xm) are obtained by uniformly sampling from the 
domain D located at the center of mass of the molecule m in the state 
k, and defined by the step-size parameters Ar and Aco. The elements qkl 

of the transition probability matrix Q are then 

qkl = a constant 8(XJ E D ^ 

qkl = 0 8(XJ £ D 

It follows that, Q is a symmetric matrix. 
In a typical Monte Carlo computer simulation on a molecular liquid 

in the (T, V, IV) ensemble, the system consists of a simulation cell con­
taining N molecules in a volume V determined by N/p, where p is the 
experimental density at the system temperature T. The configurational 
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energy of the system is computed by means of analytical potential func­
tions. The system is presented with a condensed phase environment by 
means of periodic boundary conditions, with the central cell surrounded 
at each face, edge, and vertex by a self-image. Calculations from this 
laboratory use mainly simple cubic or face-centered-cubic boundary con­
ditions. To reduce the effect of the periodic images, most calculations 
include only interactions between the nearest images of each pair (min­
imum-image cutoff). Quite often, an additional cutoff criterion is applied 
to the nearest pair to decrease the computational effort (spherical cutoff). 
Calculations on liquid water reported from our laboratory used the spher­
ical cutoff criterion. The initial segment of the calculation is an equili­
bration phase, and it is discarded in the formation of ensemble averages. 

An example of a Monte Carlo computer simulation is the realization 
of 4400 X 103 configurations on liquid water carried out in this laboratory 
(56). The standard Metropolis method was used, with a potential function 
representative of quantum mechanical calculations of the intermolecular 
interaction energy, developed by Matsuoka et al. (80). The calculation 
was carried out on 125 water molecules under simple cubic periodic 
boundary conditions at T = 25 °C and at a density of 0.997 g/mL. 

The convergence profile from this study is shown in Figure 4. An 
expanded scale was chosen for the energy ordinate here and in subse­
quent analogous figures; the convergence characteristics here are dis­
cussed in tenths of kilocalories per mole. The calculation achieves a mean 

I000K 2000K 3000K 4000K 

Configurations 

Figure 4. Convergence profile for Metropolis Monte Carlo computer sim­
ulation of[H20]t at 25 °C.; K denotes 103 configurations. 
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13. BEVERIDGE ET AL. Monte Carlo Computer Simulation 319 

energy of —8.57 kcal/mol after 200 X 103 configurations. The mean 
energy oscillates within 0.1 kcal/mol of this value for the next 1000 X 
103 configurations. The convergence profile indicates that a mean energy 
value of —8.56 ± 0.03 kcal/mol was reached for this section of the run. 
At N = 1200 X 103 to 1400 X 103, the control function shows a sharp 
decline of 0.13 kcal/mol in energy, to -8.78 kcal/mol at N = 1400 X 
103, and the onset of a region of 1600 X 103 configurations with a mean 
energy of —8.75 ± 0.02 kcal/mol. Concomitant with this decline is a 
sharp increase in heat capacity. At N = 3000 X 103, the control function 
rises again, and at termination is oscillating about —8.64 ± 0.03 kcal/ 
mol. The heat capacity is relatively constant from N = 2000 X 103 on. 
The general appearance of the control function suggests that the high 
frequency oscillations in the control function are superimposed on a grand 
oscillatory cycle with an amplitude of 0.2 kcal in the realization, of which 
this calculation covers one and one-half cycles. Similar behavior in sim­
ulations based on the ST2 potential has also been discussed by Pangali 
et al. (61). The cumulative mean energy is —8.65 kcal/mol, with a heat 
capacity of 14.1 cal/mol °C, which, after the kinetic energy correction, 
results in — 6.87 kcal/mol, and 20.1 cal/mol °C for mean energy and heat 
capacity, respectively. 

The above results can be used to give an idea of the computer time 
required for simulation studies. Our sampling rate is 100 X 103 config­
urations per hour on an Amdahl 470/V6 using the Metropolis method on 
a system of 216 MCY water molecules. The calculation of stable values 
for internal energy and radial distribution functions requires ~1500 X 
103 configurations or 22 hours of computer time. Fluctuation properties 
such as heat capacity require roughly twice as much sampling. Properties 
such as the dipole correlation function required for the calculation of 
dielectric properties are even more slowly convergent, in part because 
of the statistical factor lost when less than full orientational averaging is 
involved. Overall, with this magnitude of computer time involved, the 
acceleration and improvement of convergence is a matter of continuous 
concern. 

Following the work of Geperley et al. (122) on quantum liquids, 
several methods have been proposed for acceleration of convergence in 
Monte Carlo calculations, with development and testing carried out on 
the liquid water system. These procedures involve appending an addi­
tional importance-sampling criterion to the Metropolis method. The prin­
cipal procedures currently under consideration are the force-bias pro­
cedure developed for liquid water by Pangali et al. (60) and an alternative 
force-bias scheme based on Brownian dynamics proposed by Rossky et 
al. (123). In the force-bias sampling, the particle moves are biased in the 
direction of forces and torques on the molecule selected for the move. 
The elements qki of the transition probability matrix for force-bias sam-
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pling are given by the expressions 

qkl = X(X$) exp{\(Fm(XN
k) • 5r + Nm(XN

k) • 8<o)/fcT} (35) 

8(XJ £ D 

and 

qkl = 0, 8(XJ £ D (36) 

Here 8r = {8xcm, 8t/cm, hzcm}, 8w = £8co, M(Xk) is a normalization constant 
and \ is a parameter to be optimized. The quantities Fm(Xk) and 
Nm(Xk) are the forces and torques, respectively, in the state /: on the 
particle m to be moved. Note that qkl + qXk. In our force-bias calculations, 
X is set to 0.5, following Rossky et al. (123). 

For an absolute comparison between Metropolis sampling and force-
bias sampling, the magnitudes of the step-size parameters Ar and Aco 
and other set-up characteristics must be optimized as fully as possible 
in an initial short segment of the realization. One useful criterion for this 
optimization, based on translational and angular diffusion of particles, 
was reported by Pangali et al. (60). A different criterion related to particle 
diffusion was also considered. Using the analogy of random walks, Kalos 
(124) has proposed the quantity Ar (A)2 as an index of sampling efficiency, 
where A denotes the acceptance rate. To include the cage effect to first 
order, we have modified this index to Ar (A)2(l + (cos(6))) (125), where 
0 is the angle between the successive accepted moves of a molecule. The 
best positional and angular displacement for the force-bias method, ac­
cording to the new criterion, were found to be nearly double the re­
spective displacement in the standard Metropolis method. This finding 
is in agreement wth the results of Kincaid and Scheraga, who showed 
that significant improvement can be obtained with the regular Metropolis 
method when larger than usual step sizes are used (126). 

Convergence acceleration studies using force bias were carried out 
on MCY water at 25 °C (127) and analyzed in terms of particle diffusion, 
"rate" of equilibration, and the evolution of internal energy and heat 
capacity during the Monte Carlo realization. The particle diffusion rate 
was found to be four times greater in the force-bias computation, indic­
ative of the increased sampling of the configuration space for individual 
particles. The equilibration of the computation in the initial segment of 
the realization was found to be two to three times faster with force bias. 
The convergence profile, Figure 5, shows that both internal energy and 
heat capacity are well settled down after 1000 X 103 configurations, an 
improvement by a factor of two to three over the standard Metropolis 
results shown in Figure 5. Preliminary studies of the energy autocor-
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13. BEVERIDGE ET AL. Monte Carlo Computer Simulation 321 

Figure 5. Convergence profile for force-bias Monte Carlo computer sim­
ulation of [H20]i at 25 °C.; K denotes IO3 configurations. 

relation functions for the force-bias and standard Metropolis method show 
that in the latter, significant correlations persist even after some 2000 X 
103 configurations of sampling. In the force-bias simulations, the energy 
correlations are greatly reduced after a mere 500 X 103 configurations. 
For an overall evaluation, however, the extra cost involved in the cal­
culation of forces is also to be considered. Depending on the system size 
and set-up characteristics, the extra computational expense is in the range 
of 70-100%. Preliminary results using the Brownian force-bias technique 
produced similar results (125). For (H 20) z, these results indicate that 
these gradient-bias samplings are a definite improvement over the stan­
dard Metropolis method constitute and are the preferred procedure for 
doing the simulations. 

Monte Carlo computer simulation can also be configured for the 
(T, P, N) ensemble (117), with the volume and thus the density of the 
system computed as an ensemble average. In practice, this requires about 
10-50% additional computational effort in the Monte Carlo procedure, 
depending on the frequency of volume perturbations. Mezei recently 
showed (128) that the efficiency of the volume-change sampling can be 
improved significantly if the volume change is biased in the direction of 
the volume derivative of the pseudo-Boltzmann factor used in computing 
the acceptance probabilities. 

Results 

In this section the results of computer simulations of liquid water, 
based on the most widely used and promising potential functions, are 
collected. A critical comparison of these results with available experi-
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mental data is presented. Thermodynamic properties are considered first, 
followed by radial distribution functions. Finally, the temperature de­
pendence of the results is considered. We address two main questions: 
(1) the accuracy with which experimental observables for liquid water 
can be calculated by computer simulation, and (2) the sensitivity of these 
results to the choice of potential function, the main variable in the cal­
culations. 

Most of the potentials discussed in the section entitled "Background" 
have been used in computer simulation of liquid water. The ST2 and 
MCY potentials have proved to be of continuing interest and serve well 
to illustrate broadly the capabilities and limitations of potential functions 
in liquid-water simulations. The three most recently proposed potentials, 
TIPS, SPC, and TIPS2, are especially interesting from the point of view 
of computational economies, and of demonstrating the effect of small 
parametrization changes on the calculated liquid structure. The Q P E N 
potential is of importance for the development of potentials for large 
solutes, because of the transferability of the parameters of this functional 
form (129). The PE function points up problems in introducing coop­
erative effects. Thus, the results of computer simulations are described 
here based on the ST2, MCY, TIPS, SPC, TIPS2, RWK2, QPEN, and 
PE functions. 

The MCY results are taken from the standard Metropolis Monte 
Carlo calculation described in the preceding section and elsewhere (56, 
58, 59), from the (T, P, N) simulation studies of Owicki and Scheraga 
(51), and from the molecular dynamics calculations of Rapaport and Scher­
aga (44). The ST2 results derive from a Metropolis Monte Carlo simu­
lation of 4700 X 103 configurations on 216 molecules at a density of 1.0 
g/mL at 10 °C (56)-conditions chosen to coincide directly with the pre­
vious ST2 liquid water calculations by Rahman and Stillinger and from 
results obtained by Pangali et al. (60, 61). The TIPS, SPC, and Q P E N 
results are based on (T, V, N) ensemble force-bias Monte Carlo simu­
lations on 125 molecules under simple cubic periodic boundary conditions 
for a temperature of 25 °C and a density of 0.997 g/mL, recently carried 
out in our laboratory by Mezei (130). These simulations consist of 720 
X 103, 1500 X 103, and 1020 X 103 configurations, respectively. The 
TIPS2 results are the work of Jorgensen (76). The PE results are based 
on a 40 X 103 simulation by the standard Metropolis method for ambient 
temperature by Barnes et al. (81). 

The thermodynamic properties calculated for liquid water from these 
various Monte Carlo computer simulations are collected along with the 
corresponding experimental data in Table II. Internal energy is the con-
figurationally averaged energy of the system, and good agreement be­
tween calculated and observed values implies that the hydrogen-bond 
well depth and the number and energy of thermally accessible config-
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urations is in order. The calculated internal energy is seen to be within 
15% of the observed value for all of the potentials considered, which 
represents reasonable agreement, considering that cooperative effects 
are either neglected entirely or included only implicitly. Comparing the 
results from the various potentials, the calculated magnitude of the in­
ternal energy is directly correlated with the energy of the linear hydrogen 
bond in the corresponding water dimer. The ST2, SPC, and TIPS2 po­
tentials, with dimerization energies of 6.84, 6.79, and 6.20 kcal/mol, 
respectively, are seen to overestimate slightly both the hydrogen-bond 
energy of the dimer and the internal energy of the liquid, whereas the 
MCY and TIPS potentials underestimate the internal energy. 

In comparing calculated and observed values for internal energy and 
other properties, quantum corrections (105,131) are not included. Owicki 
and Scheraga estimate the quantum corrections to the internal energy 
to be only 0.2 kcal/mol (51). The importance of the quantum effect has 
also been stressed by Rice et al. (66). The subject is under detailed study 
by Wilson et al. (132), and indications are that corrections can be quite 
significant. 

The configurational excess heat capacity of the system is computed 
from the fluctuations in internal energy in the course of the simulation 
and, as a second moment, reflects the width of the distribution of binding 
energies for the molecules of the system. The observed heat capacity of 
liquid water is roughly double that of ice or steam, because of the ad­
ditional modes of energy uptake in the hindered translational and rota­
tional motions in the liquid. A large calculated heat capacity is given by 
all of the potentials for which results are available. The magnitude is, 
however, overestimated by 100% by the ST2 potential. The MCY, TIPS, 
SPC, RWK2, and Q P E N potentials are all within 15% of the observed 
value. 

The calculated pressure of the liquid should be identically equal to 
atmospheric pressure for a liquid at equilibrium under ordinary condi­
tions. In liquid-state computer simulation, this quantity depends on the 
shape of the hydrogen-bond potential well, and the magnitude of the 
calculated pressure is thus expected to be highly sensitive to fine detail 
in the potential. Consideration of the experimental value of the com­
pressibility or results from (T, P, N) simulation studies (51) show that a 
2-3% difference in the density can change the calculated pressure by 
—500 atm; thus agreement between calculated and observed values to 
within O(100) atm. can be considered reasonable performance for a po­
tential. Considering the (T, V, N) results for pressure in Table II, the 
ST2, TIPS, and SPC functions, and the Q P E N function to a somewhat 
lesser degree, are seen to be acceptable for this criterion. The pressure 
is seriously overestimated by the MCY potential. 

In (T, P, N) ensemble simulation, external pressure is assigned to 
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Table II. Calculated and Observed Values 
Property ST2 MCY TIPS SPC 

P (g/mL) 1.000° 0.997" 0.997" 0.997" 
T (K) 283° 298° 298" 298" 
<C7) (kcal/mol) -10.7 ± 0 . 2 - 8 . 7 ± 0 . 1 - 8 . 1 7 ± 0 . 2 -10.18 ± 0 . 2 
Cv

c (cal/mol°C) 20.6 ± 2 11 .5±2 13.6 11.4 
Pd 
L o 

1232* 7552 ±238 1807 ± 2 7 0 269 ± 2 2 6 
p 543 6760 ±311 716 ± 3 0 5 -886 ± 2 2 7 
Af (kcal/mol) -5.40 -3.96 — -4.41 
S'(cal/°C) -17.2 -15.6 — -19.4 

Note: Experimental values refer to 298 K. 
a Assumed values. 
b This value, widely quoted, assumes ideality in water vapor. Jorgensen points out 

(74) that consideration of nonideality of water vapor leads to a modified value of —10.08 
kcal/mol. 

0 Corrected by 6R for the kinetic contribution. 
d Obtained without the Dirac 8 contribution from the cutoff in potential. 
• From Ref. 61. 
f From Ref. 109. 

be 1 atmosphere and the density is calculated from the configurationally 
averaged volume. Owicki and Scheraga found the density produced by 
the MCY potential to be 24% lower than the experimental value, a 
consequence of the same features that led to the pressure error noted 
previously. The TIPS2 potential of Jorgensen was parametrized to give 
the correct density at 25 °C in (T, P, N) simulation; at two other tem­
peratures generally good calculated values for the density are produced. 
Under the considerably larger error bounds expected for fluctuation 
properties, the calculations are in reasonable accord with experiment. 

Estimates of the excess free energy and entropy have been calculated 
for the MCY, ST2, and SPC potentials (125) by using thermodynamic 
integration methods (106). The free energy is best reproduced with the 
ST2 potential, and the entropy with the MYC potential. Both the ST2 
and the SPC predict entropies lower than those observed, indicative of 
excessive structure in the model liquid. 

The major point of contact between experimental data and computer 
simulation of liquid water is the comparison between observed and cal­
culated atom-atom radial distribution functions. The experimental data 
on these quantities are obtained from X-ray and neutron diffraction ex­
periments. The dominant contribution to the X-ray diffraction of liquid 
water is caused by scattering from oxygen atoms, but the neutron dif­
fraction comes mainly from hydrogen scattering with a smaller contri­
bution from the oxygen atoms. A combination of X-ray and neutron 
diffraction experiments is required for complete determination of struc-
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for Thermodynamic Properties of Liquid Water 

TIPS2 QPEN RWK2 EXP MCY MCY 

0.994 ±0.007 0.997° 0.997° 0.997 0.993° 0.988° 
298° 298° 298° 298 210° 323° 

-10.08 ±0 .04 - 9 . 4 1 ± 0 . 1 -8.24 -9.9b - 8 . 5 7 ± 0 . 1 - 8 . 4 0 ± 0 . 1 
— 11.7 10.5 12.0 1 4 . 0 ± 1 1 3 . 0 ± 2 
— 1911 — — — — 

1350 1403 ± 2 0 0 — 1.0 6922 ± 2 9 9 7178 ± 1 9 3 
— — — -5.74 — — 
— — — -14.0 — — 

ture factors for the system. The quantities g 0 0(fi), gou(R)> a n d gmi(R)> 
the oxygen-oxygen, oxygen-hydrogen, and hydrogen-hydrogen radial 
distribution functions, respectively, are obtained from the structure fac­
tors by Fourier inversion, with intramolecular components subtracted 
out. 

Diffraction experiments on liquids are difficult both to carry out and 
to analyze, and progress in this area has been a major accomplishment 
in modern chemical physics. There are particular obstacles to overcome 
in the neutron diffraction studies, for the large cross section for incoherent 
scattering from hydrogen relative to coherent scattering results in a low 
signal-to-noise ratio. The high neutron flux required to attain an ac­
ceptable level of statistical accuracy is available only at a few large-scale 
reactor sites. Also, inelastic and recoil effects complicate the determi­
nation of the static, coherent scattering function from the measured ef­
fective cross sections. The Fourier transformation is susceptible to errors 
caused by truncation, which affect the analysis of both X-ray and neutron 
diffraction experiments. 

X-Ray diffraction patterns of liquid water were discussed initially in 
the 1933 Bernal and Fowler paper and early measurements were reported 
by Morgan and Warren (7). Narten et al. (8, 9) obtained high-resolution 
data from X-ray diffraction data and published widely cited results on 
gooW a s a function of temperature jn the ambient region. Palinkas et 
al. (10) used a combination of X-ray, early neutron, and electron dif­
fraction data to determine g 0 0(R), gOH(R), and gH H(R). Another report 
of neutron diffraction experiments on liquid water is by Narten et al. 
(11) with a corresponding determination of g0n(R) a n d gnuW a n d a 

redetermination of g 0 0(R). A neutron diffraction measurement of gHH(R) 
was reported by Soper and Silver (12). The collected experimental meas­
urements of the atom-atom distribution functions for liquid water are 
discussed in the following paragraph, along with a consideration of cor-
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326 MOLECULAR-BASED STUDY OF FLUIDS 

responding results for these quantities obtained from computer simu­
lation. 

The oxygen-oxygen radial distribution functions from the reported 
diffraction studies are collected in Figure 6, presented in typical form, 
as relative fluctuations of local density in the liquid relative to bulk 
density. The gooW carries information on the relative positional dis­
position of molecules in the liquid, and the successive peaks in the 
distribution can be identified with the distinct hydration shells of a ref­
erence molecule. The three reported measurements differ slightly in 
quantitative detail, but at the qualitative level they are in substantial 
accord. The assignment of the peaks based on oxygen-oxygen separations 
in the linear water tetramer is indicated on an inset to the figure. 

The first peak in g 0 0(R), centered at —2.8 A, gives the mean value 
and distribution of nearest neighbor separations in the liquid. Compar­
ison of the position of this peak and the corresponding value of the 
interoxygen separation in ice Ih (2.76 A) with the value observed for the 
equilibrium separation in the water dimer (2.98 A) indicates a significant 
contribution from cooperative effects to the structure in the liquid and 

4 

3 

5 2 

o o 

I 

° 2 3 4 5 6 7 8 

R(A) — 

Figure 6. Observed g0o(R) v s R/rora diffraction experiments (—: Narten 
et al. [8], Palinkas et al. [10], Narten et al. [II]). Collective results 
on goo(R) calculated by computer simulations fall within the shaded area. 
The structure insert depicts a sequential tetramer based on R = 2.82 A 
and = 60°; the various interatomic separations fall as indicated on the 

figure. 
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solid phases. The effective diameter of a water molecule in the liquid is 
equivalent to the mean first-neighbor separation of 2.8 A. 

The second peak in g00(R) for liquid water appears with a broader 
distribution centered at —4.5 A. In a simple liquid composed of effec­
tively spherical particles of diameter a, successive peaks in the distri­
bution are expected at separations a, 2a, 3a, etc. The position of the 
second peak in g00(R) f ° r liquid water at —4.5 A rather than —5.6 A 
indicates that specific orientational correlations are present, and these 
distinguish water as an associated liquid rather than a simple liquid. The 
specific value of 4.5 A is characteristic of second-neighbor separations in 
tetrahedral coordination, as indicated in the structure insert to Figure 6. 
On this basis, a third peak would be predicted at 6.5-7 A. The experi­
mental data of Narten et al. and Palinkas et al. are in close accord on 
the general shape of the oxygen-oxygen distribution but differ in quan­
titative detail on peak intensities and on structure in the region of the 
second shell. 

Reported experimental data on the oxygen-hydrogen distribution 
function for liquid water are shown in Figure 7. These functions carry 
distance information on hydrogen bond lengths and describe further the 
orientational correlations in the liquid. Palinkas et al. report peaks in 

Figure 7. Observed g0//(R) vs R from diffraction experiments Pal­
inkas et al. [10], —: Narten et al. [11]]. Collective results on go«(R) 
calculated by computer simulations fall within the shaded area. The struc­
ture insert depicts a sequential tetramer based on R = 2.82 A and $ = 
60°; the various interatomic separations fall as indicated on the figure. 
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gO H(R) at 1.95 and 2.95 A, the former corresponding to the O - H hy­
drogen bond and the latter to a longer range oxygen-hydrogen corre­
lation. These results are consistent with a decidedly bent hydrogen-bond 
structure for the liquid. The results of Narten et al. show a narrow, 
intense first peak at 1.86 A and a second peak at 3.2 A for the longer 
range correlations. These results are consistent with a structure featuring 
nearly linear hydrogen bonds. Thus significant discrepancies are found 
between the two presently available sets of experimental results for gOH(R). 

The results of the three separate experimental measurements re­
ported on gHH(R) for liquid water are shown in Figure 8. The first peak 
M £HH(R) i s quite pronounced and higher than the second peak in the 
results of Narten et al., but the first peak is slightly lower than the 
second peak in the results of Palinkas et al. There are also slight differ­
ences in peak positions in these two sets of results. The gH H(R) reported 
by Soper and Silver differs significantly from both earlier reports, al­
though their results agree closely with the first peak of Palinkas et al. 
and with the second peak of Narten et al. Overall, significant discrep­
ancies among the experimental results are again also quite evident for 
SHHW- The apparent disagreement among the experimentalists in meas-

X 
X 

Figure 8. Observed gHH(R) vs R from diffraction experiments (•-: Pal­
inkas etal. [10],—; Soper and Silver [12], —: Narten etal. [II]). Collective 
results on gn//(R) calculated by computer simulations fall within the shaded 
area. The structure insert depicts a sequential tetramer based on R = 
2.82 A and = 60°; the various interatomic separations fall as indicated 

on the figure. 
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urements based on neutron diffraction must be considered in the context 
of the difficulty of the measurement and the corresponding data reduction 
problems, as well as apparently significant differences in sample config­
uration in the various experiments. In any case, the reconciliation of the 
diverse experimental measurements of gOH(R) a n d gnuW i s clearly an 
important next step in understanding detailed aspects of liquid water 
structure at the molecular level. 

The atom-atom radial distribution functions obtained from Monte 
Carlo computer simulation of liquid water are shown in Figures 9-11. 
Considering first the results for g00(R), for the first peak we find general 
agreement among the calculated results on position but some significant 
diversity in performance on amplitude. There is —35% variation in peak 
height in passing from results of simulations based on the TIPS and MCY 
potentials to those based on the ST2 potential. There is considerable 
variation among the different potentials in the description of the second 
peak in g 0 o W > ranging from well-defined maxima from the ST2, MCY, 
Q P E N and TIPS2 functions to weakly defined or nonexistent peaks from 
the SPC and TIPS functions. The RWK2 potential (86) also lacks a second 
peak in g0o(R)- F ° r the potentials producing a second peak, the position 
varies in the range between 4 and 4.5 A, but in any case the essential 
associated nature of the liquid is evidently well described. The shoulder 
on the inside of the second peak, discussed particularly by Rice et al. 

Figure 9. Calculated goo(P) v s Rfrom liquid water simulation (—: MCY, 
— - : ST2, ; TIPS2, SPC, —. TIPS). 
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1.8r 

I 2 3 4 5 6 7 

R ( A ) — 

Figure 10. Calculated goH(B) vs R from liquid water simulation 
(. : MCY, — S T 2 , —-: TIPS2, SPC, —; TIPS). 

(65) in studies of amorphous ice relative to liquid water, has not been 
reproducibly seen in computer simulation. All of these potentials perform 
similarly in the region of the third peak in gooW-

Results from the PE potential are not included here. An early report 
of gQO(R) based on this function (79) showed notable discrepancies with 

R (A)—• 

Figure 11. Calculated g////(R) vs R from liquid water simulation 
( ; MCY, —- . ST2, —: TIPS2, SPC, —: TIPS). 
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experiment, on very limited ensemble averaging. This function is being 
modified at present, and clarification of the role of cooperative effects in 
water structure thus remains to be established. Also not included is a 
simulation on the original Bernal-Fowler potential, carried out by Jor­
gensen (J33), which shows gOG(R) in serious disagreement with experi­
ment; here, the second peak occurs at ~5.8 A rather than at 4.5 A. 

F ° r goHW a n d gHH(fi)) there is general agreement among the po­
tentials on the peak positions but, once again, considerable variation in 
peak heights. However, a quite general accord on the shape of the 
O - O and O - H distribution functions is clearly evident, indicating that 
the essential features of the structure described by the various potentials 
are similar. 

Considering now the comparison of observed and calculated results 
for atom-atom radial distribution functions, in both domains a range of 
results has been reported for each quantity. To compare results with 
these variations in perspective, we have taken the calculated results 
collectively for each type of distribution and formed plots of the maximum 
and minimum extrema. These plots are superimposed on the plots of 
experimentally observed distribution functions in Figures 6-8, with the 
region between the extrema shaded. Simply speaking, all calculated re­
sults fall within the shaded region regardless of choice of potential func­
tion. 

Discrepancies between the calculated and observed results are quite 
evident. Considering first the comparison of observed and calculated 
results for g 0 0(R), Figure 9, one observes a general tendency in the water 
potentials to overestimate intensity and to underestimate slightly the 
position for the first peak in computer simulation. There is a general 
qualititative accord between calculated and observed values on the struc­
ture beyond the first peak, with the results of Narten et al. within the 
range of calculated results and the results of Palinkas et al. slightly outside 
this range. Results from particular simulation studies provide a calculated 
goo(ft) m close agreement with the experimental data of Narten et al. 
As pointed out by Jorgensen, there is a strong correlation between the 
calculated intensities of the first and second peaks in gooW* a n d it has 
proved impossible to date to produce a potential function that gives in 
computer simulation a good description of the second peak without over­
estimating the intensity of the first peak. 

For gOH(R), referring back to Figure 10, the collective calculated 
results are in serious disagreement with both sets of experimental meas­
urements reported to date. Particularly, the intensity of the first peak 
in all calculated results is far below that reported by Narten et al. and 
significantly above that of Palinkas et al. The shape of the calculated 
distribution differs with both sets of experimental results in the region 
of the first minimum and lacks the shoulder at 2.5 A reported by Narten 
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et al. The shape of the remainder of the calculated distribution agrees 
fairly well with the Narten et al. measurement. The calculations show a 
serious discrepancy with the Palinkas et al. data on the position of the 
second peak and on the existence of a third peak in the distribution. 

For gHH(R), referring back to Figure 11, the collective calculations 
are in general accord on the shape of the distribution seen in the Narten 
et al. results, although the calculated intensity of the first peak is lower 
and the shoulder is not reproduced. Serious discrepancies are evident 
between the calculated results and the Palinkas et al. measurements. 
However, the measurement of gHH(R) reported by Soper and Silver is 
in close qualitative accord and shows good semiquantitative agreement 
with gHH(R) predicted by computer simulation. In view of the corre­
spondence between the collective simulation results for g00(R) a n d 
X-ray diffraction results, and between the simulation results for gunffi) 
and Soper and Silvers data, we feel there is a strong chance that the 
simulation results for gOH(R) a r e more reliable than either the Narten et 
al. or Palinkas et al. measurements, and that computational theory is 
actually predicting accurately the correct g0u(R) a n d gHH(R) ahead of the 
experimental measurements. Impey et al. (134) point out various prob­
lems with the interpretation of scattering experiments and suggest that 
comparisons be made by transforming the computer simulation data into 
fc-space. 

Comparing now the relative performance of the various intermo­
lecular potential functions with respect to the experimental data and with 
each other, we focus on results for internal energy, heat capacity, density, 
and goo(R)- The calculated percentage errors for simulation results based 
on the different potentials for each of the properties under consideration 
are shown in Figure 12. For internal energy, heat capacity, and density, 
calculated values are generally within 15% of experiment, with the TIPS2 
potential performing best. For gGO(R), a general tendency of peak position 
to be computed accurately is clearly evident, with the percentage error 
generally less than 5%. Calculated peak heights, however, are seen to 
vary widely. The MCY potential shows the best overall performance on 
the oxygen-oxygen radial distribution function, in spite of its well-known 
problematic performance on density or pressure. 

The temperature dependence of the internal energy is implicitly 
reflected in the heat capacity, and agreement between calculated and 
observed values for this quantity have been discussed earlier. The tem­
perature dependence of compressibility and of the thermal expansion 
coefficient has been treated by computer simulation (76), and the basic 
qualitative features of the anomalous behavior of water properties with 
respect to temperature have been accounted for. A temperature of max­
imum density has been found in both molecular dynamics (74) and 
(T, P, N) ensemble Monte Carlo work (76) for the ST2 and TIPS2 po­
tentials, respectively. 
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^ * 7 0 % d l ] + 4 0 % 

+ 25r 
Relative performance of 
potential functions in 
computer simulation on 
[H 2 0] l at 25°C 

g 0 0 max! g 0 0 minl g 0 0 max2 g 0 0 min2 g 0 0 max3 

Observable properties 

Figure 12. Comparison of the percentage deviation in calculated and 
observed results on thermodynamic properties and the X-ray goo(B) for 

liquid water. Water models are abbreviated as follows: MCY:MC, ST2.ST, 
TIPS2:T2, SPC.SP, TIPS.TP, QPEN.QP. 

The water-water radial distribution functions have been determined 
experimentally as a function of temperature by Narten. These data have 
been compared with molecular dynamics calculations using the MCY 
potential by Impey et al. (42) and by Rapaport and Scheraga (44). Results 
for gooW f ° r several temperatures are shown in Figure 13. The calcu­
lated and observed radial distribution functions are in good agreement. 
Monte Carlo results and detailed Q C D F analysis of the temperature 
dependence of the MCY water have been described by Mezei and Bev-
eridge (58), and for the TIPS2 water by Jorgensen (76). Thus temperature 
effects on liquid water structure are seen to be qualitatively and semi-
quantitatively accounted for by liquid-state computer simulation. A highly 
quantitative study of temperature effects by a new approach, the isochoric 
temperature differential of structure factors, is currently emerging (135, 
136). Egelstaff and Root took up a characterization of the many-body 
effects on water structure using this approach, and indicate that these 
effects are possibly the cause of the larger temperature effects in O H 
and H H correlations than in the OO correlation. 
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Figure 13. Calculated goo(R) v s - R 
from liquid-water simulations at var­
ious temperatures based on the MCY 

potential. 

MOLECULAR-BASED STUDY OF FLUIDS 
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Analysis of Results 

The subject of this section is interpretation of the results obtained 
in liquid-state computer simulations of water and the determination of 
the structural and energetic composition of the system. The composition 
of a liquid must be denned with regard to the statistical state of the 
system, and compositional indices must be defined in terms of statistically 
weighted structural alternatives rather than any single supermolecular 
structure. 

A general theoretical framework for such analyses was mapped out 
by Ben-Nairn (4) in terms of "generalized molecular distribution func­
tions" and the closely related quasi-component distribution functions 
(QCDF). In this approach, one obtains the concentration in mole fraction 
xQ(p) of particles with certain well-defined values p of a compositional 
characteristic Q. Specifically, we consider the Q C D F for the following 
compositional characteristics: coordination number K, binding energy v, 
near-neighbor pair energy e, near-neighbor dipole angle 8, cavities of 
radius Rc (58) and hydrogen-bond parameters R0o> ^H? ®LP a n d 8D (59). 
In the following discussion, the QCDF's are presented either in graphical 
form or in tabular form and are characterized by their salient features as 
follows: the location of the maximum, p m a x , the value at the maximum, 
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£g(p m a x ) , the beginning and end point of the smallest interval that contains 
99.9% of the distribution, p< and p>, and the smallest and largest p 
values such that xQ(p) = xQ(pmax)/2, pli2 and pi>/2. 

The calculated results for atom-atom radial distribution functions 
for liquid water showed a considerable degree of similarity regardless of 
the potential function used. As we turn now to further structural analysis, 
the results at the qualitative and semiquantitative level are found to be 
substantially similar for the various models of water-water interactions. 
We arbitrarily focus our discussion in this section on results based on 
the MCY potential, studied in detail in this laboratory, and quote illus­
trative results based on other potentials for comparison. We expect most, 
if not all, of the conclusions discussed here to be completely general. 

The coordination number of a given water molecule is defined here 
as the number of neighbors whose center of mass lies within a sphere 
of radius RM around the center of mass of the given molecule. The value 
of RM is chosen to be the location of the first minimum in the center-of-
mass radial distribution function, RM = 3.3 A. The Q C D F for coordi­
nation number K can be defined as the mole fraction 

xc(K) = <S miX") -K])/N (37) 

where the summation involves the Dirac delta counting function 
8[Cf(XN) — K] for the number of particles with coordination number K in 
configuration XN. The average coordination number, K, is given by the 
expression 

_ 00 C R M 

K = X K*C(K) = p g(R) 4irR2dR (38) 
K = 0 JO 

The xc(K) obtained for the MCY water at 25 °C is presented in 
Figure 14. The xc(K) values are given in Table III for the water models 
considered. The four-coordinate nature of the liquid water is clearly 
exhibited by all these systems. The TIPS and SPC results are rather 
similar and resemble those of the MCY water. The value of xc(0) is 
nonzero for all of the water models studied, implying the existence of 
significant density fluctuations in the liquid. 

The binding energy of a molecule in the liquid is the quantity 

B,.(X») = E(X») - £ ( X 1 , . . ., X^, Xi+1, . . ., XN) (39) 

i.e., the negative of the vertical dissociation energy of the ith molecule. 
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Figure 14. Calculated QCDF for coordination number xc(K) vs. K for 
MCY water at 25 °C. 

The Q C D F for binding energy v follows as the mole fraction of particles 
with binding energy between v and v + dv: 

xB(v) = < £ b[Bt(XN) - v])/N (40) 
i=l 

The distribution of binding energies xB (v), as pointed out by Ben-Nairn, 
is a diagnostic index of the mixture model versus the continuum model; 
xB(v) is expected to be polymodal for a system to .be viewed in terms of 
a mixture model and unimodal for a continuum model. 

The xB(v) for the MCY water at 25 °C is given in Figure 15. The 
characteristics of the xB(y) values for the MCY, ST2, TIPS, SPC, and 

Table III. Comparison of the Q C D F of Coordination Number for the 
Various Water Models 

ST2 MCY TIPS SPC QPEN MCY MCY i 

T (K) 283 298 298 298 298 310 323 
*c(0) 0.00001 0.00002 0.00012 0.00003 0.00003 0.00009 0.00010 
*cU) 0.00006 0.0013 0.0048 0.0022 0.0016 0.0039 0.0044 
*c(2) 0.0036 0.0224 0.0492 0.0324 0.0250 0.0449 0.0505 
*c(3) 0.0524 0.1516 0.2068 0.1846 0.1574 0.2170 0.2300 
*c(4) 0.3927 0.4561 0.3902 0.4408 0.4529 0.4589 0.4472 
*c(5) 0.3417 0.2901 0.2603 0.2664 0.2739 0.2242 0.2170 
*c(6) 0.1619 0.0766 0.0759 0.0650 0.0766 0.0468 0.0458 
*c(7) 0.0442 0.0094 0.0117 0.0080 0.0115 0.0041 0.0046 
xc(8) 0.0076 0.0006 0.0009 0.0006 0.0010 0.0002 0.0002 
K 4.807 4.306 4.131 4.167 4.254 4.012 3.979 
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0.075 
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Figure 15. Calculated QCDF for binding energy xB(v) vs. v for MCY 
water at 25 °C. 

Q P E N methods are collected in Table IV. The function xB(v) is unimodal 
for all potentials studied, and thus the computer simulation results for 
liquid water are uniformly supportive of the continuum model. The uni­
modal nature found for the MCY water at 25 °C can also be found at 
higher temperatures. 

The Q C D F for the near-neighbor pair interaction energy, xP(e) is 
defined as 

XP(B) = <X 8[ e„(X*) - e] CtJ(XN) )/<i C,(X")> (41) 
i<j i<j 

where e0(XN) is the value of the pair-energy between the molecules i and 
j , Cy (XN) is unity if the distance between i and j is less than R M , and 
zero otherwise. Generally, pair-energy curves are published for all pairs 
in the system, resulting in a very large peak at e = 0 and a shoulder or 
a second peak at the location of the peak of our xP(e). Restriction to near-
neighbors eliminates this large but trivial peak. 

The xP(e) values for both the MCY and ST2 waters are given in 
Figure 16. The characteristics of the MCY, ST2, TIPS, SPC, and Q P E N 
xP(s) distributions are given in Table V. These curves are also unimodal, 
supporting the conclusion drawn from the unimodality of xB(v). The lo­
cations of the peaks vary, in accordance with the depth of the pair-
potential well. For all water models, it can be seen that the perfect linear 
hydrogen bond is a very rare occurrence, because the most probable 
hydrogen-bond energies are 2-3 kcal/mol higher than the minimum for 
all functions studied. Thus the hydrogen bonds in liquid water are weaker, 
on the average, than the hydrogen bond in the water dimer. The volume 
of the configuration space with hydrogen-bond energies near the mini-
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0.06-

€(kcal/mol) 

Figure 16. Calculated QCDF for near-neighbor pair-energies xP(e) ver­
sus E for both MCY water at T = 25 °C (solid line) and ST2 water at 

10 °C (broken line). 

mum is very small, and thus linear structures, which are energetically 
favorable, contribute little to the statistical state of the system. 

The near-neighbor dipole correlation function xD(0) is computed for 
water pairs with center-of-mass distance less than or equal to R M , the 
radius of the first solvation shell. This function is defined as 

% (6) = S[9,(X") - 0] Ctj(XN) >/<£ C , (X*)> (42) 
«</' i<j 

where 0 is the angle between the H O H bisectors, 0y(XN) is the angle 
between the dipoles of the molecules i and j . Furthermore, in studying 
structural parameters in statistical mechanical context, there are both 
probabilistic and energetic factors to consider, and the most favorable 
parameter value energetically may not be the most probable, particularly 
when it is associated with a relatively small region of configuration space. 
This circumstance is expressed quantitatively by a comparison of xD(8) 
and xD(0)/sin(0), the latter quantity being normalized by the volume 
element of the configuration space with respect to 0. The normalized 
distribution is thus proportional to the frequency of 0 per unit volume 
of configuration space. 

Plots of xD(8) and xD(0)/sin(0) are shown for the MCY water at 25 °C 
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13. BEVERIDGE ET AL. Monte Carlo Computer Simulation 341 

in Figure 17. The characteristics of the MCY, ST2, TIPS, SPC, and 
Q P E N xD(0) values are also given in Table V. The xD(&) values of the 
MCY, SPC, and TIPS are very similar, and all are unimodal. The quantity 
xjQ) for ST2 water was found to be bimodal. This finding is in accord 
with the appearance of the double minimum found for the ST2 E2(§), a 
consequence of the tetrahedrally located lone-pair electrons. 

The interior of ice Ih contains large void spaces. The extent to which 
these persist in the liquid can be characterized by means of the Q C D F 
for cavity size, obtained by generating uniformly distributed test points 
and finding the distance of the closest water molecule to each test point. 
To avoid arbitrary definition of the molecular radius, the distribution of 
the distance to the nearest water center of mass is given. Thus the actual 
cavity size is obtained by deducting the assumed molecular radius of 
water from the distances shown here. The distribution function x0(RC) is 
defined as 

Kq(Rc) = [ C(X, RC, AR)/AR dX/V 
Jv 

(43) 

C(X, R, AR) 
_ J l , if R < min |H, - X | « R + AR 

0, otherwise 
(44) 

The xQ(RC) values for both the MCY and ST2 waters are displayed 
in Figure 18. The values of xQ(RC) at selected large RC values are listed 

0.015-1 

180 
9 (Deg.) 

Figure 17. Calculated QCDF for near-neighbor dipole-correlation func­
tions xD(9) vs. 6 for MCY water at 25 °C. Key: solid line, xD(9); dotted 

line, xD(8)/sin(6). 
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0.12-1 

0.10-

^ 0.06-
O 

X 

0.08-

0.04-

0.02-

0.0 
0. i.O 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.8 

Cavity size (A) 

Figure 18. Probability of finding a cavity of radius Rcfor both the MCY 
water at 25 °C (solid line) and the ST2 water at 10 °C (broken line). 

in Table IV for the MCY, ST2, TIPS, SPC, and Q P E N waters. The more 
structured nature of the ST2 water can be seen from the much higher 
probability of finding a cavity of molecular size. The xQ(Rc) terms of the 
SPC and TIPS potentials are rather similar to the ST2 xQ(Rc), showing a 
frequency of large cavities higher than that from the MCY xQ(Rc). This 
comes as a consequence of the anomalously high pressure of the MCY 
water. 

The four internal coordinates of the water dimer that are relevant 
for the description of hydrogen bonding are defined in Figure 19. Here 
RQO is the inter-oxygen separation, the angle 6H is the angle between 
the H - O and O - O bonds and 8 L P is the angle between the L P - O and 
O - O bonds. The angle 8D is the dihedral angle between the planes 
H - O - O and L P - O - O . In these definitions, LP is a suitably located 
"pseudo-atom" on the water molecule, corresponding to the qualitative 
idea of tetrahedrally oriented lone-pair (LP) orbitals. They were placed 
in such a way that the L P - O - L P triangle is of the same dimensions as 
the H - O - H triangle and oriented perpendicular to it. For each water, 
the atom or pseudo-atom participating in a hydrogen bond with another 
water was taken as the atom on the donor water closest to the oxygen 
atom of the acceptor water. 

A quantitative geometric definition of the hydrogen bond further 
requires the specification of cutoff values for each of these parameters. 
Qualitative notions concerning the hydrogen bond place an upper bound 
on 0H and 9 L P because it is natural to require that the atoms on one 
molecule proximal to the oxygen of the other molecule should be H and 
LP, respectively. The tetrahedral character of the interaction leads to a 
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13. BEVERIDGE ET AL. Monte Carlo Computer Simulation 343 

Figure 19. Definitions of the hydrogen-bonding parameters R0o> ®H> ®LP> 
and 8D. 

"minimal" definition of the hydrogen bond as 

^ O O ^ ^max 

eH ^ 70.53° ( 4 5 ) 

6 L P ^ 70.53° 

8D ^ 180.0° 

A natural choice for R m a x is the cutoff value RM for the previously de­
termined coordination number distribution function, 3.3 A. 

The four parameters described above give rise to the following four 
hydrogen-bonding Q C D F terms: 

*H(P) = < £ 8[p,(X") - p]C»(X»)>/ <E C»(XN)) (46) 
i<j i<j 

where the four possible choices of p are R 0 0> 9H> ^LP a n d 8D, a n d Pij(XN) 
is the value of the parameter p for the pair (t, j). The quantity C$(XN) is 
a counting function for the hydrogen bond; it equals one if the pair 
(i, j) is hydrogen bonded, and zero otherwise. The volume element of 
the configuration space associated with the four hydrogen-bond param­
eters are 

v(ROQ) = 4-rrR^o 

t;(8H) = sin(0H) (4 7) 

t;(9LP) = sin(0LP) 

t;(8D) = 1 

and are used to obtain the normalized Q C D F values xH(p) = xH(p)/v(p). 
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344 MOLECULAR-BASED STUDY OF FLUIDS 

Results for the MCY water are presented in Figure 20, using a strong 
and a weak hydrogen-bond definition. The strong hydrogen bond em­
ploys cutoffs of (3.3 A, 45°, 45°, 90°) while the weak hydrogen bond is 
defined by the cutoffs (4.0 A, 70.53°, 70.53°, 90°). The hydrogen-bond 
Q C D F terms using the strong hydrogen-bond definition for the ST2, 
TIPS, and SPC waters and for waters at higher temperatures are char­
acterized in Table VI. The values quoted for the MCY and ST2 waters 
differ slightly from the values in Ref. 59, because of minor program 
modifications. Also, the functions xH(p) were normalized to unity. 

The peak of xH(RQO) coincides with the peak of goo(R) f ° r all functions 
studied, as expected, because the dominant intermolecular interaction 
in liquid water is the hydrogen bonding. The Q C D F values xH(0H) and 
*H(9LP) show the prevalence of bent hydrogen bonds for all functions, 
but the average degree of bending varies with potential function from 
12.5° (ST2 ) to 37.5° (TIPS). Sceats and Rice estimate the mean square 
average of G H and 0 L P from the vibrational spectra to be —20°. The MCY 
results are quite close to the experimental estimate, while the ST2 pre-

oo1 1 1 1 1 1 1 1 1 1 1 I 1 1 1 1 1 1 

0 10 20 30 40 50 0 30 60 90 120 150 180 
0 L P (Deg.) — - 8 D (Deg.) — -

Figure 20. Hydrogen-bonding QCDF values for the parameters R0o> ®H> 
6LP, and 8D, MCY water at 25 °C. Key: • , xH(p), strong hydrogen bond; 
A> xH(P)> strong hydrogen bond; xH(p), weak hydrogen bond; A, 

x#(p), weak hydrogen bond. 
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13. BEVERIDGE ET AL. Monte Carlo Computer Simulation 345 

Table VI. Hydrogen-Bond Q C D F Values for the Various Water Models, 
Computed by Using the Strong Hydrogen-Bond Definition 

ST2 MCY TIPS SPC QPEN MCY MCY 

T(K) 283 298 298 298 298 310 323 
Dmax 
n o o 

2.85 2.85 2.85 2.75 2.75 2.85 2.85 
0.264 0.231 0.221 0.240 0.250 0.226 0.222 

ft max 12.5 17.5 12.5 12.5 12.5 17.5 17.5 

*H(es") 0.213 0.187 0.189 0.220 0.232 0.182 0.179 
ft max 2.5 2.5 2.5 2.5 2.5 2.5 2.5 

*s(es") 0.294 0.229 0.293 0.344 0.329 0.233 0.228 
ft max 12.5 22.5 32.5 27.5 22.5 22.5 22.5 
xH(6E?) 0.176 0.138 0.113 0.116 0.131 0.134 0.133 
ft max 2.5 2.5 2.5 2.5 7.5 2.5 2.5 

0.245 0.163 0.125 0.132 0.152 0.164 0.159 
Smax 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

xH(8S") 0.090 0.090 0.069 0.071 0.094 0.088 0.078 

Notes: Superscript n represents the normalized Q C D F xH(p)/v(p). Grid intervals are 
0.1 A, 5°, 5°, and 10° for the variables ROQ, 0H, 0 L P and 8D, respectively. Variable values 
refer to the midpoints of the grid interval. The symbol p m a x denotes the location of the 
maximum of both xH(p) and x^(p). 

diets less bending and the TIPS and SPC functions predict more bending. 
The normalized curves XH(0h) a n d XH(0 l p) indicate that the prevalence 
of bending is a primary consequence of geometric rather than energetic 
factors. The large values for the location of the maximum of xH(9LP) found 
for the TIPS and SPC potentials, considered together with the difficulty 
of reproducing the second peak in g 0 0(R), lead to the conclusion that 
three-center models provide a significantly weaker representation for the 
angular correlations than do models with more than three centers. 

In conclusion, we present in Figures 21 and 22 two specific water 
structures arbitrarily chosen from a Monte Carlo calculation on MCY 
water (138). No one structure in a simulation is necessarily representative 
of the statistical state of the system. The urge to look at structures is 
nevertheless irresistible, and we present them here along with the ap­
propriate warning of "caveat emptor." There is a notable prevalence of 
bent hydrogen bonds throughout both structures. 

Summary 

Computer simulation now has been applied to the calculation of 
thermodynamic properties and molecular distribution functions for liquid 
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346 MOLECULAR-BASED STUDY OF FLUIDS 

Figure 21. Stereo picture of an arbitrarily chosen water cluster from 
MCY water simulation. 

water, and to the interpretation of the experimental results. The appli­
cability of computer simulation procedures to problems in associated 
liquids has been demonstrated. System size of 0(100) particles under 
periodic boundary conditions has been found to be sufficient for the 
representation of the pure liquid case. Stable results can be obtained for 
0(100) molecules with 0(1000 X 103) configurations of sampling. Thus 

t 1 

Figure 22. Stereo picture of a second arbitrarily chosen water cluster 
from MCY water simulation. 
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13. BEVERIDGE ET AL. Monte Carlo Computer Simulation 347 

the quality of the results obtained depends essentially on the description 
of configurational energy in the calculation. 

Configurational energy in computer simulations of liquid water has 
been computed for the most part under the assumption of pairwise ad­
ditivity. The general features of internal energy, heat capacity, and in­
termolecular separation are accommodated by the better potentials and 
the results of all agree in the essential description of liquid water structure 
under ordinary conditions as a dynamically organized fully developed 
network of molecules interacting via bent hydrogen bonds. The tem­
perature dependence of the liquid structure between 0 and 100 °C is 
well described at the qualitative level. 

The quantitative agreement between calculated and observed results 
is sensitive to the details of the potential function, and no single potential 
is found to give uniformly good agreement for all properties. The sim­
ulation results for g00(R) a r e i n reasonable accord with experiment, but 
significant unanswered questions remain concerning the relationship of 
calculated and observed gOH(R) and gHH(R) data. Quantum effects are 
currently an active area of study. Recent extension of simulation tech­
niques to the calculation of larger areas of the phase diagram for water 
are also under way by Yamamoto and coworkers (139) and by Bol (140). 

Overall, we are encouraged that theoretical calculations on the prop­
erties and structure of liquid water have become accessible to study at 
the ab initio level and that the results, considered in perspective of the 
known approximations in configurational energy, have created significant 
new knowledge about the structure. Monte Carlo simulation studies of 
liquid water have also resulted in significant methodological develop­
ments, particularly the introduction of the force-bias method for con­
vergence acceleration of the Metropolis Monte Carlo method. Within 
the foreseeable future, we feel that the remaining discrepancies between 
experiment and theory in the problem of liquid water structure can be 
resolved. 

Note Added in Proof 

Professor Jorgensen informs us of results based on the potential 
functions TIPS3 and TIPS4 that supersede the potentials TIPS and TIPS2. 
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14 
Fluid Phase Equilibria at High 
Pressures: 
Correlations and Predictions 

ULRICH K. DEITERS 
University of Bochum, Department of Chemistry, Bochum, Federal Republic 
of Germany 

In fluid mixtures the limits between liquid-gas, liquid-liq­
uid, and gas-gas equilibria are not clearly defined, and 
transitions occur at high pressures. This is demonstrated 
for binary mixtures of hydrocarbons with carbon tetra­
fluoride and for some inert gas mixtures. The experimental 
results are compared with calculations. These calculations 
make use of three mathematical relations: 

1. an equation of state, from which the ther­
modynamic stability criteria are derived 

2. mixing rules, which refer the characteristic 
parameters of a mixture to those of the pure 
substances 

3. combining rules, which estimate binary in­
teraction parameters from pure substance pa­
rameters 

These three relations are discussed; the reliability of the 
equation of state approach is demonstrated for several 
equations of state. The correlation of high pressure phase 
equilibria is shown to be a severe test for the quality of the 
mixing rules as well as for the usefulness of an equation of 
state. 

AS TEMPERATURE AFFECTS T H E MOTION OF M O L E C U L E S , pressure affects 
^ the average distances of molecules and therefore their average po­

tential energy. Varying the pressure, in addition to varying the temper­
ature, is therefore a second way to control the balance of kinetic and 
potential energies in a fluid system. This balance is of central importance 
for static as well as dynamic and transport properties. By varying the 

0065-2393/83/0204-0353$06.00/0 
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pressure in supercritical fluid chromatography (SFC) (I) it is possible to 
affect activity and diffusion coefficients to obtain any intermediate state 
between gas chromatography and high pressure liquid chromatography. 
High pressure fluid extraction techniques permit the extraction of del­
icate organic substances without the need for high temperatures or toxic 
solvents (2, 3). Modern production of oil or natural gas is closely tied up 
with the understanding of high pressure phase equilibria. 

It has long been known that a rigid discrimination between vapor-
liquid equilibria and liquid-liquid equilibria cannot be maintained; in­
vestigations using high pressure techniques show continuous transitions 
between these two types of equilibria and eventually to a third type of 
fluid phase equilibrium, the so-called gas-gas equilibrium (4). A typical 
example of this class is shown in Figure 1. In the phase diagram of the 
system neon-krypton the critical line originating from the critical point 
of krypton shows a temperature minimum; for temperatures above this 
minimum phase separations can be achieved by raising the pressure of 
the system. 

In order to demonstrate the transitions between the three types of 
fluid phase equilibria, and in order to find correlations between equilib­
rium type and molecular parameters, several series of fluid systems have 
been investigated. Examples of this systematic research are studies of 
noble gas mixtures (5-7), methane-alkane mixtures (4), and carbon tet-
rafluoride-alkane mixtures (8). The critical lines of the latter systems are 
shown in Figure 2. With increasing chain length of the alkane component 
the liquid-liquid equilibrium critical line shifts more and more to higher 
temperatures, until it "overlaps" with the vapor-liquid equilibrium do­
main, thus giving rise to gas-gas equilibrium-like phase diagrams. 

Thermodynamic Conditions 

Most methods for calculating phase equilibria are characterized by 
the use of activity coefficients by which the properties of a mixture are 
related to those of a perfect mixture or a perfect gas. These methods, 
while working very well and efficiently for low pressure vapor—liquid 
equilibria, are difficult to apply to high pressure phase equilibria because 
the Poynting corrections become very large and because—with super­
critical components—no reference states of the pure component are avail­
able. In addition, critical coalescence of phases has to be accounted for. 
It is therefore advantageous to use one equation of state for the descrip­
tion of all phases of a fluid mixture, thereby assuming that the concept 
called the continuity of phases (9) holds. Because most equations of state 
are written as functions of molar volume and temperature, it is useful to 
regard the Helmholtz energy A as the central property of a mixture, 
from which all other properties may be derived. The Helmholtz energy 
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MPa 

150 

100 

50-

0 U *. 
50 100 150 200 T/K 

Figure 1. P-T diagram of the neon-krypton system. Key: —, critical line; 
—, vapor pressure curves; #, critical points of the pure substances; and 
+, experimental binary critical points. (Reproduced with permission from 

Ref. 18, Copyright 1982, Pergamon Press Ltd.) 

of a binary mixture is given by the following equation (a detailed deri­
vation is given elsewhere (10-12)) 

A = niA?(V+,T) + n 2 A 2
+ ( V - , T ) - f' P dV 

J V + 

+ R T ^ ! ln xx + n 2 ln x2) (1) 

The A f
+ terms denote the molar Helmholtz energies of the pure sub­

stances in the perfect gas state at temperature T and the very large volume 
V + . The pressure P is given by the equation of state. 

The conditions of phase equilibrium are then represented by the 
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following system of equations (different phases are denoted by ' and ") 

?' = r (2) 

ix; = u.;' 1 = 1,2 

The chemical potentials, û , are obtained from the thermodynamic re­
lation 

* - (r) (3» 
A binary critical point is defined by 

« „ \ _ Q fe) . 0 ( 4 ) 

dxf / T P \ dxf 

This can be expressed in terms of A as 

^2x^2v ~ = 0 

^3x^-2v ~~ 3Av2xAvxA2c + 3A2vxA*x — A3vA2xAvx = 0 
(5) 

Here each subscript xort; indicates a partial differentiation of the molar 
Helmholtz energy Am with respect to Vm or xv Once the dependence of 
the pressure on temperature, density, and composition is known, the 
determination of fluid phase equilibrium states or critical properties is 
accomplished by solving systems of nonlinear equations. Computer al­
gorithms and the conditions under which Equations 5 hold and criteria 
for the elimination of physically unreasonable solutions are discussed 
elsewhere (10, 13). 

The Equation of State 

Any relation that permits the calculation of the pressure from density 
and temperature may serve as an equation of state. There are, however, 
several requirements that different PVT relations will meet to a different 
degree. Fluid mixtures are sometimes stable under conditions that cannot 
be approached by pure fluid substances. Calculation procedures based 
on the corresponding states principle or on a strictly empirical equation 
of state may be beyond their working ranges in such cases. Examples 
are mixtures of noble gases under high pressure. These mixtures can be 
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358 MOLECULAR-BASED STUDY OF FLUIDS 

in a fluid state, while a pure noble gas with the same reduced temperature 
and density would be a solid (14). 

Purely empirical equations of state are seldom valid beyond the 
range of density and temperature to which they have originally been 
fitted, and therefore cannot always be considered safe for high pressure 
calculations. On the other hand, there is as yet no purely theoretical 
equation of state with sufficient precision to cover wide ranges of tem­
perature and density. It is possible, however, to combine the advantages 
of these two kinds of equations of state in so-called semiempirical equa­
tions. 

Even the simplest representative of this class, the van der Waals 
equation, is able to reproduce all of the kinds of fluid phase equilibria 
(15), although agreement with experimental data is qualitative only. Now, 
a large number of equations of state for the quantitative treatment of 
phase equilibria has become available, ranging from the rather simple 
Redlich-Kwong equation to the very sophisticated perturbed chain equa­
tion by Beret and Prausnitz (16). It is impossible to give here a complete 
list and evaluation of all equations of state; recently a comparison of cubic 
equations has been compiled by Peneloux (17), and of several noncubic 
equations by Vera and Prausnitz (18). 

The following equations of state have been used by us: 

1. The equation of Redlich and Kwong (19) 

RT aT~0-5 

vm - b Vm(Vm + b) 

2. The equation of Peng and Robinson (20) 

(6) 

P = _ « i «n (7) 
v m - b vjym + b) + b(vm - b ) u 

3. A new three-parameter equation of state derived from a square-well 
model of intermolecular interaction (12, 21) 

1 + cc° T=W RabteS(exp(t-e
l) - 1)1, (8) 

V, 2 

In this equation £ denotes a reduced density, T e f f a reduced effective 
temperature, and Ix a polynomial representing a first-order perturbation 
contribution. The repulsive part of Equation 8 is a Carnahan-Starling 
function with two modifications, which have been discussed in detail 
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(21); c0 is a constant accounting for deviations from rigid core repulsion, 
and c is a shape parameter for nonspherical molecules. Equation 8 is 
shown to be valid even for pressures beyond 100 MPa for several simple 
molecules and to yield good vapor pressure data. In addition, it can be 
fitted to real critical compressibility factors (22). 

For calculations of properties of mixtures we assume that a mixture 
may be considered as a hypothetical pure substance, with the same 
equation of state as a pure substance, but with the parameters a and b 
(and c in Equation 8) depending on composition. The following mixing 
rules are used: 

For the Redlich-Kwong and Peng-Robinson equations 

a = anxf + 2al2xlx2 + a22xi ^ 

b = bnxf + 2bl2xlx2 + b22x2 

For Equation 8 

a = xxau + x2a22 

2xls1q2Aa 

4"4*p(- - \) ( 1o, 
b = bnxf + 2bl2xlx2 + b22x2 

C ^ l ^ i C2X2 

In this equation the s{ terms denote contact numbers per molecule, and 
the qi9 contact fractions. The harmonic mean of the s{ is sl2. The formula 
for a is an extension of the mixing functions for a strictly regular solution 
according to Guggenheim (23); it can be applied to mixtures of spherical 
molecules of different size. 

The contact numbers per molecule are not proportional to the "sur­
face area" of a molecule, but roughly to the power 2.4 of the diameter. 
This is shown by studies of the maximum number of molecules that can 
be grouped around a central molecule of given size (24). 

The mixing rules, Equations 9 and 10, enable us to calculate the 
parameters of the equations of state for any composition of the mixture 
under consideration, provided that parameters for the pure substances 
and for unlike interaction (al2, bl2) are available. Pure substance param­
eters are calculated from the critical data or from vapor pressure data. 
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The unlike interaction parameters are linked to the pure substance pa­
rameters by combining rules: 

b12 = (1 - i)\(bu + b22) (11) 

2iS = ( 1 _ d ) /f!li ^ (12) 
Sl2 V $1 $2 

(For the Redlich-Kwong and Peng-Robinson equations, sx = s2 = 5 1 2 

= i.) 
Parameters -& and £ are adjustable. Their values are calculated from one 
equilibrium state of the mixture under consideration. If £ is set to zero, 
bl2 becomes the arithmetic mean of bn and b22, and the fo-mixing rules 
in Equation 9 and 10 degenerate to linear mixing rules. Linear mixing 
rules for b are widely adopted in literature, and are usually sufficient for 
vapor-liquid equilibrium calculations. The influence of deviations from 
linearity increases with density, however, and therefore a quadratic mix­
ing rule is useful for calculations of high pressure fluid phase equilibria. 
It has been shown that the introduction of £ greatly improves the rep­
resentation of critical curves using the Redlich-Kwong equation (10, 11). 

The mixing rules (Equation 10) have been specifically designed for 
spherical molecules. Mixing theories for more complicated systems have 
been discussed elsewhere (25, 26). 

Application to Mixtures 

When several equations of state are to be compared, one must realize 
that most of the modern equations of state are of nearly equal precision 
when it comes to the calculation of vapor-liquid equilibria for mixtures 
of simple molecules. As examples we quote an experimental and com­
putational investigation of the systems carbon dioxide-dimethyl ether 
(27) and methane-krypton (28). In both cases the Redlich-Kwong and 
Peng-Robinson equations and Equation 8 have been used to correlate 
the experimental vapor-liquid equilibria data (up to 5.2 MPa). The in­
teraction parameters had been fitted to one isotherm. All three equations 
of state are able to represent this isotherm with 0.3% deviation in pres­
sure, which is comparable to the scatter of the experimental data. The 
other isotherms could be predicted within 1% deviation in pressure by 
all equations of state; however, Equation 8 is shown to be superior for 
the prediction of supercritical phase equilibria. 

The real test for equations of state is the correlation of high pressure 
phase equilibria. Figure 3 shows three experimental isotherms of the 
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hydrogen-methane system together with calculated curves (29). Again, 
all equations of state have been fitted to the middle isotherm (for the 
Peng-Robinson equations and Equation 8 only ft has been adjusted), 
and the same set of parameters has been used to predict the other 
isotherms. Hydrogen causes special problems in calculations; because of 
quantum effects its pure substance parameters had to be extracted from 
PVT data rather than calculated from critical or vapor pressure data. 

Again it is evident from Figure 3 that with all equations of state a 
similar agreement between experimental and computed data is achieved 

100 K 

Figure 3. P-x diagram of the hydrogen-methane system. Key: O, +, 
experimental data; —, calculated with Equation 8; — , calculated with 
the Redlich-Kwong equation; and calculated with the Peng-Robinson 

equation. 
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at moderate pressures, although the Peng-Robinson equation proves to 
be superior to the Redlich-Kwong equation. At high pressures, only 
Equation 8 leads to an agreement with the experimental data. The Red­
lich-Kwong equation produces very large errors in pressure, and the 
Peng-Robinson equation has no solutions beyond 60 MPa. 

Similar results have been obtained for the systems hydrogen-carbon 
monoxide and hydrogen-carbon dioxide (30, 31). 

The gas-gas equilibrium in the system neon-krypton (5) is repre­
sented quite well by Equation 8. Calculated and experimental critical 
points agree very well (Figure 1). Although the interaction parameters 
for the calculation had been fitted to an equilibrium state at 178.15 K 
and 20 MPa, the critical double point is predicted correctly within 3 K. 
Figure 4 shows three isotherms of this system. The agreement with the 
experimental data is very good (18). The dashed curve in this diagram 
had been calculated without size and nonrandomness corrections to the 
mixing rule; the importance of these refinements to the mixing rule is 
evident. 

An especially interesting way of checking the validity of the equation 
of state approach is the study of series of mixtures, e.g., carbon tetra-
fluoride with a series of homologous alkanes (Figure 2). In this case, one 
expects a correlation for the interaction parameters with the chain length 
of the alkane. The first four critical curves in Figure 2 have therefore 
also been calculated with the Redlich-Kwong equation (Equation 6). The 
agreement of calculated and experimental data is very good; the curves 
virtually coincide for large pressure ranges (8, II). It must be noted, 
however, that the ft parameter for the RK calculation varies from 0.05 
to the rather large value of 0.21 in the carbon tetrafluoride-alkane series, 
whereas it varies for Equation 8 only from 0.02 to 0.05. 

In the mixtures of carbon tetrafluoride with alkanes, a continuous 
transition from liquid-liquid equilibrium to a gas-gas equilibrium-like 
phase diagram takes place. A similar transition is found for carbon dioxide-
alkane mixtures (4). Transitions from gas-gas equilibrium of the second 
kind to gas-gas equilibrium of the first kind have been reported for water-
alkane mixtures (32) or for helium-noble gas mixtures (33, 34). 

From a theoretical point of view, the use of adjustable binary in­
teraction parameters might be considered as a weak point of the equation 
of state approach. There is indeed the danger that the adjustable param­
eters will not only take care of deviations from the Lorentz-Berthelot 
combining rules (Equations 11 and 12), but also absorb inadequacies of 
the mixing rules, the equation of state, and the thermodynamic as­
sumptions inherent in Equation 1. This compensation effect, however, 
makes itself felt in physically unreasonable values of the adjustable pa­
rameters. In addition, the investigation of series of mixtures (as men-
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14. DEITERS Fluid Phase Equilibria at High Pressures 363 

Figure 4. P-x diagram of the neon-krypton system. Key: —, calculated 
with nonrandom mixing rules; —, calculated with random mixing rules; 
+ , experimental data at 133.16 K; O , at 163.15 K; and •, at 178.15 K. 
(Reproduced with permission from Ref. 18. Copyright 1982, Pergamon 

Press Ltd.) 

tioned earlier) will not lead to useful correlations of these parameters. 
It is one of the advantages of Equation 8 over the Redlich-Kwong equa­
tion that its parameters are less prone to unrealistic variations. Fur­
thermore, the adjustable parameters of Equation 8 are less temperature-
dependent than those of the Redlich-Kwong equation. 

Equations of state must be regarded as useful tools for the calculation 
of high pressure phase equilibria. In spite of many improvements of the 
experimental techniques, calculations with equations of state have kept 
up with the precision of the experimental data and with the recent efforts 
to extend our knowledge of intermolecular interactions and statistical 
mechanics. It is to be hoped that they will keep up in the future. 
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Thermodynamics of Molecular Fluids 
and Their Mixtures 

Y. SINGH1 and K. P. SHUKLA2 

Banaras Hindu University, Department of Physics, Varanasi-221005, India 

The problem of calculating the equilibrium properties of 
fluids having nonspherical rigid molecules of arbitrary sym­
metry and their mixtures is studied. A perturbation expan­
sion in which all tensor interactions (anisotropic pair and 
three-body nonadditive interactions) are taken as a per­
turbation of the central pair potential is discussed. Theo­
retical expressions are given and calculations made for the 
virial coefficients of the equation of state, Helmholtz free 
energy, configurational energy, entropy, and pressure. These 
are compared with experimental data for nitrogen, oxygen, 
carbon monoxide, carbon dioxide, and methane. The the­
oretical predictions for binary mixtures are compared with 
experimental results for argon-nitrogen, argon-oxygen, ar­
gon-carbon monoxide, nitrogen-oxygen, and nitrogen-car­
bon monoxide at the zero pressure isobar and temperature 
equal to 83.82 K. Agreement with experiment is very sat­
isfactory for all of these systems. 

T H E POTENTIAL ENERGY of IV interacting molecules has nonadditive 
interaction terms in addition to the sum of pair potentials. A sub­

stantial improvement in the quantitative understanding of the behavior 
of real, dense fluids can be made if the nonadditive interactions are 
included in theoretical calculations. For atomic fluids, it has been shown 
that the long-range triple-dipole three-body dispersion (Axilrod-Teller) 
interaction (1) contributes substantially to the thermodynamic properties 
of fluids (2, 3) and to low-order cluster integrals appearing in the density 
expansion of the radial distribution function (4-6). Barker, Henderson, 
and Smith (3) have found that the calculated pressure, internal energies, 
and critical constants of dense gaseous argon are in reasonable agreement 
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366 MOLECULAR-BASED STUDY OF FLUIDS 

with experiment provided that the three-body contributions are in­
cluded. Goldman (7) has found that the effect of the triple-dipole three-
body dispersion interaction on the Henry's law constant for krypton in 
argon is so large that it cannot possibly be treated accurately by any 
effective pair potential. 

The effect of the three-body nonadditive dispersion interactions on 
the structure factor of liquid rare gases has, however, been found neg­
ligibly small (8, 9). 

The extent to which the three-body nonadditive interaction and the 
anisotropy in pair interaction contribute to the equilibrium properties of 
dense polyatomic fluids has been a subject of considerable interest in 
recent years (10-12). Singh and Singh (13, 14) have found that both the 
dielectric and equation-of-state virial coefficients and the dilute-gas vis­
cosity of polyatomic fluids can be explained satisfactorily with one set of 
force parameters, provided that the molecular asymmetry and the non-
additivity of the (three-body) interactions are explicitly taken into account 
in calculating the virial coefficients. 

The calculation of thermodynamic properties and correlation func­
tions of molecular fluids in the presence of three-body forces is relatively 
difficult. The solutions of integral equations such as the hypernetted-
chain (HNC) equation, the Percus-Yevick (PY) equation, the mean-
spherical approximation (MSA), or the optimized random phase approx­
imation (ORPA) are difficult to obtain even in the absence of three-body 
forces. This is because the solution of these equations involves, even for 
axially symmetric rigid molecules, repetitive sixfold, numerical integra­
tions (more in the presence of three-body forces) and requires the cal­
culation of the full anisotropic pair correlation function, a procedure that 
is numerically very complicated but that can be accomplished by a spher­
ical harmonic expansion (see, e.g., 15). Another method that can be 
applied to molecular fluids with relative ease is a use of a perturbation 
scheme (11, 12, 16-26) in which quantities of interest are obtained by 
applying a perturbation correction to the corresponding quantities of 
some reference system. 

In this chapter we describe a method for computing the thermody­
namic properties of fluids and their mixtures, assuming rigid nonspherical 
molecules of arbitrary symmetry. The procedure is based upon a per­
turbation expansion (11,12, 25, 26) in which all tensor interactions (angle-
dependent pair and triplet potentials) are taken as a perturbation of the 
central pair potential. The procedure applies most directly to molecules 
with electric multipoles embedded in a core that deviates only marginally 
from spherical symmetry, so that its nonsphericity can be treated as a 
perturbation of the spherical core. In this type of perturbation expansion, 
in which a spherically symmetric reference potential (SSRP) is used, the 
series is summed up by using the Pade approximant of Stell et al. (24). 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 367 

The Pade approximant has been found to yield results for systems with 
dipolar and/or quadrupolar forces that are in good agreement with ma­
chine simulation results even when the electric multipole moments are 
very large (27, 28). Even for anisotropic overlap forces, the Pade ap­
proximant has been found to work well for not too elongated molecules 
(29). 

The details of the pair and triplet (three-body nonadditive) inter­
actions used in the calculation are given in the first section below. In 
the following section we review a thermodynamic perturbation theory 
of a multi-component mixture (12). Molecular asymmetry of very general 
types arising from permanent electric multipole moments, induced di­
pole moments, and anisotropic dispersion forces are considered. Per­
manent moment interactions involving dipoles and quadrupoles are treated 
through the third-order of the perturbation, while all other anisotropic 
interactions including three-body nonadditive interactions are treated to 
the second-order term only. The contribution of the higher-order terms 
in the expansion, arising because of the first few permanent moment 
interactions, are approximated by means of a simple [1,0] Pade extrap­
olation procedure. 

An application of the theory to the description of the equilibrium 
properties of some nonpolar fluids is then presented. In the last section 
we apply the theory to predict the properties of binary mixtures. 

Molecular Interactions 

We consider a fluid mixture consisting of t components contained 
in a volume V at temperature T. The system is described by a potential 
function that depends on the orientation and the relative center of mass 
coordinates of molecules, but that is independent of rotational momen-
tums and internal vibrational states. We approximate the total potential 
energy of interaction of the system as a sum of the interaction energies 
of isolated pairs and triplets. 

The pair potential energy, <&ab (Xai, Xbj), is assumed to consist of a 
spherically symmetric component Uab(rai, rbj) plus a contribution Vab (Xai, 
Xbj) due to the nonsphericity of the molecular charge distribution. That 
is 

O a f c(X a i, Xy) = Uab(rai, + Vab(Xoi, (1) 

where Xai = (rai, coai) is a vector describing both the location rai of the 
center of mass and the orientation (oflf of the ith molecule of species a. 
For neutral molecules, Vab is conveniently divided into terms repre­
senting the classical electrostatic (permanent and induction) interaction, 
the anisotropy of the quantum mechanical dispersion, and overlap forces. 
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Thus 

Vab = VST* + + Vit + VH (2) 

where (10, 30, 31, 32) 

VST = i i as,M«MT<rfc?MM§ (3) 
s=l 1=1 

v& = -I i i aAM^mn^im^i] 
* s=l 1=1 

+ MgwTfe^nid^mTa^wMg] (4) 

and 

V # = - | A a J ( d a j • T2V : (A* • T<?b,) - a a a b Tif 6j. : T<?„] (5) 

with 

( - l ) s + 1 2s+l s\ l\ 
Q s l = ( 2 « (6) 

- 1 T , 
a ° = 3 a f l l 

and 

A afo — — — 

a a i is electric dipole polarizability tensor of molecule ai, M $ is the 
s rank molecular electric multipole tensor, and T^"^ * s t n e 5 + ^ r a n k 
interaction tensor. The notations [ 5 ] and [I] indicate, respectively, 5-fold 
and /-fold contraction of the tensors. In Equations 4 and 5, the contri­
butions arising from the tensor describing induced moments higher than 
dipole moments and hyperpolarizabilities are ignored. Although the ne­
glect of higher order induction terms may lead to errors in some cases 
(33) for the systems considered in the present chapter, this is an excellent 
approximation. 

We use the Pople expression (16) for Vsh. This is an r~ 1 2 form with 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 369 

the first nonvanishing spherical harmonic as angular dependence. For 
interaction between symmetric linear molecules (e.g., nitrogen and car­
bon dioxide) this takes the form 

Vs
a

h
b(Xai, Xbj) = 4DabeJ^-) [ 3 cos20ai + 3 cos% - 2] (7) 

Vai bj/ 

where Dab is a dimensionless shape parameter, and 0ai and Qbj are the 
angles that determine the orientations of molecules ai and bj with respect 
to the line joining the centers of the molecules. Positive Dab values 
correspond to prolate molecules, while negative values correspond to 
oblate molecules. 

In an assembly of molecules, the three-body nonadditive interactions 
arise from two sources. First, there is potential nonadditivity arising from 
the dispersion and short-range three-body exchange forces. Second, the 
potential nonadditivity arises from the classical electric induction inter­
action between asymmetric molecules. From the theoretical point of 
view, very little is known with certainty about short-range overlap many-
body interactions, except for the work of O'Shea and Meath (34) on 
hydrogen atoms. However, there is very strong experimental evidence 
(see, e.g. 35-37) that their effects on thermodynamic properties of solid 
and liquid rare gases are very small, at least up to pressure of about 20 
kbar. We expect similar behavior for the molecular liquids of interest 
here, and therefore we neglect the three-body overlap interactions in 
the present treatment. Thus (10, 32) 

Vabc = V%c + Wtc (8) 

where 

V%c = ~l 2 2 2aslM\f[s]TUmK[l]mi}ll]M^ (9) 
^ 111*2X3 S = I 1=1 

where (fx i2 i3) and 

Vit = ^ = (&aj[l]T<?,,[l]afcj.)[2](Tg)c,[l]&c,[l]T(|) J (10) 

In Equation 9, each index in the three-fold sum takes the three values 
ai, bj, and ck, and there is the restriction that ix i2 i 3 . Thus there 
are only six terms in the sum corresponding to interactions due to the 
simultaneous presence of all the three molecules ai, bj, and ck. The term 
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370 MOLECULAR-BASED STUDY OF FLUIDS 

vabc appearing in Equation 10 can be written as 

= 2RaR f cR c(Ra + RB + RC) 
ABC (RA + RB)(RB + RC)(RC + HJ 1 ; 

with 

R*"1 = ( t o ) " 1 +(v(if lCafc)-1 - ( t o ) " 1 

where i|/s are defined as \\tab = 4ea f oo^ for Lennard-Jones 6-12 potential. 
3 _ 

In the special case of a one-component fluid v = - a (4ea6). 

Perturbation Expansion 

The configurational Helmholtz free energy per particle is given as 

kT 

f= - — l n Z N ( V , T) (12a) 

where 

ZN(V, T) = j J e x p f - p t y X , , . . XN)] gdXt (12b) 

and (3 = (fcT)"1. The volume element dXt in Equation 12b is equivalent 
to dr{ do^i where dr = drxdrydrz and do) = (8TT2)~1 sin QdQ dfydX. Each 
integration is extended to the sample volume V for positions and to the 
usual domains O ^ O ^ T T , 0^4>^ 2TT, and 0 ^ X ^ 2TT for angles. 

In developing a perturbation theory for simple molecular liquids 
and their mixtures, we begin by writing the total potential energy of 
interactions as a sum of two parts 

UN{XU . . ., XN) = • • xN) + X Wi> • •., XN) (13) 

where X is a perturbation parameter. For a mixture 

n t Na Nb 

Uf(Xi, • • , XN) = - 2 E E Uah(rai, rbj) (14a) 
^ a,b i j 

and 
t Na Nb 

o 
A a,b i ± j 

1 t Na Nb 

u m x l t . . . , xN) = - [vab(xai, xfc,) 

+ \ i 2 VabXXai, X*. Xck)] (14b) 
O c k 

(± i.S) 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

15



15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 371 

When Equations 13 and 14 are substituted in Equation 12, and the right 
hand side is expanded in ascending powers of \, one gets (12, 25) 

f = /<0) + 2 fn) (15) 

where 

fn) = f 1 xjcj® + ft xaXbxJ%c (16) 
2n a,b on a,b,c 

Here xt = N{/N, p = N/V, and 

M = |(Va b(ra l b2; cofll, ^b2)g^b-l)(rai b2; w f l l, vb2))o>alo>dral b 2 (17) 

faL = \\ (Vabc(rai b2> rb2 c3, rc3 al; cofll, cofc2, w j g ^ 

V r a l fc2> rfo2 c3> r c 3 al 

Here and elsewhere in this chapter, the notation (. . indicates an 
unweighted averaging over the orientations of molecule i; the terms 
g£$ and g£$c are nth perturbation terms in the expansion of pair and triplet 
correlation functions, respectively. For pure fluids, the first few terms 
in the expansion of pair and triplet correlation functions in the presence 
of three-body forces are given by Singh (25). These expressions have 
been generalized for mixtures by Shukla and Singh (12). Gray, Gubbins, 
and Twu (38) have given expressions for g$ and g<§ in the absence of 
three-body forces. 

It may be noted that while Equation 18 contains the contributions 
arising exclusively from triplet potential, Equation 17 contains contri­
butions arising from both pair and triplet potentials. The latter contri­
bution arises because of the effect of triplet potentials on the pair cor­
relation function and appears for n ^ 2. 

First-Order Terms. In the first-order of perturbation, the terms 
with Vgg™, Vfb, Vfb, and V%c as integrands give zero upon integration 
over the Euler angles. But the integrals of V% and Vfbc are not, in general, 
zero. We find 

ffl = (19) 

= - i 2 < * ~ 2 ) ( f ! v 2 ) ( ' ! ) 2 G W + « a « r 4 ) 

s=i (2s)! 
fflc = f ^ ° n ) (dis) (20) 

— v 3,3,3) 
v abc^abybCyCa 
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372 MOLECULAR-BASED STUDY OF FLUIDS 

where the superscripts ad and non designate the contributions to 
arising, respectively, from pair and triplet interactions and the notation 
in parentheses indicates the type of interaction that contributes to the 
property under calculation 

N(s) = M(s) [5] M(s) 

= / gS (r f l l h2)rrf%2dral b 2 (21) 

and 

Ka\,b£™ = j drb2 jdrc3 g^bc (ral b2, rb2 c3, r c 3 a l) 

X Fab,bc,ca (1) (ral b2rb2 c3r
C3 al) 3 (22) 

with 

Fab.bccdX) = 3 C 1 2 C 2 3 C 3 1 + 1 (23) 

Here C 1 2 , etc., means the cosine of the angle opposite the side alb2, 
etc., of the triangle formed by molecules al, b2 and c3. 

The molecular symmetries are used in evaluating N(s\. For example, 
for linear molecules exhibiting axial symmetry one gets (39) 

N<?> = M« [s] MW = ^ {M«} 2 (24) 

Second-Order Terms. In the second-order of perturbation one 
finds it convenient to rewrite Equation 16 in the following form 

/ ( 2 ) = IP i xaxbniad) + ^ P 2 i x.xbxef%T> (25) 

where the superscripts ad and non have the meaning defined earlier. In 
the expression fab'ad), there are squares of the permanent moments, in­
duction, dispersion, and anisotropic shape terms as well as cross terms 
such as product of permanent moments with induced moments, and so 
forth. In evaluating the integrals over Euler angles, it is convenient to 
ignore powers of V% and Va%c greater than the first because Equations 
4 and 9 are correct only to the first power in the polarizability. The final 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 373 

results, which we get after performing the integrations over angles ap­
pearing in expressions for/^|arf) and/i| c

n o n ) , can be written in a convenient 
way as 

f&ad) = ttlad) (perm) + (ants - dis) + (sh) 

+ f?b,ad) (perm X in) + f$ad) (perm X dis) + filad) (in X dis) (26) 

+ ffbM) (sh X in) + /<|ad) (sh X dis) 

f&cnon) = ffbTn) (perm X in) + (perm X dis) 

+ / i l ' " o n ) (̂  x dis) + / < | r n ) ( * * ) + fil'cnon) (dis x dis) (27) 

where 

/ a b (perm) [5 £ Z ( 2 s)l(2/)l(2s +1)1(2/ +1)! " 1 

(28) 

ill-* (ants - < & ) = - | | A2
ab[19P<°no) " 27a 2

aPf 

- 275|P<°> - Qajjo-S] X 7^ - ^ S p 2 xc {A a f cAja 0a f c(P<°> (29) 

- 3^)]7<^6> + AabAbc[aacib(P^ - 3a2)]A6- c
6-°>} 

/&<•*> (sh) = - — P I W e2
a6(o-ofcr (30) 

(perm X in) = 0j - [Pf>Ztf + PfZim 

+ | [PfZf + P?>Z<2w} (31) 

32 
/ S - * (perm X rffe) = - $AabPfPf (32) 
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374 MOLECULAR-BASED STUDY OF FLUIDS 

(in X dis) = 1 BAafc[35a(5| + 3 P £ W > 

+ (27a| - 19P£>) X Z<°> + 3a b(a 2 + 3Pg»)Ng> 

+ (275* - 19Pf ] Z T O " A P E * c{A a ca c[3a f c(Z<°> - a^) 
15 c 

+ (Pf - 3 W ] X /£»•<» + Abcac[3aa(Zf - abN^) 

+ (Pf - 3al)N?]J&™} (33) 

(sh x in) = y B D ^ f a A ^ + a f c A £ « eab(<Tab)12 

+ ^§ VDja.Nf + abmi%> U O 1 2 (34) 

64 
(sh X = - fiDj.ka + kb]I^ (zabf ( a J » (35) 

(perm x in) = 2 s j j 

+ permutations (36) 

/ l c " o n ) (in X di*) 

= " P i A ^ F ^ P T O . ^ + permutations} (37) 
75 

/ i ! ' c
n o n ) (perm X dis) 

= - £ p R P f P ^ ^ t c i + permutations} (38) 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 375 

/&»»> (dis x dis) = - f - PvJ = F i [ 1 9 P « > - 27ajjP?> 
225 |^a2a| 

- 27afP<2> - 9a 251]K<i^2 + =^r2 [P^Pf ~ 33a 2 Pf 
a 2a| 

- 33a|Pf + 1 8 9 a 2 a f ] / < ? £ 3 ) + permutations j (39) 

/&"»> (dis) = - ^ Bv 2
f c c L<^; c

3
a + permutations (40) 

with 

/ & c " ' r ) = jj drb2 drc3 g^c (ral b2, rb2 c 3 , r c 3 Bl) 

X r - A 2 r t f * r * ' . i P2I r-^I^ I (41) 
' a l fo2 ' b2 c3 

KitbZa = \ \ dr f o 2 rfrc3 g<$c (r a l M , rb2 c 3 , r c 3 fll) 

X r al P fc2 rb2qc3 r c 3 a l ^j£ , fcc , ca (42) 

and 

L^b'clcl ~ \ j drh2 drc3 ga% (ral b2, rb2 c3, rc3 ai)[(ra l b 2 rb2 c 3 

x r c 3 a l ) - 3 F f l ^ c , c a ( l ) ] 2 (43) 

Here P f = a, : &hPf> = a, : Mf\ Zf> = M?> • a z • M?>, Z?> = M?> • 
M f • M ^ , Z f = M f : (M?> • M^), and K is anisotropy in the polariz-
ability of an isolated molecule. 

Fabbcca(\) is already defined in Equation 23 and other values are 
given below: 

Fab,bc,ca&) = 1 5 C f 2 C 2 3 C 3 1 — 5Cf 2 — SCIQPZZ + 9 C 1 2 (44) 

Fab,bc,ca(3) = 3 5 C 1 2 C f 3 C 2 3 + 2 0 C f 2 C 1 3 C 2 3 

+ 5Cf 2 + lOCuCaa - 2 C 1 2 (45) 
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376 MOLECULAR-BASED STUDY OF FLUIDS 

Fab,bc,cd$) ~~ 4 5 C 1 2 C 2 3 C § 1 + 3 0 C f 2 C 2 3 C 3 1 

+ 10C?2 + 1 2 C 1 3 C 2 3 - 3 C 1 2 (46) 

The notation permutations indicates two more sets of terms like those 
explicitly written out, but with cyclic permutations of the three pairs of 
indices ab, be and ca. While all expressions given above are valid for 
molecules of any symmetry, Equations 30, 34, and 35 are valid strictly 
speaking only for symmetric linear molecules. 

Third-Order Terms. In the third-order perturbation term the only 
contribution that is of some significance is the one that arises from the 
permanent moment interaction branch of the pair potential. The con­
tribution of all other branches of pair and triplet potentials to thermo­
dynamic properties of pure, simple molecular fluids such as nitrogen (or 
even carbon dioxide) and their mixtures is negligible. Thus 

m « ttlad>
 (perm) (47) 

1 f 94 96 /$ = ~2 H y Z W i " + - ( Z ^ Z f + ZyZ?) 1^ 

+ 

+ ^Nf>NfN?>K&%% + - + permutations j (48) 

where "permutation" has the same meaning as noted earlier, and 

= / drb2 jdrc3 g<$>c (ral b2, rb2 c3, rc3 al) 

\ral 62 rb2 

with 

Fab,bc,ca(4) = 245 C^CIaC 2! + H O C u C u A a 
- 35 [C\2C\3 + Cf 2C|3 + C\3CU + 18 (50) 

The contribution arising from terms beyond third-order can be ap­
proximated by using the [1,0] Pade approximant of Stell et al. (24). 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 377 

That is 

8/i£rf> (perm) = B/jf^> (perm) 
[1 + Wilad) (perm)/mad) iperm)\] (51) 

The first-, second-, and third-order perturbation contributions to 
(3P/p, $U/N and S/Nk (where P, 17, and S are the configurational contri­
butions to the pressure, internal energy, and entropy, respectively) are 
found by applying the usual thermodynamic relationships to the corre­
sponding terms of the free energy, i.e. 

Bpw/p = ^ = 
dp ' JV ar 

and 

= — " P/(n) (52) Nk N P J K 1 

where superscript n indicates the order of perturbation. 
For theoretical developments similar to our treatment but without 

three-body nonadditive interactions we refer the reader to References 
21, 22, 24, 38, Gubbins et al. (40), and Shing and Gubbins (41). Another 
perturbation method, which uses nonspherical reference potential and 
is in principle more accurate in dealing with strongly anisotropic forces, 
is given by References 18-20 and Kohler and Quirke (42). 

Thermodynamic Properties of Pure Fluids 

The theory described above has been applied by Shukla et al. (11) 
to calculate the equilibrium properties of nitrogen, oxygen, carbon mon­
oxide, carbon dioxide, and methane. Of these five nonpolar polyatomic 
fluids, the first four have an axis of at least threefold symmetry and 
therefore have quadrupole moments described by a single scalar. Meth­
ane is tetrahedrally symmetric and has an octupole moment as the first 
nonvanishing electric multipole moment. 

The core of the methane molecule is very nearly spherically sym­
metric (spherical top) while all of the other molecules have rodlike cores. 
For nitrogen, Weis and Levesque (43) have found from molecular dy­
namic simulation that the anisotropic contribution, which arises from the 
nonspherical repulsive core, to the static structure factor is quite small. 
The structure factor associated with the center of mass motion bears a 
close resemblance to that of the monatomic liquid. Wang et al. (44) have 
found from Monte Carlo studies of g(r1? r 2; o ,̂ o>2) that the anisotropic 
overlap interaction may be taken as a perturbation of the Lennard-

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

15



378 MOLECULAR-BASED STUDY OF FLUIDS 

Jones 6-12 potential as long as D ^ 0.15. In the presence of dispersion 
and induction interactions, this limit on D may be still higher (26). Thus 
the use of the spherically symmetric reference potential (SSRP) for per­
turbation expansion for the above systems is justified. 

The properties of the reference system, which in our case is the 
Lennard-Jones 6-12 system, are calculated using the Verlet-Weis (45) 
version of the Weeks-Chandler-Andersen (46) perturbation theory. Two-
and three-body integrals, 7̂ n) and K£'n'-n"'n w ) that appear in the expansion 
of additive and nonadditive contributions to the thermodynamic prop­
erties can be evaluated from the expressions given by Gubbins and Twu 
(47), Shukla et al. (11, 48), and Larsen et al. (49). 

It has been found that at liquid densities the contributions of the 
three-body nonadditive interactions and anisotropy in pair interactions 
to the Helmholtz free energy are separately substantial. However, the 
net effect of these contributions is, in general, small because the two 
contributions are in opposite directions (exceptions are oxygen and meth­
ane). The other thermodynamic properties vary in their degree of sen­
sitivity to the anisotropic forces. The contribution of anisotropic forces 
is relatively small for the configurational energy, whereas it is of similar 
order of magnitude to the isotropic contribution in the case of pressure. 
In particular, the pressure is more sensitive to short range anisotropic 
forces than are the other properties. 

Singh and Singh (13, 14) have calculated the second and third virial 
coefficients of nitrogen, carbon monoxide, carbon dioxide, carbon di­
sulfide, ethylene, and benzene and have calculated the dielectric second 
virial coefficient of nitrogen and carbon dioxide for a set of force param­
eters that has been found suitable for explaining the dilute gas viscosity 
data. The agreement between theory and experiment is very satisfactory 
for all of these systems. In Figures 1 and 2 we give the calculated and 
experimental third virial coefficients for nitrogen and carbon dioxide. 
Because the experimental values of the third virial coefficient are derived 
from gas compressibility measurements by fitting an isotherm with a 
polynomial in the density, the values are subject to uncertainties in the 
isotherm and the degree of polynomial used, in addition to experimental 
inaccuracies. Moreover, the values reported by different authors differ 
from each other considerably. In view of these uncertainties, the agree­
ment found by Singh and Singh (13) is very satisfactory. 

In Tables I and II we compare at selected temperatures and densities 
the calculated values of the configurational energy, entropy, and pressure 
with the experimental data for nitrogen, oxygen, and methane, and car­
bon monoxide and carbon dioxide. Details are given by Shukla et al. 
(11). Even for carbon dioxide, for which we expect the theory to be less 
accurate because its "rod-likeness" is too large compared to that of ni­
trogen, the agreement found between theory and experiment is very 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 379 

T (K) • 

Figure 1. Comparison of calculated and experimental third virial coef­
ficients for nitrogen. Key: —, calculated; #, data of Hoover et al. (64); 
O , data of Michels et al. (65); and x , data ofMichek et al. (66). (Repro­
duced with permission from Ref. 13. Copyright 1976, Physica (Ultrecht).) 

good. From this we may probably conclude that the thermodynamic 
properties of molecular liquids are not very sensitive to the nonsphericity 
in the shape of molecules. 

The force parameters found suitable for calculating the equilibrium 
properties at liquid densities are given in Table III. The central force 
parameters e and a are obtained from the saturated liquid density data, 
and D is obtained from the vapor pressure data near the boiling point. 
Multipole moments and anisotropic polarizabilities are available from 
independent experimental measurements. It may be noted that the cen­
tral force parameters given in Table III give a deeper potential well (on 
the average about 7% for nitrogen, carbon monoxide and carbon dioxide) 
and smaller molecular "diameter" (about 2%) than those determined by 
Singh and Singh from gas data. This difference may be attributed to one 
or both of the following reasons: (1) The Lennard-Jones 6-12 potential 
model is probably inadequate to represent the central forces of molecules; 
and (2) the four-body and higher nonadditive interactions are probably 
not negligible at liquid densities. 
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380 MOLECULAR-BASED STUDY OF FLUIDS 

200 400 600 

T ( K ) 

Figure 2. Comparison of calculated and experimental third virial coef­
ficients for carbon dioxide. Key: —, calculated; Butcher and Dadson 
(67); and M, McCormack and Schneider (68). (Reproduced with permission 

from Ref. 13. Copyright 1976, Physica (Ultrecht).) 

Ananth et al. (21) have calculated the thermodynamic properties of 
nitrogen, oxygen, and methane. Their calculation, however, differs from 
ours in two respects: (1) they have neglected both the pair induction and 
three-body nonadditive interactions (arising from induction and disper­
sion forces), and (2) they have neglected the contribution arising from 
third- and higher-order terms in the perturbation series of permanent 
multipole interactions. The induction and nonadditive terms make sig­
nificant contributions and improve the agreement for nitrogen, oxygen, 
and methane. The extension to higher order perturbation terms makes 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 383 

Table III. Force Parameters Used in Calculations of This Chapter 

System. 
e/k 
(K) <T(A) D 

a x 1024 

(cm3) K 

e x io26 

(e.s.u. 
cm2) 

a x 1034 

(e.s.u.) 

Ar 1 1 9 . 8 
( 1 1 9 . 8 ) 

3 . 4 0 5 
( 3 . 4 0 5 ) 

N 2 1 0 3 . 2 9 
9 2 . 5 0 

( 1 0 0 . 1 5 ) 

3 . 6 1 5 
3 . 6 5 0 

( 3 . 6 1 9 ) 

0 . 0 8 
0 . 0 2 

1 . 7 3 0 0 . 1 7 6 - 1 . 4 0 0 . 0 

o 2 1 2 0 . 9 7 
1 1 0 . 9 0 

( 1 2 2 . 4 4 ) 

3 . 4 0 6 
3 . 4 3 1 

( 3 . 3 8 8 ) 

0 . 1 2 
0 . 1 0 

1 . 6 0 0 0 . 2 3 9 - 3 . 9 — 

C O 1 0 3 . 2 3 
9 5 . 5 0 

( 1 0 5 . 5 4 ) 

3 . 6 2 4 
3 . 6 7 2 

( 3 . 6 4 3 ) 

0 . 1 0 
0 . 1 0 

1 . 9 7 0 0 . 1 6 8 - 2 . 2 0 3 . 1 

c o 2 2 0 3 . 5 0 
1 9 7 . 5 0 

3 . 7 8 1 
3 . 9 3 2 

0 . 1 6 
0 . 1 6 

2 . 9 2 5 0 . 2 5 7 - 4 . 3 0 0 . 0 

C H 4 1 3 7 . 8 0 
1 3 7 . 0 0 

3 . 8 2 6 
3 . 8 8 2 

0 . 0 0 
0 . 0 0 

2 . 6 0 0 . 0 0 0 . 0 0 2 . 0 4 

Note: Upper lines, the central force parameters found by Shukla et al. (II) from liquid 
state data. Lower lines, those found by Singh and Singh (13) from gas data. The force 
parameters given in parentheses are those used by Leonard et al. (60) to study the excess 
properties of binary mixtures of these systems. 

possible comparison with experimental data for carbon monoxide and 
carbon dioxide. 

Numerical calculations carried out by Gubbins et al. (40) for ther­
modynamic properties of fluids of nonaxial quadrupolar molecules show 
that, in general, the nonaxial part of the quadrupole moment has a large 
influence and must be properly accounted for. If the quadrupole moment 
is weak, it is possible to use the axial expression with the effective axial 
approximation. However, this will be a poor approximation for many 
nonaxial fluids (e.g., H 2 0) and for binary mixtures of a nonaxial molecule 
(e.g., C 2 H 4 ) with an axial molecule (e.g., N aO). 

Binary Mixtures 

The perturbation theory based on SSRP and the Pade approximant 
has been used to study a system of hard spheres mixed with hard spheres 
that have embedded point dipoles by Melnyk and Smith ( 5 0 ) . Chambers 
and McDonald (23) have used this theory to study a nonpolar-polar liquid 
mixture, using a Lennard-Jones potential model for the nonpolar con­
stituent and a Stockmayer potential for the polar constituent. Gubbins 
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384 MOLECULAR-BASED STUDY OF FLUIDS 

and Gray and co-workers (22, 38, 47, 51, 52, 53, 54) have used this theory 
to evaluate the effect of polar, quadrupolar, octopolar, dispersion, and 
anisotropic overlap forces under the assumption of pairwise additivity of 
the potential on the excess properties of binary liquid mixtures (Xe-HCl, 
Xe-HBr, HCl-HBr , X e - N 2 0 , X e - C 2 H 4 , K r - C 2 H 4 , Xe-CF 4 ) at low and 
moderate pressures. They found that the anisotropic forces have a large 
effect on excess properties, producing a positive deviation from Raoult's 
law. They have also found that the strong polar and quadrupolar forces 
may cause liquid-liquid immiscibility to occur. In their calculations, they 
have, however, ignored the contributions arising due to three-body non­
additive interactions. 

Based on the work of Shukla and Singh (12) we discuss here the 
relative importance of the pair and three-body nonadditive interactions 
on the excess and total thermodynamic properties of binary fluid mix­
tures. 

For a binary fluid mixture, Equation 16 can be rewritten as 

+ ^ [ x 3
a f £ r n ) + 3xfx>/&"•"> + 3 x . x g / & • " » > + xg/&~">] (53) 

where again n indicates the order of perturbation and superscripts ad 
and non represent the contributions that arise from pairwise additive 
and three-body nonadditive interactions, respectively. 

For a binary mixture consisting of a component a of spherically 
symmetric molecules and another component b of axially symmetric mol­
ecules, f^'ad) = 0 for n ̂  1, and the contribution to f^ad) arises only 
from induction interaction which, as discussed earlier, is considered to 
first-order term only. Thus, fg>ad) = f^tad)(in), and f&ad) = 0 for 
n ^ 2. Since the molecules of species b are axially symmetric and have 
a quadrupole moment as the first nonvanishing electric pole, we consider 
fib,ad) U P t° third-order terms and apply the Pade approximant to estimate 
the contribution of higher order terms. Because the molecules of species 
a are spherically symmetric, it is sufficient to consider f^a

non) a n d 
faabnon) t ° t n e first-order perturbation term only, whereas / f l

(gi,n o n ) and 
fibbnon) a r e considered up to second-order terms. On the other hand, if 
we consider a binary mixture in which both components are axially sym­
metric molecules, we must consider all of the contributions discussed 
earlier. The expressions in terms of molecular parameters for the above 
terms are obtained from the section giving the perturbation expansion 
by introducing the symmetry of molecules. 

The properties of the reference system are evaluated using van der 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 385 

Waals one-fluid theory of mixtures (55). This theory approximates the 
properties of a mixture by those of a fictitious pure fluid with the inter­
action parameters 

a,b (54) 

£ x = &x3 2 XaXb Eab a a f c a,b 

The unlike force parameters eab and vab of the potential model are ap­
proximated from the following combination rule 

1, 

2 (55) 
Sab = £>ab(Eaa ^bbY^ 

where %ab is an adjustable parameter with the requirement that £ab ^ 1. 
The excess properties are found to be very sensitive to the value of %ab. 

In the van der Waals one-fluid theory of mixtures, the free energy, 
enthalpy, and pressure of the mixture are written as 

A 0 = Ax + NkT ^ xa ln xa + second order terms 
a 

H0 = Hx + second order terms (56) 

P0 = Px + second order terms 

where Ax, Hx, and Px are values for a pure fluid containing N molecules 
in volume V at temperature T, the molecules interacting with a Lennard-
Jones 6-12 potential having parameters &x and sx given by Equation 54. 
Values of Ax, Hx, and Px are calculated using curves fitted either to Monte 
Carlo data of McDonald and Singer (56) or pure fluid Percus-Yevick data 
of Grundke et al. (57). The theory is known to give very good results for 
the argon-krypton mixture and compares very well with machine sim­
ulation results. 

The two-body integrals Ia
2
b

s) that appear in perturbation terms are 
evaluated using the values of the mixture radial distribution function 
obtained from the zeroth order term in the conformal solution expansion 
of Mo et al. (58). In this approximation, the mixture pair distribution 
function g<$ is equated to that of a pure fluid at reduced temperature 
T* and reduced density p*. That is 

g?b(—> — . P " i ) , T*. p*) (57) 
\ Vab *ab I \ ^ab I 
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386 MOLECULAR-BASED STUDY OF FLUIDS 

Thus 

n - 3 

nn)(p?, T*) (58) 

where Ix
n) is the pure fluid integral at reduced density p* and temperature 

To evaluate the three-body integrals K^-q-r) we make use of the 
superposition approximation for the triplet correlation function of the 
reference mixture system, i.e. 

This approximation gives negligible error in pure fluid integrals and is 
expected to hold equally well in the case of mixtures of molecules of 
approximately the same size. For each of g ^ in Equation 59 we use the 
value obtained from Equation 57. With this, the three-body integral of 
mixtures is converted into the three-body pure fluid integrals in the 
following way 

K<k»'. »*. »"> « (^j f^j (^j K(i, »'. »"> (60) 

where Kjf- n'- n"- n'"} is the pure fluid integral at the reduced state condi­
tions T* and p*. The value of integral K£' n'- n - n " } is obtained in terms 
of the reduced density and reduced effective hard sphere diameter by 
approximants of the Pade type discussed by Shukla et al. (IJ). 

The magnitude of the contributions of various branches of pair and 
three-body nonadditive interactions to the Helmholtz free energy (see 
Table IV) and internal energy per particle in an equimolar binary mixture 
have been evaluated by Shukla and Singh (12) for five binary mixtures, 
A r - N 2 , A r - 0 2 , A r - C O , N 2 - 0 2 and N 2 - C O , three of which belong to the 
category of spherically and axially symmetric molecules and the other 
two to the category of axially symmetric molecules. Among the three-
body nonadditive interaction branches, the most significant contribution 
arises from dispersion interaction in the first-order perturbation term for 
all of the systems. The contributions of the induction and dispersion 
branches in the second order term are small. This justifies the truncation 
of the perturbation series to the second-order term in case of three-body 
nonadditive interactions. 

The contribution arising from pair induction interaction in first-order 
perturbation is substantial for N 2 - C O , small for A r - C O , N 2 - 0 2 , and 
A r - N 2 , and negligible for A r - 0 2 mixtures. In the second-order pertur-

T*. 

g<t(r12, r 1 3 , r 2 3) - g^r^g^Mgi?^) (59) 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 387 

Table IV. Contribution of Various Branches of Pair and Triplet 
Potentials to Free Energy for Binary Liquid Mixtures 

(T = 83.82 K, F = 0.0, xx = x2 = 0.5) 

Contributions Ar-ZV 2 A r - 0 2 Ar-CO N2-02 N2-CO 

-0.0156 -0.0019 -0.0430 -0.0383 -0.1083 
$fV>adXperm) -0.0436 -0.0005 -0.2561 -0.0549 -0.4847 
$f^ad){anis-dis) -0.1160 -0.1545 -0.1090 -0.3966 -0.2047 
^2ad\shape) -0.0401 -0.1184 -0.0640 -0.1936 -0.1235 
$fv-ad\shape X 

in) 0.0013 0.0002 0.0044 0.0036 0.0104 
$f&-ad)(shape x 

dis) 0.0688 0.1966 0.0852 0.4847 0.2853 
0.0003 0.0000 0.0021 0.0005 0.0039 

PfV-ad\perm x 
dis) 0.0229 0.0055 0.0521 0.0512 0.1355 

W^Xperm) 0.0030 0.0000 0.0436 0.0050 0.0751 
$fl'n°n\dis) 
$f^n°"Xdis2) 

0.4998 0.6415 0.5412 0.6773 0.5662 $fl'n°n\dis) 
$f^n°"Xdis2) -0.0113 -0.0182 -0.0133 -0.0201 -0.0146 

in) 0.0009 0.0000 0.0053 0.0029 0.0183 
$f(2-nonXperm x 

dis) -0.0009 -0.0000 -0.0023 -0.0017 -0.0059 
pfPad4(perm) -0.0408 -0.0000 -0.2188 -0.0503 -0.4158 

-4.5565 -5.1843 -4.6676 -4.5788 -4.1398 
3/(ad)(ams) -0.1190 -0.0730 -0.2847 -0.1384 -0.4110 

0.4885 0.6233 0.5309 0.6584 0.5640 
0/(fofaZ) -4.1870 -4.6340 -4.4214 -4.0588 -3.9868 

Source: Reproduced with permission from Ref. 12. Copyright 1980, American Insti­
tute of Physics. 

bation term, the contribution arising from the permanent moment (quad­
rupole moment) interaction branch of the pair potential to free energy 
and internal energy is significant for N 2 - C O and A r - C O , small for 
A r - N 2 and N 2 - 0 2 , and negligible for A r - 0 2 mixtures. This contribution, 
in the case of free energy in the third-order perturbation term, is found 
to be 7%, 9%, 15%, and 17% of the corresponding contribution arising 
in the second-order term for A r - N 2 , N 2 - 0 2 , N 2 - C O , and A r - C O , re­
spectively. In the case of internal energy, the third-order term contrib­
utes about 12%, 14%, 24%, and 27% to that of the contribution in second-
order term for these systems. The contributions arising from higher-
order terms are approximated using the [1,0] Pade approximant. The 
other branches of pair interaction that are of significance in the second-
order term are anisotropic dispersion, shape, and the cross terms, shape 
X dispersion and permanent moment X dispersion interactions. The 
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388 MOLECULAR-BASED STUDY OF FLUIDS 

contributions of these branches of interactions to the third-order term 
are negligibly small, and therefore the truncation of the perturbation 
series at the second-order term is justified. 

In Table V we compare the excess properties (Gibbs free energy, 
G E , and enthalpy, HE) at zero pressure calculated using Monte Carlo 
and Percus-Yevick values for the reference system (since these methods 
give almost identical values, they are not reported separately) and as­
suming £ 1 2 to be an adjustable parameter with the experimental (59) 
properties of several equimolar mixtures. In adjusting £ 1 2 , Shukla and 
Singh (12) used the data of GE instead of HE, which is more sensitive to 
changes in £ 1 2 (by roughly twice). This is done because values of HE are 
not always available, and it is preferable to use the same procedure for 
all the mixtures. 

Leonard et al. (60) have studied the excess properties of these mix­
tures by representing the interaction between like and unlike molecules 
by the Lennard-Jones 6-12 potential, and neglecting completely the 

Table V. Excess Properties: Comparison of Theory and Experiment 
(P = 0, T = 83.82 K, X l = x2 = 1/2) 

Calculated from 

Present L-J (6-12) Potential* 

System Property Expt." Work vdWl B-H 

A r - N 2 £ l 2 — 0.9995 1.002 0.999 
GE 34 34 34 34 
HE 51 44 33 30 

A r - 0 2 0.982 0.9832 0.988 0.987 
GE 37 37 37 37 
HE 60 60 52 51 

Ar-CO £ l 2 0.994 0.988 0.985 
GE 57 57 57 57 
HE — 90 78 71 

N 2 - C O 0.986 0.9975 0.991 0.990 
GE 23 23 23 23 
HE — 32 35 33 

N 2 - 0 2 
— 0.9983 1.003c 0.999c 

GE 39 39 42c 42c 

HE — 60 4 p 36c 

Note: GE and HE in joules/mol; £ 1 2 assumed to be an adjustable parameter. 
" From Ref. 59. 
h From Ref. 40. 
0 These values refer to T = 78 K. 
Source: Reproduced with permission from Ref. 12. Copyright 1980, American Insti­

tute of Physics. 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 389 

contributions arising from pair isotropic and three-body nonadditive in­
teractions. The values they have found from van der Waals one-fluid 
theory of mixtures (vdWl) and from the generalized Barker-Henderson 
(61) perturbation theory (B-H) are given in columns 5 and 6 of Table V. 
We immediately observe that the agreement found by Shukla and Singh 

0 0.2 0-4 0 6 0 8 10 

Figure 3. Excess Gibbs free energy, G E , as a function of composition of 
argon-oxygen binary mixtures at T = 83.82 K and P = 0. Key: 
experimental points; , theoretical curve (total contribution); , 
total contribution arising from pair central potential (reference system), 
- x - x total contribution arising from pair anisotropic interaction; and 

total contribution arising from three-body nonadditive interactions. 
(Reproduced with permission from Ref. 12. Copyright 1980, American 

Institute of Physics.) 
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390 MOLECULAR-BASED STUDY OF FLUIDS 

(12) between theory and experiment is good and is better than that found 
by Leonard et al. (60). 

Shukla and Singh (12) have also studied the composition dependence 
of GE and HE for the binary mixtures A r - N 2 , A r - 0 2 , A r - C O , N 2 - 0 2 and 
N 2 - C O . We plot the results in Figures 3-5 for only two systems, A r - 0 2 

and N 2 - 0 2 . In these figures we also plot separately the total contributions 

Figure 4. The excess enthalpy, H E , as a function of composition of argon-
oxygen binary mixtures at T = 83.82 K and P = 0. Key as in Figure 3. 
(Reproduced with permission from Ref. 12. Copyright 1980, American 

Institute of Physics.) 
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15. SINGH AND SHUKLA Thermodynamics of Molecular Fluids 391 

2 

Figure 5. The excess Gibbs free energy, G E , as a function of composition 
of nitrogen-oxygen binary mixtures at T = 83.82 K and P = 0. Key as 
in Figure 3. (Reproduced with permission from Ref. 12. Copyright 1980, 

American Institute of Physics.) 

arising from the pair central potential, pair anisotropic interactions, and 
three-body nonadditive interactions. We note that the heat of mixing is 
more sensitive to pair anisotropic and three-body nonadditive interac­
tions than it is to GE. Similar conclusions hold for other systems. 

We thus find that the predictions of the perturbation theory are in 
generally good agreement with experiment. It is shown that a better 
agreement with experiment is obtained when the anisotropy of pair in­
teraction and the three-body nonadditivity are taken into account even 
for such simple systems as methane, oxygen, and nitrogen and such 
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392 MOLECULAR-BASED STUDY OF FLUIDS 

mixtures as A r - 0 2 and A r - N 2 . In conclusion, we therefore feel that the 
perturbation theory in which all the tensor interactions are taken as 
perturbations of the isotropic pair interaction is appropriate for describing 
the thermodynamic functions of simple molecular fluids and their mix­
tures. 
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16 
Investigation of Binary Liquid Mixtures 
via the Study of Infinitely Dilute 
Solutions 

D. A. JONAH 
University of Sierra Leone, Department of Mathematics, Fourah Bay College, 
Freetown, Sierra Leone, West Africa 

The prediction and correlation of activity coefficients and 
their derivatives for binary liquid mixtures at infinite di­
lution have been considered on both the thermodynamic 
and molecular levels. The related considerations of gas sol­
ubilities in liquids and the solubilities of solids in super­
critical fluids have also been studied. Based on a method 
of numerical differentiation using intercepts rather than 
slopes, it has been demonstrated that the above limiting 
thermodynamic functions can be estimated with sufficient 
accuracy from either excess Gibbs free energy or vapor 
pressure data available near both ends of the composition 
range. Limiting activity coefficients and their derivatives 
so estimated have been used in three empirical expressions 
for excess Gibbs free energy, to extrapolate from the dilute 
portion to the other parts of the composition range; such 
extrapolations have been found to be in good agreement 
with experimental measurements. Using rigorous statistical 
mechanics, combined with certain semiempirical argu­
ments, a number of tested correlations of the limiting re­
sidual chemical potential (and also solubilities) with pure 
solvent properties are presented; these are found to be in 
good agreement with experimental data. 

T H E STUDY OF VERY DILUTE SOLUTIONS deserves serious attention for 
at least three reasons: 

1. Such a study has important practical applications in ex­
tractive and azeotropic distillations where important com­
ponents often occur in very low concentrations. 

0065-2393/83/0204-0395$08.00/0 
© 1983 American Chemical Society 
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396 MOLECULAR-BASED STUDY OF FLUIDS 

2. The constants in certain empirical equations for excess 
functions are related to thermodynamic functions at infinite 
dilution (e.g., the limiting activity coefficients and their 
first derivatives); further, these constants are needed for 
the prediction of multicomponent vapor-liquid equilibria. 

3. Very dilute solutions are of considerable interest to the 
theoretician for at least two reasons. First, the absence of 
solute-solute interactions helps to isolate the unlike solute-
solvent interactions against a background of solvent-solvent 
interactions, so that thermodynamic properties at infinite 
dilution provide a convenient source of information about 
these unlike pair interactions so necessary in any attempt 
to relate these to the like interactions. Second, the dom­
inance of the solvent-solvent interactions makes the con­
tribution from the solute-solvent interactions to the total 
energy a veritable small perturbation. Therefore, an infi­
nitely dilute system is ideal for the application of a per­
turbation about the pure solvent, as one possible route in 
the prediction of mixture properties from those of pure 
components. 

It is therefore surprising that more attention has not been devoted 
to this important aspect of mixture theory. 

As is evident from Reason 2, the study of infinitely dilute solutions 
can form the basis for the study of binary mixtures at finite concentrations. 
This appears to be a viable alternative to the usual approach, which 
focuses attention on the mixture at finite concentration. Then, at some 
stage in the statistical thermodynamical development, information about 
the composition-dependence of the principal thermodynamic functions 
is injected into the theory, through assumptions expressing the com­
position-dependence of mixture molecular parameters in their relation­
ship to corresponding parameters of the pure components. 

In this alternative approach, however, the form of composition-
dependence of a basic thermodynamic function, such as the excess Gibbs 
free energy, is assumed beforehand through the use of one of the em­
pirical equations with constants related to limiting thermodynamic quan­
tities. Attention is then focused on the evaluation or prediction of these 
constants with the help of molecular thermodynamics. 

In this chapter, we shall apply this alternative approach to the study 
of binary nonelectrolyte mixtures. Infinitely dilute solutions will, of course, 
also be studied in their own right in attempts to predict such properties 
as Henry constants, solubilities of liquids in gases, and the solubilities 
of liquids and solids in supercritical gases. There will be two broad 
sections, one based on purely thermodynamic considerations, and the 
other on molecular thermodynamics. 

The "Thermodynamic Considerations" section briefly reviews some 
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16. JONAH Binary Liquid Mixtures 397 

empirical equations whose constants are related to limiting quantities; 
special attention is given to a modified version of the two-constant Van 
Laar equation, called the Conic equation (J, 2). Examination of this 
equation as a correlating and extrapolative device—that is, a means for 
the extrapolation of excess functions measured for very dilute solutions 
into the rest of the composition range—is next considered; then follows 
an examination of the evaluation of the constants in this equation from 
vapor pressure-composition curves. Comparison is made with experi­
mental data. 

The "Molecular Thermodynamics" section addresses the problem 
of predicting the constants in the empirical equations or correlating them 
with pure component properties. My approach combines rigorous sta­
tistical thermodynamics with empirical and semiempirical arguments. 
Also considered are the solubilities of liquids and solids in supercritical 
gases. Comparison is made between my equations and experimental data. 

Thermodynamic Considerations 

Some Empirical Equations. Although several useful empirical and 
semiempirical equations express the composition-dependence of the ex­
cess Gibbs free energy, GE, few of these have the useful and desirable 
property of their constants being simply related to the limiting derivatives 
of the excess functions. The more familiar equations in this desirable 
class are the well-known two-constant Van Laar and Margules equations 
and the one-constant regular solution equation. In each of these the 
constants are related to the limiting activity coefficients (or the limiting 
first derivatives of the excess function, GE). 

However, these equations seldom do well when the constants are 
identified as just stated; invariably, these constants have to be evaluated 
by some method (e.g., by least squares) using data over the whole con­
centration range. However, in not identifying the constants with limiting 
properties, we are sacrificing a very valuable feature of these equations 
that makes them useful not only as correlating equations, but also as 
extrapolative equations for deducing the excess function over the rest of 
the composition range, given a few measurements near either end of 
this range. Hence, these equations need to be modified to make it pos­
sible to use limiting thermodynamic quantities for the constants and 
achieve, at the same time, a close fit to the experimental data. 

Such modifications of the Van Laar and Margules equations have 
been suggested by Jonah and Ellis (J, 2) and by Abbott and Van Ness 
(3). The modified Van Laar form, the Conic equation, is given by 

q2 + al2xYx2 + qia^ + a2x2) = 0 (1) 

where q = GE/RT. 
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398 MOLECULAR-BASED STUDY OF FLUIDS 

The modified Margules forms are 

Mi. q = x1x2{A2lxl + Al2x2 - (\ 2 i* i + ^ 1 2 ^ 1 ^ 2 } ( 2 ) 

and 

\ 1 2 X 2 1x 1x 2 

M 2 : q — X]X2I A2i%i + A 1 2 x 2 

^12^-1 ^"21^2, 
(3) 

The constants in Equations 1, 2, and 3 are all related to the limiting 
activity coefficients and their derivatives as follows 

X 1 2 — A 2 1 2A 12 

1 (d ln 7j 

dxl 

X-21 — ^12 2A 9 1 _ 
1 / d ln 7 2 

dXo 

(4) 

*12 

6 ln 7x 

d In 7 2 

ax9 

+ 

+ 

(5) 

ah 
^21 

A 1 2 = ln 7? 

and 

and 

do = 

A 2 1 = ln 7 2 

To see that Equation 1 is a modified form of the Van Laar equation, 
we rewrite it in the form 

bl2q2 + x,x2 - q\j± + f-J = 0 (6) 

where bl2 = a^1. When b12 = 0, Equation 1 reduces to the two-constant 
Van Laar equation; if A 1 2 = A 2 1 , the regular solution equation is re­
covered. 

In these modifications of the two-constant Van Laar and Margules 
equations the additional constants merely take account of the curvature 
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16. JONAH Binary Liquid Mixtures 399 

of the excess Gibbs free energy curves at the ends of the composition 
range. If the curvature is negligible, then we expect to find the two-
constant equations adequate for correlation purposes. Also, whereas the 
modified Margules equations, Equations 2 and 3, require limiting de­
rivatives at both ends of the composition range, the Conic equation, 
Equation 1, requires just one of these same quantities. As will become 
evident later, this is a very useful feature. Often, in practice, both limiting 
derivatives cannot be evaluated with the same degree of certainty; in 
such cases we choose the more reliable of the two limiting derivatives. 

The introduction of curvature parameters into the two-constant Van 
Laar and Margules equations has the effect of constraining the fitted 
excess curve to pass through the maximum (or minimum) point. It is 
therefore not surprising to find that a12 in the Conic equation can be 
expressed in terms of the maximum (or minimum) excess function 

_, {1 - e(A2V - Af,1)}2 - 4eA^ „ 

where e = G ^ . Using Equation 5 in Equation 7, we have the alternative 
expressions for the limiting derivatives of the activity coefficients: 

a J n T i V _ A?2{1 - e(A2l
l - Af,1)}2 - 4eA2

l2 2A?2 

dxx / 2e2 A21 

and (7a) 

(9 In y2Y _ A&1 - e(A^ - A2l
1)}2 - 4eA2

21 2A2
21 

dx2 J 2e2 

For correlation purposes, when we have data over the whole composition 
range, Equation 7a is obviously preferable to a direct method of evalu­
ating the limiting derivatives for data satisfying the Conic equation. On 
the other hand, Equation 7a is not useful for extrapolation of data from 
the very dilute regions of the concentration range into other regions of 
this range. However, for data satisfying the Conic equation, Equation 
7a provides a standard by which to judge the effectiveness of a direct 
method, such as the method of intercepts, for evaluating derivatives, 
and it can serve as a check on the estimates of the derivatives used to 
evaluate this same constant by Equation 5. 

The Conic equation does surprisingly well in correlating the excess 
functions of a wide class of binary systems, in spite of its unattractiveness 
in that it gives q as an implicit function of composition. The criterion for 
applicability is simple: the excess function has to satisfy a "rule of rec-
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400 MOLECULAR-BASED STUDY OF FLUIDS 

tilinear diameters" (see Figure 1). I have yet to come across excess Gibbs 
free energy values for binary systems that depart significantly from this 
rule. The slope of the straight line joining the midpoints of the diameters 
can be simply related to the limiting first derivatives of the excess func­
tion. 

Evaluation of Limiting Derivatives. The usefulness of Equations 
1-3 as extrapolating equations depends very much on the accurate eval­
uation of the limiting first and second derivatives of the excess functions. 
A method for the evaluation, by the method of intercepts, of the first 
and second derivatives of experimental data has already been developed 
and described elsewhere (7); the method has been tested against several 
sets of experimental data, and found to yield reliable estimates. I shall 
merely quote the principal equations here and give the results of applying 
them to the excess Gibbs free energy data for three binary systems. Let 
c|>(x) be some function of x whose first and second derivatives are required 
at x = b. Then these are given by 

where 

Figure 1. Rectilinear diameter criterion that must be satisfied by an ex­
cess function in order to be closely fitted by Equation 1. The slope s of 
the locus AB of the midpoints of diameters is given by s = 2A i 2A 2 i/(A 2 i 

- AM). 
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16. JONAH Binary Liquid Mixtures 401 

and 

âx / x = f c ^ \ ax / x = b 

whe re 

L?) - lim * q i (9a) 
M * (x - a)(x - b) 

$ = 4>T)/(X - a)(x - b) (10) 

<$>T(x) and qrx(x) are certain trial functions, which may be linear, quadratic, 
or otherwise. The linear forms (which we employ in this chapter) are 
given by 

I I / \ • Cj)(fc) ~ <|>(fl) . . , V 
c()r = 4>(fl) + — (x - a) (11) 

— a 
r(D _ r(i) 

Q l = L(
a

l) + 2_ ( x _ a ) (12) 

The value of a in the above equations is chosen according to convenience. 
The important feature in the above formulas is that they make use 

of intercepts, rather than slopes, for the evaluation of derivatives. They 
have been applied in the next section in evaluating the first and second 
limiting pressure derivatives (Equations 15 and 16), and also the limiting 
activity coefficients and their derivatives from excess Gibbs free energy-
composition curves, for use in Equations 1-3. Three binary systems have 
been considered: 

ethanol-n-heptane (30 °C) (5) 
acetone-carbon tetrachloride (45 °C) (6) 
nitromethane-carbon tetrachloride (45 °C) (6) 

The results are summarized in Table I. 
In Table I, "gE(l) calc" indicates excess free energies obtained from 

the Conic equation and the modified versions of Margules equations, M1 

and M 2 , given in Equations 1-3. The constants A 1 2 and A 2 1 have been 
chosen to obtain the best possible fit with the Conic equation, using the 
values obtained by the method of intercepts as first approximations. The 
limiting derivatives of the activity coefficients are evaluated according to 
Equation 7a and should be close to the true values, considering the very 
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402 MOLECULAR-BASED STUDY OF FLUIDS 

Table I. Excess Gibbs Free Energy From Equations 1-3 with Constants 
Identified with Limiting Properties Evaluated by Equations 8-12, 13a, 

and 14a 

Expt. 

gE(l) Calc. 
gE(2) 
Calc. 

g E (From 
P-x Data) 

M, M 9 

Ethanol (1) and n-Heptane (2) (30 °C) (19) 

0.1 0.262 0.262 0.242 0. 246 0.262 0.266 0.275 0.276 
0.3 0.508 0.511 0.365 0. 407 0.511 0.508 0.449 0.456 
0.5 0.570 0.568 0.380 0. 440 0.566 0.559 0.444 0.4.54 
0.7 0.478 0.476 0.378 0. ,409 0.475 0.469 0.393 0.399 
0.9 0.219 0.219 0.211 0, .214 0.219 0.218 0.210 0.211 

Constants 

d ln 7 2 

dx2 

0.0459 
0.0918 
0.1954 
0.2829 
0.3656 
0.4659 
0.5366 
0.6065 
0.6835 
0.8043 
0.9039 
0.9488 

3.52 
2.65 

-26.2 

-11.18 

8.71 
3.81 

3.55 
2.65 

-21.8 

-11.3 

6.45 
3.90 

Jonah 
3.75 
2.68 

-23.11 

-12.81 

6.74 
4.80 

Klaus et al. 
4.09 
2.69 

-40.62 

-12.42 

Nitromethane (1) and Carbon Tetrachloride (2) (45 °C) (23) 

0.110 
0.199 
0.350 
0.432 
0.482 
0.504 
0.501 
0.476 
0.432 
0.317 
0.176 
0.099 

0.108 
0.198 
0.350 
0.434 
0.482 
0.504 
0.498 
0.475 
0.429 
0.313 
0.176 
0.099 

0.108 
0.196 
0.340 
0.415 
0.456 
0.476 
0.471 
0.452 
0.412 
0.307 
0.175 
0.099 

0.108 
0.197 
0.343 
0.421 
0.465 
0.485 
0.480 
0.459 
0.418 
0.309 
0.175 
0.099 

0.108 
0.199 
0.354 
0.441 
0.491 
0.514 
0.507 
0.483 
0.435 
0.317 
0.176 
0.099 

Constants 

A12 

(d In In 7 i V 
dx 

d ln 7 2 

dx2 

2.578 
2.072 

-10.59 

-5.50 

2.211 
1.184 

2.547 
2.056 

-9.37 
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16. JONAH Binary Liquid Mixtures 403 

Table I. Excess Gibbs Free Energy From Equations 1-3 with Constants 
Identified with Limiting Properties Evaluated by Equations 8-12, 13a, 

and 14a (Continued) 

gE(2) g E (From 
gE(l)Calc. Calc. P-x Data) 

g 
Xl Expt. C M x M 2 C C M , M 2 

Acetone (1) and Carbon Tetrachloride (2) (45°C) (6) 

0.0556 0.057 0.057 0. .057 0.057 0. 057 0.055 0.055 0.056 
0.0903 0.087 0.086 0, .086 0.086 0. 086 0.084 0.084 0.086 
0.2152 0.161 0.161 0, .157 0.161 0. 162 0.160 0.159 0.168 
0.2929 0.188 0.189 0. .182 0.188 0. 189 0.188 0.187 0.199 
0.3970 0.209 0.207 0, .198 0.206 0. ,208 0.207 0.206 0.222 
0.4769 0.208 0.208 0. .199 0.207 0. 210 0.208 0.209 0.224 
0.5300 0.203 0.204 0, .195 0.203 0. 205 0.204 0.205 0.219 
0.6047 0.191 0.191 0. .183 0.190 0. 192 0.191 0.193 0.204 
0.7128 0.158 0.158 0, .154 0.158 0. 160 0.158 0.161 0.167 
0.8088 0.117 0.117 0, .115 0.117 0. 118 0.116 0.119 0.121 
0.9090 0.061 0.061 0, .061 0.061 0. 062 0.061 0.062 0.062 
0.9636 0.026 0.026 0, .026 0.026 0. 026 0.025 0.026 0.026 

Constants 
A 1 2 = 1.147 1.146 1.102 
A 2 1 = 0.730 0.739 0.718 
(d In 7 l

N 

\ tei / 
f = -4.869 -4.70 -4.14 

/a In 7 2 N 

\ dX2 J f = -1.258 — -0.756 

^12 = 0.8705 — 0.584 
^21 — 0.316 — 0.044 

Note: gE = GE/RT 

close fits by the Conic equations. The modified Margules equations Mx 

and M 2 do not give as close fits as the Conic equations, except for the 
system acetone-carbon tetrachloride, for which M 2 does as well as the 
Conic equation. It is, however, probable that Ml and M 2 may give closer 
fits, by not identifying the constants with limiting thermodynamic prop­
erties. The close agreement between g£(l) and experimental values dem­
onstrates the effectiveness of the above equations for purposes of cor­
relation. 

In Table I, "g£(2) calc" indicates values of the excess free energy as 
obtained from the Conic equation using constants that have been cal­
culated entirely from limiting activity coefficients and their derivatives, 
as estimated by method of intercepts. Corresponding values for Mx and 
M 2 are not shown, as these equations require both limiting derivatives, 
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404 MOLECULAR-BASED STUDY OF FLUIDS 

which in general are not available. The good agreement between g£(2) 
and the experimental values demonstrates the potentiality of extrapo­
lating excess free energy from the dilute ends of the concentration range 
to other parts of the range. 

We next examine the possibility of calculating excess free energies 
over the whole composition range, given a few total vapor pressure 
measurements near both ends of the range. 

Excess Gibbs Free Energy from Vapor Pressure Data. The lim­
iting activity coefficients and their derivatives can be expressed in terms 
of the limiting first and second pressure derivatives with respect to com­
position; corresponding expressions in terms of limiting first and second 
temperature derivatives with respect to composition for isobaric data are 
also available. Gautreax and Coates (8) were the first to derive such 
relationships but only for the limiting activity coefficients within the 
symmetric standard states convention. Jonah has rederived these rela­
tions for both the symmetric and unsymmetric choice of standard states; 
analogous relations for the limiting first derivatives of the activity coef­
ficients within the symmetric standard states convention, have also been 
derived (9). Only the isothermal relations, which have been applied to 
two binary systems, acetone-carbon tetrachloride (45 °C), and ethanol-
n-heptane (30 °C) are given here: 

S-<(SK(»-«-<(£)}-5® 
27i( —) " P2* 

W (14) 
All quantities on the right-hand sides of Equations 13 and 14 have been 
evaluated in the state of infinite dilution, the mole fraction xx tending to 
zero; in particular all derivatives are limiting derivatives. In Equations 
13 and 14, Pf is the saturated vapor pressure of the pure component i; 
vfg and vf1 are the molar volumes of the pure component i in the vapor 
and liquid phases, respectively; vE is the excess volume of mixing; ff is 
the fugacity of pure component f; cpf is the fugacity coefficient of com­
ponent i in the binary mixture; and zf is the compressibility factor of 
pure component f. 
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16. JONAH Binary Liquid Mixtures 405 

In applying Equations 13 and 14, we shall neglect vapor-phase non-
ideality; the liquid phase molar volume vf1 and the derivative of the 
excess volume of mixing will also be neglected. Under these conditions, 
Equations 13 and 14 take the simpler forms given as Equations 13a and 
14a, respectively 

1 [ n + ( ? ) \ (13a) 

a2? 
2 

/a2? 
a In yX* W 

\dxt 

(14a) 

Analogous relations to Equations 13 and 14 and Equations 13a and 14a 
can be readily written down from symmetry for the other activity coef­
ficient. Equation 14a has been quoted earlier by Abbott and Van Ness 
(2) but without details of its derivation. 

We now apply Equations 13a and 14a to the two binary systems 
ethanol-n-heptane (30 °C), and acetone-carbon tetrachloride (45 °C). 
Equations 8-12 have been used to evaluate the limiting pressure deriv­
atives, the linear forms having been chosen for 4>r and qx, viz 

<f>r = P?x± + P2*x2 (15) 

q± = L{VXl + I#>x2 

where 

AP AP 
L&> = lim — and Up = lim x^O Xx̂ x - 1) x^Xi - 1) 

AP is the excess pressure defined by 

AP = P - xxPf - x 2Pf 

When the above expressions for <|>r and ql are used in Equations 8 
and 9, we have for the limiting pressure derivatives 

¥ - ) = -Z#> + Pf - P2* 
™ (16) 
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406 M O L E C U L A R - B A S E D S T U D Y O F F L U I D S 

We recall that the intercept Ljf is given by 

*!-><> * i ( * i - 1) 

Analogous expressions for the limiting pressure derivatives at xx = 1 can 
be readily written by symmetry. 

We have applied the above equations to two of the three binary 
systems considered in the previous section, namely, ethanol-n-heptane 
(30 °C) (5) and acetone-carbon tetrachloride (45 °C) (6). In the case of 
the system ethanol-n-heptane, the vapor pressure-composition data have 
been differentiated throughout the composition range (including xx = 0 
and xx = 1) by Klaus and Van Ness (JO), using an extended version of 
the rigorous spline technique (4). Thus in Table I, which summarizes 
the results of applying Equations 13a and 14a to this system, we have 
compared the values of the limiting derivatives of the excess function 
GE, as obtained from their limiting pressure derivatives, with that based 
on our estimate of the limiting pressure derivatives according to the 
method of intercepts. It is readily seen that there is good agreement at 
the ethanol end of the composition range, but marked divergences at 
the other end. At the n-heptane end of the composition range, our 
estimate of the limiting first pressure derivative is 3320 ( ± 100) as com­
pared with 4660 obtained by Klaus and Van Ness; while our estimate for 
the limiting second pressure derivative is — 155,000 ( ± 18,000) as com­
pared with -381,000 obtained by Klaus and Van Ness. 

The limiting activity coefficients and their derivatives, based on the 
two sets of estimates for the limiting pressure derivatives, have been 
used in Equations 1-3 for evaluating the excess Gibbs free energy over 
the whole of the composition range; the results are shown in the column 
headed gE (from P-x data). 

For the system acetone-carbon tetrachloride, all three equations 
provide good predictions for the excess free energy over the whole com­
position range. For the system ethanol-n-heptane however, the Conic 
equation does a much better job then either the Ml or M 2 equation. 
Further, the close agreement between gE from P-x data (as obtained 
from the Conic equation) and the experimental values suggest that the 
estimates of the limiting pressure derivatives as obtained by our method 
are closer to the true values at the n-heptane end of the composition 
range than are those of Klaus and Van Ness. 

Our method of estimating the limiting pressure derivatives employs 
the raw, unsmoothed experimental data near both ends of the compo­
sition range; no fitting of data to any curve is involved. 
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16. JONAH Binary Liquid Mixtures 407 

Molecular Thermodynamic Considerations 

The preceding sections demonstrated that knowledge of the limiting 
activity coefficients and their first derivatives for binary liquid systems 
enables us to extrapolate fairly accurately data for dilute solutions into 
the regions of finite composition. Further, we have demonstrated that 
these limiting quantities can be reliably estimated by a method of nu­
merical differentiation based on the measurement of intercepts, rather 
than slopes. 

This section addresses the problem of predicting these limiting ther­
modynamic properties of interest, through molecular thermodynamic 
considerations. We shall also be concerned with very dilute systems in 
their own right, in trying to predict and correlate with pure solvent 
properties such quantities as Henry's constants, solubilities of liquids in 
gases, and the solubilities of solids and liquids in supercritical gases. 
Most of the relevant results have already been discussed elsewhere (II), 
so, for the most part, only the main results will be reviewed. 

Exact Expressions for Limiting Residual Chemical Potentials and 
Derivatives. As reported elsewhere (II) the limiting residual chemical 
potential |x~r is given by 

where uab(\2) = uab(rl2, (o1} o>2) * s t n e P a * r potential energy between two 
molecules, one of species a, and the other of species b; gab(12;Q is the 
usual angular pair correlation function for the a-b pair, in a system in 
which the a-species is coupled to the extent £ with the remaining mol­
ecules; ( )W1(02 indicates an unweighted average over all molecular ori­
entations. 

The limiting residual chemical potential may be expressed either in 
terms of the Henry's constant Hab (12) or the limiting activity coefficients 
7* (13) (defined within the symmetric standard-states convention), as 
follows 

(17) 

(18) 

and 

(19) 
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408 MOLECULAR-BASED STUDY OF FLUIDS 

where pb and vb are the pure solvent density and molar volume, re­
spectively; va and u,*r are the pure solute molar volume and residual 
chemical potential per molecule, respectively. 

Equation 17 is exact and rigorous, except for the assumption of 
pairwise additivity; together with Equation 18 it generalizes the equation 
of Jonah and King (13) which is based on Kirkwood's expression (14) for 
the chemical potential including nonspherical molecules. 

An analogous exact expression for the limiting derivatives of the 
activity coefficients can be readily obtained by differentiating the familiar 
Kirkwood-Buff expression (15) for ya with respect to composition, fol­
lowed by a limiting operation. Thus the Kirkwood-Buff equation 

the superscripts oc and * denote limiting and pure quantities, respec­
tively. Equations 20 and 21 are independent of any assumption of pairwise 
additivity. 

Approximative Schemes. To render the exact expressions just given 
into useful practical forms, two approximations have been used: a per­
turbation about the pure solvent, and the Mansoori-Leland (16) ap­
proximation for the mixture radial distribution function. 

PERTURBATION ABOUT PURE SOLVENT. Assuming pairwise additiv­
ity, we write the total potential energy UN for a binary mixture consisting 
of N (equal to Na + Nb) molecules in the form 

(20) 

leads to 

where Na is the number of molecules of a, Nb is the number of molecules 
of b, and X is the expansion parameter. When X = 1, we have the 
potential energy for the mixture, while X = 0 gives the potential energy 
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16. JONAH Binary Liquid Mixtures 409 

of pure solvent (b molecules). Expansion of the canonical ensemble par­
tition function for the system with potential energy UN(\) about X = 0 
up to first-order terms, followed by setting X = 1, and proceeding to 
the limit of infinite dilution, leads at once to the following expression for 
the residual chemical potential, 

^ar 

kT 
2 E £ 

+ kT NkT kT kT) 
dr12 (uJU)gk(l,2))u (22) 

where superscripts °c and * again refer to the infinitely dilute and pure 
component states, respectively. By splitting up the total potential energy 
as we have done above, we have succeeded in expressing an infinitely 
dilute solution property as the sum of two parts: the pure solvent part 
(i.e., the first two terms) and a mixture part arising from the a-b inter­
actions. This is a physically transparent form, considering that in an 
infinitely dilute system we are looking at solute-solvent interactions against 
a background of solvent-solvent interactions. We further note that in 
the limit when a tends to b, so that uaa = ubb = uab, we have the correct 
expression for jx r̂. That is 

l j m \^*L — \t%r 
a-^b kT kT 

In the special case of Lennard-Jones spherical molecules, i.e., with 

uab(r) = 4zab 

°ab ^ab 

r 
(23) 

the integral term in Equation 22 is very readily expressed in terms of 
the internal energy and compressibility factor of the pure solvent, so that 

M̂ ar _ \^br _ 2E* r E^fo i , _ 1\ 
kT " kT NkT + ebb

UZb l ) 

Vab 

Vbb 

12 

NkT 

VabX 

VbbJ 

12 / \ 61 
^ 1 _ 2 ( ^ a b 

Vbb) \Vbb, 
(24) 

At liquid densities, the compressibility term is small compared with the 
internal energy term (enclosed in braces), so that Equation 23 may be 
approximated by 

kT 
\4r 
kT 

2£ f e* f Sab 
NkT { B B B &bb. 

Vab) _ 2 t * a b 

<*bb. 
(24a) 
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410 MOLECULAR-BASED STUDY OF FLUIDS 

Equation 24 (or 24a) is also valid for weakly or moderately polar fluids 
with molecules interacting via an angle-averaged modified Stockmayer 
pseudopotential (17), having the same form as Equation 23 but with 
temperature-dependent parameters zab and crab. The use of such an angle-
averaged modified Stockmayer model is known to be exact, provided 
that the Pople expansion for the thermodynamic properties can be ter­
minated at the second-order term (18). 

These equations have been tested against Monte Carlo results for 
u^, and found to perform well only for vajvbb a n d zaJEbb close to unity; 
however, they will be shown to lead to useful semiempirical correlations 
in the next section. 

M A N S O O R I - L E L A N D APPROXIMATION. The Mansoori-Leland (13) 
approximation for the pair correlation function at infinite dilution is of 
the form 

where {cr̂ /a }̂, etc., means all of these ratios for the mixture. Using 
this approximation in Equation 17 leads to the interesting relation, 

where V = (efofo/eafc)T and |x£r(T') denotes the residual chemical potential 
of the pure solvent b, at the scaled temperature T\ 

We also consider an approximation similar to Equation 25 but dif­
fering slightly from it; in place of Equation 25, we assume that the pair 
correlation function for the pure solvent, b, pertains to a saturated liquid 
at temperature T" instead of to an unsaturated one at temperature T' 
and density p as mixture. With this assumption we have a relation slightly 
different from Equation 26 viz. 

(25) 

(26) 

M." _ vH(T) c r i , \LUT>) 
(26a) 

kT vb(T) o*bb kT 

The exact status of the approximation leading to Equation 26a is doubtful, 
not having been tested against simulation data as the Mansoori-Leland 
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16. JONAH Binary Liquid Mixtures 411 

approximation has been. However, Equation 26a has the desirable fea­
ture that it is exact in the dilute gas (second virial coefficient) limit. 

The conformality condition (i.e., the same functional form for uaa, 
uab, and ubb) on which Equations 26 and 26a are based will usually hold 
only for mixtures of spherical molecules; for nonspherical molecules, the 
condition of conformality requires that the aa, ab and bb parameters 
differ only in the terms zab and vab. Other dimensionless anisotropic 
parameters (quadrupole moment, shape parameters, and so forth) would 
need to have the same values for this to be rigorously correct. 

An obvious limitation to the range of applicability of Equations 26 
and 26a is set by the extent to which the components differ in their well-
depths, as is reflected in the difference between their critical tempera­
tures. If (efofc/eaa)1/2 is such as to make V > Tb, the critical temperature 
of the pure solvent b, it means that this component no longer exists as 
a liquid, and therefore the equations are inapplicable. 

In the next section, we deduce a number of semiempirical linear 
correlations from the approximate equations so far obtained. 

Semiempirical Correlations of Experimental Data. Equation 17 
with Equation 18 is rather suggestive of a general correlation between 
the Henry's constant and the entropy of vaporization of the pure solvent, 
b. Indeed, a plot of \n(Habvb/RT) against AHg/RT for a number of dilute 
solutions indicates a linear correlation over a moderate range of tem­
peratures, (see Figure 2) so that we are led to the relation 

In ( ^ ) = constant - C a h ± § (27) 

where Cab is constant for a particular solute-solvent system. This equation 
may be shown to result from Equation 24 if the term (\LbrlkT — 
2Egr/NkT) varies more slowly with temperature than the remaining term 
on the right hand side of this equation. Such a behavior has been con­
firmed by computer simulation studies based on the use of the Lennard-
Jones equation of state (19). The last term in Equation 27 follows from 
the approximation 

-Ebr « AH£ - RT ~ Aff£ 

where we have assumed that Pvl
b < Pv§ (vb and vf; denote the molar 

volumes of the liquid and vapor phases, respectively). 
Some simple systems with nonpolar molecules have been found to 

conform well to Equation 27; Figure 2 illustrates this for the systems 
argon-methane, and nitrogen-methane (20, 21). 

In other cases, however, with systems involving polar molecules, 
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Figure 2. Test of Equation 27 for nonpolar solute (a) and solvent (b) 
systems argon (a) and methane (b); nitrogen (a) and methane (b) (20, 21, 
38) illustrating linear correlation of Henry's constant with the solvent 
entropy of vaporization. (Reproduced with permission from Ref. 4. Copy­

right 1981, American Society of Mechanical Engineers.) 
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16. JONAH Binary Liquid Mixtures 413 

Cab shows a marked temperature dependence. The temperature de­
pendence of Cab can be taken care of in a purely empirical fashion by 
fitting it to the function a0 + a{T + a2T2 (a0, au a2 being constants). 
This is shown in Table II. Use of the angle-averaged modified Stockmayer 
pseudopotential, however, leads to a temperature dependence of the 
form 

(a + bT)/(l + cT) 

so that we have 

V RT J (1 + cT) RT 

Empirically, the constant term is found to be small; thus a linear cor­
relation can be obtained by plotting (1 + cT) C'ab versus T, where 

r , _ , (Habvb\ IAHb 

Cab = ln{-Rr)/-RT (29) 

and the constant c is chosen to give the best straight line. Figure 3 
illustrates such a plot for various solutes in n-hexadecane. 

Equation 26 or 26a can be used for correlating Henry's constants 
and limiting activity coefficients for a particular solute-solvent system 
with temperature by introducing an empirical temperature-independent 
constant 

^ T ~ C - 8Vbc
 l n { - J T ) T , r ( 3 0 ) 

Table II. Correlation of Henry's Constant for Several Solutes in 
n-Hexadecane with Entropy of Vaporization for Solvent by Equation 27 

Solutes ao X 103 
3 l x JO3 a2 x 103 

N H 3 -67.38 0.1643 0 
CO + 13.20 0.1487 0 
c o 2 -59.13 0.1871 0 
N 2 + 22.77 0.1565 0 
HC1 -59.09 0.1327 0 
s o 2 -162.33 0.4828 -0.0004 
H 2S -69.62 0.1089 0 

Note: Cab = a0 + a{£ + a2T2. Maximum error less than 3%. Temperature range 
300-475 K. From Ref. 36. 
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414 MOLECULAR-BASED STUDY OF FLUIDS 

10 

u 

-10 

-20 

c - X — T ^ 

300 350 400 
T(K) 

450 500 

Figure 3. Test of Equation 28 for various solutes in n-hexadecane (36) 
at 1 atm. The term C'ah is defined by Equation 29 and the constant c is 
fitted to the data. Key: O, H2S; •. NH3; +, HCl; x , CO; and A, C02. 
(Reproduced with permission from Ref. 11. Copyright 1981, American 

Society of Mechanical Engineers.) 

or 

kT ab 8Vbc V,,(T) 
ln 

psat\7 
r b Vl 

RT 
(30a) 

where the subscript c is used to denote critical properties and the term 
(BbPs

b
atIRT) (for a second virial coefficient vapor) has been neglected, as 

it is small in practice. 
Table III illustrates this situation for the three systems argon-meth­

ane, nitrogen-methane, and methane-ethane. Equation 30a seems to 
give a linear correlation over a slightly wider temperature range than 
does Equation 30. 

Equation 26 or 26a can also be made the basis of a corresponding 
states correlation for the Henry's constant and limiting activity coeffi­
cients of various solutes in fixed solvent. In each case we plot the function 
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16. JONAH Binary Liquid Mixtures 415 

Table III. Experimental and Calculated Values of ln(Habvb/RT) by 
Equations 30 and 30a 

T(K) Expt. Eq. 30 Eq. 30a 

Argon-M ethane" 
(Cab = 0.849, Cab = 0.862) 

90.67 -4.59 -4.70 -4.63 
105.00 -3.75 -3.74 -3.72 
109.00 -3.56 -3.53 -3.52 
111.80 -3.30 -3.39 -3.38 
115.90 -3.22 -3.18 -3.19 
119.60 -3.03 -3.01 -3.04 
123.33 -2.88 -2.86 -2.89 
126.00 -2.80 -2.76 -2.80 

Methane-Ethanefc 

(Cab = 0.649, C'ah = 585) 

124.0 -3.79 -3.87 -3.71 
140.7 -3.13 -3.17 -3.07 
154.0 -2.65 -2.72 -2.65 
170.4 -2.38 -2.27 -2.26 
183.3 -2.06 -1.99 -2.02 
194.4 -1.79 -1.76 -1.82 
224.0 -1.45 -1.23 -1.43 

Nitrogen-! Methanec 

(Cab = 0.657, C'ab = 0.57) 

113.0 -2.21 -2.38 -2.29 
127.7 -1.88 -1.87 -1.88 
131.5 -1.79 -1.61 -1.71 
139.0 -1.56 -1.52 -1.63 
150.0 -1.41 -1.07 -1.46 

a From Refs. 20, 21, and 38. 
b From Ref. 21. 
c From Ref. 38. 

against 

/ T \ 
In T r I T r = 

x ab \*ab ji/2 j l / 2 / 

using the appropriate expression \J^rlkT as given by Equations 18 and 
19. The detailed arguments leading to these plots have been given (11). 

Figure 4 illustrates such a plot of corresponding states for various 
solutes in two solvents, benzene and carbon tetrachloride (22-27), sol­
vents with similar enough critical properties to be regarded as a single 
solvent for practical purposes. It can be seen that the plot is essentially 
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416 MOLECULAR-BASED STUDY OF FLUIDS 

C 2 H 4 (103.94 K) 

C 2 H 6 (104.01 K) 

C 2 H 6 (90.68 K) 

-0.8 -0.4 0 

In Tah 

0.4 0.8 

Figure 4. Corresponding states plot for Henry's constant and limiting 
activity coefficients for various solutes infixed solvents; benzene, carbon 
tetrachloride (22-27), and methane (28-30). Key: O, benzene; x , carbon 
tetrachloride (Equations 31 and 18); and A, methane (Equations 31 and 
19). (Reproduced with permission from Ref. 11. Copyright 1981, American 

Society of Mechanical Engineers.) 

linear. Also shown is a plot for various solutes in methane (28-30); again, 
the points all fall approximately on a common line. 

The conventional correlations of the Henry constant with temper­
ature make use of basically two kinds of plots: ln H versus 1/T and ln H 
versus ln T. The linear correlations introduced in this section differ some­
what from these conventional plots, though some of the former are not 
completely unrelated to the latter. For example, the correlations, 

In (Habvb/RT) = Cab 

A H f c 

RT 
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16. JONAH Binary Liquid Mixtures 417 

and 

\n(Habvb/RT) = (oo + aj) 
RT 

are very similar to the Valentiner equation (31), which is a combination 
of the two kinds of conventional correlation mentioned above 

where A, B, and C are temperature-independent constants. King (32) 
has shown how, under certain restrictive conditions, this equation can 
be obtained by purely thermodynamic considerations. In this derivation, 
however, one of the constants is related to the heat of absorption of the 
gaseous solute, rather than to the heat of vaporization of the pure solvent, 
as is the case with our own correlations above. Equation 28 obviously 
reduces to the second of the correlations above if CT < 1; otherwise the 
relationship with the conventional correlations or the Valentiner equation 
is not obvious. Equation 30 can be recast into a Valentiner form, if we 
ignore the temperature variation of the pure solvent molar volume (for 
example when the temperature range considered is not too wide) and 
use the Antoine expression for the logarithm of the saturated vapor pres­
sure of the pure solvent. 

As regards performance, our linear correlations seem to be a definite 
improvement over the conventional ln H versus l/T and ln H versus ln T 
plots, as can be readily verified for the systems considered in Figure 3. 
Apart from the system hydrogen sulflde-C 1 6 H 3 4 , the conventional plots 
for the other systems show linearity only over a limited temperature 
range of between 50 and 75 K, as compared with the much wider tem­
perature range of 175 K for our own correlations. 

The importance of linear correlations of the kind we have introduced 
in this section cannot be overemphasized. With linear plots, extrapola­
tions can be made with confidence, while interpolations can be made 
with very limited data, say two or three points. Further, such linear 
plots are very convenient for evaluating the temperature coefficient of 
the Henry constant—d ln H/d(l/T) or the partial molar entropy of solu­
tion—which we know is proportional to ln H, thus leading to linear plots 
for various solutes in a fixed solvent, at a fixed temperature (13, 22). 

The potentialities of the these linear correlations are therefore quite 
obvious. 

Solubility of Solids in Supercritical Fluids. An integro-differential 
relation that provides a convenient basis for correlating solubility of solids 
in supercritical fluids (33) is 

log 1 0 (solubility) = A + B \ogl0T + C/T 

(32) 
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418 MOLECULAR-BASED STUDY OF FLUIDS 

where 

Y = lnl •^ t 3 f c • 
KyaRTj RT 

- <g&(r,T,c; ©u w (r)>] (32a) 

where is the fugacity of the solid component a, and ya is its solubility 
in the gaseous component b; the bars over the integrands in Z denote 
averaging over the N-P-T (or constant pressure) ensemble (see Reference 
34). 

To make Equation 32 useful for practical application, we make the 
crucial hypothesis that the two integral terms constituting Z—one per­
taining to the infinitely dilute mixture, and the other to the pure solvent 
b—respond similarly to the application of pressure so that Z itself is a 
weak function of pressure and hence is practically constant. 

Under these circumstances, Equation 32 can be integrated, leading 
to the conclusion that the thermodynamic function 

* i f h E 5 + s ^ 5 2 ) ( 3 3 ) 

fb I Ma RT \ 

varies linearly with 

and that the function, 

$ a f P 1 dP (33a) 
J l fb 

RT RT{ \yaPfJ RT) K ' 

is nearly constant at maximum solubility ya. The superscripts sat, s and 
g refer to saturation condition, solid, and gas, respectively. 

Empirically, for a suitably chosen reference pressure P r ef, we can 
to a good approximation write, 

<& ~ constant + c(P - Pref) 

c being some mean value of l/fb in the pressure range of interest. To 
this approximation then ^ would be expected to be a linear function of 
pressure over this pressure range. Figure 5 illustrates such linear cor-
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420 MOLECULAR-BASED STUDY OF FLUIDS 

relations for three different solids, benzoic acid (35), phenanthrene, and 
naphthalene, in carbon dioxide; in these plots, Pa

at, the saturated vapor 
pressure of the solid, is taken as a parameter that is indicated on each 
graph. F r e/is about 150 bars. 

Table IV illustrates the approximate constancy of the function ̂ * 
of maximum solubility for naphthalene in supercritical ethylene over a 
range of temperatures and pressures. The molar volume vs

a of naphthalene 
has been taken as 112 cm 3 and its variation with temperature has been 
neglected; Ps

a
at is taken as 0.1 mm (Hg). Equation 34 neglects a term 

—dp b , which is about two orders of magnitude smaller than the other 

terms. 

Summary 

Attention has been drawn in this chapter to appropriate modifica­
tions of the familiar two-constant Van Laar and Margules equations, 
which admit of constants that can be identified with limiting properties 
and still produce close fits to experimental data. 

It has been shown how to estimate these constants reliably by using 
a method of numerical differentiation, which depends on the measure­
ment of intercepts rather than slopes, applied to a few data points near 
each end of the composition range. It is thus possible to extrapolate data 
from very dilute regions to the rest of the composition range. 

Based on molecular thermodynamic considerations, tested linear 
correlations between limiting residual chemical potentials and pure com­
ponent properties have been suggested. 

I believe the approach in this article holds much promise in the 
direction of predicting mixture properties from pure component prop­
erties. 

Table IV. Correlation of Maximum Solubility of Naphthalene in 
Ethylene with Pressure by Equation 34 

p m a x y a
m a x fb vb alnv/ap 

T(K) (bar) (x 102) z b (bar) (cm3) (x 104) (x 102) 

303.2 612 4.31 1.408 194.6 57.98 2.41 3.57 
308.2 590 5.68 1.356 195.3 58.91 2.72 3.66 
313.2 576 7.84 1.322 199.3 59.76 2.85 3.75 
318.2 477 1.17 1.128 166.5 62.59 3.68 3.45 

Note: Data from Ref. 37. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

16



16. JONAH Binary Liquid Mixtures 421 

Acknowledgments 

It is a pleasure to acknowledge the hospitality of the School of Chem­
ical Engineering, Cornell University, where this reseach was carried out. 
I also acknowledge useful discussions and suggestions from K. E. Gub­
bins, W. B. Streett, K. Shing, and V. Venkatasubramanian. The will­
ingness of J. C. G. Calado to make available his experimental data prior 
to publication is also gratefully acknowledged. Finally, I express gratitude 
to the National Science Foundation Grant INT-8016843 and to the Coun­
cil for the International Exchange of Scholars for a Fulbright Award. 

Literature Cited 

1. Jonah, D. A. Ph.D. Thesis. University of Birmingham, England, 1961. 
2. Jonah, D. A.; Ellis, S. R. M. J. Appl. Chem. 1965, 15, 151. 
3. Abbott, M. M. ; Van Ness, H. C. AIChEJ 1975, 21, 62. 
4. Landis, F.; Nilson, E. N. "Progress in International Research on Thermo­

dynamic and Transport Properties"; Academic Press: New York, 1962; p. 
218. 

5. Van Ness, H. C.; Soczek, C. A.; Kochar, N. K. J. Chem. Engr. Data 1967, 
12, 346. 

6. Brown, I.; Fock, W. Aust. J. Chem. 1945, 4, 417; Ibid. 1956, 9, 180. 
7. Jonah, D. A. submitted for publication. 
8. Gautreaux, M. F.; Coates, J. AIChEJ 1955, 1, 496. 
9. Jonah, D. A. submitted for publication. 

10. Klaus, R. L.; Van Ness, H. C. AIChEJ 1967, 13, 1132. 
11. Jonah, D. A.; Shing, K. S.; Gubbins, K. E. "Proc. Eighth Symposium on 

Thermophysical Properties"; American Society of Mechanical Engineers: 
New York, 1981; in press. 

12. Goldman, S. J. Solut. Chem. 1977, 6, 461. 
13. Jonah, D. A.; King, M. B. Proc. Roy. Soc. 1971, 323A, 361. 
14. Kirkwood, J. G. J. Chem. Phys. 1935, 3, 300. 
15. Kirkwood, J. G.; Buff, F. P. J. Chem. Phys. 1951, 19, 774. 
16. Mansoori, G. A.; Leland, T. W. J. Chem. Soc., Faraday Trans. II 1972, 

68, 320. 
17. Reed, T. M. ; Gubbins, K. E. "Applied Statistical Mechanics"; McGraw Hill: 

New York, 1973; p. 161. 
18. Egelstaff, P .A . ; Gray, C. G.; Gubbins, K. E. "Molecular Structure and 

Properties"; Buckingham, A. D., Ed., Butterworths: London, 1975; Vol. 
2, Series 2. 

19. Nicolas, J. J.; Gubbins, K. E.; Streett, W. B.; Tildesley, D. J.; Brown, I.; 
Fock, W. Aust. J. Chem. 1956, 9, 180. 

20. Perez, J. L. Ph.D. Thesis, Universidad Nacional de Mexico, Mexico City, 
1977. 

21. Kidnay, A. J.; Miller, R. C.; Parrish, W. R.; Hiza, M. J. Cryogenics 1975, 
15, 531. 

22. Jolley, J. E.; Hildebrand, J. H. J. Am. Chem. Soc. 1958, 80, 1050. 
23. Horinti, J. Sci. Pap. Inst. Phys. Chem. Res. Tokyo 1931, 17, 125. 
24. Vitovec, J.; Fried, V. Collection Czech. Chem. Commun. 1960, 25, 1552. 
25. Gjaldbaek, J. C. Acta Chem. Scand. 1953, 7, 537. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

16



422 MOLECULAR-BASED STUDY OF FLUIDS 

26. Clever, L. H.; Battino, R.; Savior, J. H.; Cross, P. M. J. Phys. Chem. 1957, 
61, 1078. 

27. Reeves, L. W.; Hildebrand, J. H. J. Am. Chem. Soc. 1957, 79, 1313. 
28. Calado, J. C. G. unpublished data. 
29. Calado, J. C. G.; Gomes De Azevedo, E. J. S.; Soares, V. A. M. Chem. 

Eng. Commun. 1980, 5, 149. 
30. Sprow, F. B.; Prausnitz, J. M. AIChEJ 1966, 12, 780. 
31. Valentiner, Z. Z. Physik. 4927, 42, 253. 
32. King, M. B. "Phase Equilibrium in Mixtures"; Pergamon Press: Oxford, 

1969; p. 235. 
33. Jonah, D. A.; Shing, K. S.; Venkatasubramanian, V. submitted for publi­

cation. 
34. Hill, T. L. "Statistical Mechanics"; McGraw Hill: New York, 1956; pp. 66-

68. 
35. Kurnir, R. T.; Holla, S. J.; Reid, R. C. J. Chem. Eng. Data 1981, 26, 47. 
36. Tremper, K. K.; Prausnitz, J. M. J. Chem. Eng. Data 1976, 21, 295. 
37. Van Welie, G. S. A.; Diepen, G. A. M. Rec. Trav. Chim. 1961, 80, 673. 
38. Prausnitz, J. M.; Chueh, P. L. "Computer Calculations for High Pressure 

Vapour-Liquid Equilibria"; Prentice Hall: Englewood Cliffs, NJ, 1968. 

RECEIVED for review January 27, 1982. ACCEPTED for publication October 5, 
1982. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

16



17 
Liquid State Dynamics of Alkane Chains 

GLENN T. EVANS 
Oregon State University, Department of Chemistry, Corvallis, OR 97331 

In this chapter, we summarize a few of the computational 
and analytical approaches used to understand the motion 
of chain molecules in a liquid. Emphasis is placed on cal­
culating properties that are, in principle, detectable by 
experiments involving dielectric relaxation, NMR, depolar­
ized light scattering, torsional photoisomerization and ring­
-closure rates. Comparison with experiment is made when 
possible. 

T H E DYNAMICS A N D EQUILIBRIUM STRUCTURE of liquids Composed of 
torsionally flexible chain molecules have received concentrated in­

terest during the past few years. Interest has been aroused because 
machine computations can be performed to account realistically for the 
relevant classical degrees of freedom of a chain molecule in a polyatomic 
or flexible molecular solvent. The numerical work, combined with the 
rediscovery of the classic papers of Kramers (I), Kirkwood (2), and Eck-
hart (3, 4), and the use of modern theories involving projection operators 
(5) and mode-coupling (6), has equipped this new field with the tools for 
a plausible approach to an understanding of flexible molecules. 

In this chapter, we restrict our attention to the dynamics of the 
small alkanes, ranging from butane to undecane. We begin with a brief 
description of the flavor of the numerical approaches to simulation of 
chain motions. Alternatively, chain motions can be analyzed in terms of 
solutions to differential equations describing the ensemble-averaged tra­
jectory of a chain, and this is also discussed. 

The introduction of flexibility into a chain alters its transport and 
reactive properties. Dielectric relaxation, NMR, and light scattering are 
analyzed for evidence of overall and internal rotation. We also address 
a few chemical reactions, such as ring closure and torsional isomerization, 
because these are indicators of the isomerization process as well. 

The views presented, and the selection of topics, will be biased in 
this short chapter. Our goal is not to write a comprehensive review but 
rather to summarize our findings after 4 or 5 years work. 

0065-2393/83/0204-0423$06.50/0 
© 1983 American Chemical Society 
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424 MOLECULAR-BASED STUDY OF FLUIDS 

Computer Modeling 

Computer modeling is as important for chain molecules as it was 
for argon. Whereas real alkanes have uncontrollable and, to a certain 
extent, unknown intermolecular and intramolecular potentials, computer 
"alkanes" have the virtue of definable mechanical properties. There are 
several levels on which a chain molecule can be simulated using classical 
mechanics. 

The first level is a full molecular dynamics calculation incorporating 
intermolecular and intramolecular forces explicitly (6-11). The intra­
molecular forces control bond lengths, bond angles, and torsion angles. 
The bond lengths and bond angles can be handled either with rigid 
constraining forces, which do not allow fluctuations in these coordinates 
or, more realistically, by means of differentiable potentials, which allow 
nonvanishing vibrational amplitudes. Torsional coordinates are always 
controlled by a potential consisting of a few cosine functions of the di­
hedral angles. Intermolecular forces are implemented via site-site or 
atom-atom Lennard-Jones interactions between the solvent and the chain 
atoms. 

Without question, and without controversy as well, the full molec­
ular dynamics approach is the best route to proceed by, although it is 
also the most expensive. For the small chain systems of interest to us, 
a correct treatment of the chemical topology is essential, and therefore 
there is no shortcut to simplify the intramolecular part of the problem. 
Whether one uses constraints or smooth forces, the algorithm must be 
faithful to spectroscopic evidence regarding bond lengths, bond angles, 
and torsional potentials in order to produce a believable simulation of a 
chain in solution. 

An approximation can be made regarding the treatment of inter­
molecular forces. In the Langevin dynamics approach, one writes an 
approximate equation for the velocity of a backbone atom of the chain 

where m is the mass of a backbone atom, / is the friction coefficient, 
which is in turn related to the fluctuating intermolecular force F(inter) 

mdv 
= -fv(t) + F(intra) + F(inter) (1) dt 

by 

(2) 

and F(intra) includes the intramolecular forces as well as the potential of 
mean force (12-16). The advantage of Equation 1 is that it removes all 
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17. E V A N S Liquid State Dynamics of Alkane Chains 425 

of the degrees of freedom associated with the solvent and substitutes a 
random number generator as F(inter). When integrated, Equation 1 
provides the momentum and position of each atom of the chain as a 
function of time, and hence one can determine momentum as well as 
position correlation functions. 

In the next level of approximation, one can dispose of the momentum 
degrees of freedom (13-23). This is tantamount to arguing that the mo­
mentum of each backbone atom fluctuates on a rapid collisional time 
scale, and, on this rapid time scale, the positions of the atoms or backbone 
bonds of the chain do not move appreciably. Hence, for long times, the 
average of mdv/dt is zero. Thus, one can replace the left-hand side of 
Equation 1 by zero, solve the equation for v(t) and integrate that for the 
position x(t) 

This approach is called Brownian dynamics (BD). There are a number 
of complications in the BD method, especially regarding the time-
dependence of the intermolecular forces (15, 18) but BD has the advan­
tage of being fast enough for simulations of long chains to be a reality, 
and it gives a good accounting for processes that require overall and 
internal rotation of the chain. As will be seen, for pure torsional iso-
merizations Equation 3 is not adequate. Predictions of Fixman's BD 
algorithm (18) (modified by the inclusion of the metric force) will be 
compared with experiment later in this chapter. 

Analytic Approaches 

Consistent with the three levels of simulation (that is, molecular, 
Langevin, and Brownian dynamics) one can develop differential equa­
tions for the specific single-particle phase-space density for a chain. This 
density function describes the probability that a tagged chain will have 
a particular set of Euler angles, torsion angles, and conjugate momenta 
at time t, given that it has some distribution of phase-space coordinates 
at an earlier time. Consider butane as an example. The phase-space 
coordinates of butane are the three Euler angles Q (which relate the 
orientation of the principal axes with respect to the laboratory), the 
torsional coordinate (which specifies the shape of butane), the angular 
momentum L along the principal axes, and the angular velocity L 4 along 
the torsional coordinate. The distribution function f(Cl,§,L,L4>t) obeys 
a kinetic equation of the form (24, 25) 

(3) 

d,j{il,<$>,L,L4,t) = -(iLs + iLc)j{il,4>,L,L4,t) (4) 
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426 MOLECULAR-BASED STUDY OF FLUIDS 

where iLs is the streaming (or convective) operator and iLc is the collision 
operator. Streaming, in this context, describes the gas-phase, noncolli-
sional motion of a torsionally flexible molecule, which can undergo overall 
and internal rotation. Although we will not write the explicit form of the 
Liouville operators here (because of space restrictions), qualitatively the 
convective term consists of operators responsible for the overall rotation 
of an asymmetric top, the internal rotation of the two ethyl fragments 
relative to one another, and the coupling terms between overall and 
internal rotation. 

The collision operator is more complicated. Using projection op­
erator techniques akin to those of Lebowitz and Resibois (26), one can 
derive a Fokker-Planck-like collision operator. It is similar to the Fokker-
Planck (FP) operator in that collisions do not alter the position of the 
chain atoms, but do change the momenta by a small amount. The FP 
collision operator for butane incorporates the torsion angle dependence 
of the friction constant and the couplings of overall and internal rotation. 
The kinetic equation for / , with convective and collisional operators as 
described above, has been derived only for butane (22). In approximating 
the collision operator with a torque correlation function independent of 
frequency and operator, we have generated a differential equation ap­
propriate to Langevin dynamics. To date, no analysis of the torsion angle 
dynamics of butane has been made with the approximate collision op­
erator. In principle, this problem is solvable using techniques like those 
employed by Fixman and Rider (27) in the analysis of the rotational 
motion of spheres. 

The FP equation reduces to a diffusion equation by integrating over 
the momenta of the chain and making the usual assumptions that mo­
mentum relaxation is fast compared with torsional isomerization and 
overall rotation. The diffusion equation for the density function p ( f l , < ( > , £ ) 

is of the form 

a,p(ft,<M) = U D exp[-(W((|>)] • (f{exp[pt7(c|))]p(ac|),0} (5) 

where D is a 4 X 4 diffusion tensor, [/(<}>) is the torsional free energy, and 
ij is a four-vector with elements 

with 
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17. EVANS Liquid State Dynamics of Alkane Chains 427 

The free energy L7(c|>) includes the gas-phase torsional component as well 
as contributions from the liquid. Equation 5 can be reduced further 
because the elements of D , which are reciprocals of torque correlation 
functions, depend only on the dihedral angle and not on the Euler angles. 
Consequently, one can integrate Equation 5 over the Euler angles to 
produce a diffusion equation for the torsional coordinate alone (28) 

fl»p(<M) = «*{D(4))exp[-pt7(4))]aJexp[pt7(c|))]p(4),f)tt (6) 

The D(<|>) in Equation 6 is the diffusion coefficient for the torsion 
angle and has an explicit and known dependence on § (28). Equation 6 
is a diffusion equation for an internal degree of freedom, derived from 
Newton's equations. No couplings of the overall rotational coordinates 
to the internal coordinate have been omitted, and hence Equation 6 is 
equivalent to an exact BD simulation. 

Equation 5 was certainly not the first of its kind. It was predated 
by a generalized coordinate diffusion equation for chain molecules by 
the work of Kirkwood and collaborators (2). Despite the fact that Kirk-
wood's work on flexible chain systems and generalized diffusion equations 
took place in the late 1940s, it was only recently that the correct form 
of the diffusion equation could be derived (18). Fixman demonstrated 
that the distribution function W({Q},t) for the generalized coordinates 
{Q} of a chain molecule satisfied a diffusion equation 

where hij is the contravariant component of the metric tensor, g is the 
metric determinant, and Fj is the generalized force on the jth coordinate. 
Fixman showed that Fj consists of two parts, the ordinary term arising 
from the derivative of the torsional free energy and a metric force that 
must be inserted so that dihedral angle space is evenly populated in the 
absence of torsional potentials. 

Prior to the derivation of Equation 7, Fixman and Kovac (29) derived 
a diffusion equation in terms of the bond vectors for the IV-bond chain. 
The advantage of bond-vector coordinates is that they provide a natural 
language for the constraints on bond-vector length and the nearest-neigh-

with 
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bor bond angles. In this language, the polymer equation of motion be­
comes 

The S operator consists of bilinear products of the bond vectors, i.e., 
bjbk, as well as the scalar products bjmbk, where j and k range from one 
to N. If bond angle and bond length constraints are used, then the action 
of S causes diffusion to take place in the hyperspace in which only the 
Euler angles and the torsion angles are dynamical variables. 

The bond vector and the generalized coordinate form of the diffusion 
equation are identical, provided that one includes the metric force in 
the generalized coordinate version. Equations 5, 7, and 8 have been 
derived from different starting points but are all merely restatements of 
one another. The suitability of one equation versus another is determined 
by the types of questions posed. 

Derived Quantities 

The reason for providing a mechanical theory of chain molecules in 
solution is to construct a framework by which various time correlation 
functions of vectorial and tensorial combinations of bond vectors can be 
determined systematically. Time correlation functions and their corre­
sponding time integrals, or correlation times, show a sensitivity to the 
type of probe placed on the chain, to the location of the probe, and to 
the potential parameters of the chain. In most cases, our interest in 
particular combinations of bond vectors is motivated by the fact that 
certain combinations correspond to an experimentally detectable phe­
nomenon, such as a dipole moment or a light scattering spectrum. 

Figure 1 shows the time correlation functions of the six-bond chain 
for various modes of first-rank and second-rank spherical harmonics. The 
correlation functions are all normalized, and hence begin at one and 
decay monotonically in time. Time is measured in reduced units so that 
real time (in units of seconds) can be obtained by multiplying the time 
axis by a factor of fb2/kBT. Using Stokes' law for the friction coefficient 
of each backbone atom (of radius b/2) yields 

where T| is the solution viscosity. In a Brownian dynamics algorithm, the 
solvent viscosity acts as a scale factor for the time axis and does not affect 
the shape of the time correlation functions in any way. The time cor­
relation functions reported in Figure 1, and throughout this chapter, 
were usually determined using 100-150 trajectories of a BD calculation. 

dtV({b},t) = ~Vb • S • (Vfc - 0F)¥( { fc } , t ) (8) 

/ = 3 TTT) h (9) 
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0.11 I i l l l 1 

.20 .40 .60 .80 1.00 1.20 
T I M E 

Figure 1. Normalized time correlation functions of first- and second-rank 
Legendre polynomials for various modes of the six-bond chain with Q = 
4kBT. The torsional potential is defined by Equation 11. Top, 1 = 1; 
bottom, 1 = 2. (Reproduced with permission from Ref. 21. Copyright 

1980, American Institute of Physics.) 
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430 MOLECULAR-BASED STUDY OF FLUIDS 

Each trajectory consisted of 1600 time steps of0.0025 reduced time units. 
A torsional potential energy U(<$), where 

C/(<|>) = (Q/2)[l - cos(3<f>)] (10) 

was used in the runs for Figure 1, where Q, the barrier height, was 
4kBT. In all runs, bond angles were assumed to be 110°, in approximation 
of the tetrahedral value. 

The labels to the right of the correlation functions in Figure 1 in­
dicate the "mode" observed. Defined are: bond vector modes, b, whose 
first-rank time correlation function is (bj • bj(t)); the difference modes, 
D, 

Dj = bj - bj+1 

whose time correlation functions are (Dj • Dj(t)); and the end-to-end 
vector modes, E, where 

N 
E = 2 b, 

j=l 

The second-rank time correlation functions of bj9 Dj and E are formed 
by the prescription 

3([v • v(t)f) - (v*)* CM = ^ ^ ^ ' (11) 

where v is any of the three vectors mentioned. 
Figure 1 shows trends characteristic of most medium-size chains. 

The fastest processes in the chain involve the difference and bond modes 
at the chain extremities, and the correlation times increase as one ap­
proaches the chain center. Furthermore, motion of the end-to-end vector 
is always the slowest process. The Cx(t) terms decay more slowly than 
the C2(t) terms, as a rule, since Cx(f) angular functions have one node 
in the 0 to IT range, whereas the C2(t) angular functions have two nodes. 
Typically, the ratio of C x to C 2 correlations times for the same mode is 
2 to 3. 

In addition to investigating the microcanonical ensemble time cor­
relation functions, one can also look at the chain during one trajectory. 
Figure 2 shows "snapshots" of a nonane molecule described by the tor­
sional potential of Equation 10, but with Q = 5kBT. Running down the 
left-hand margin are the reduced time values, and on the right-hand side 
are the time scales appropriate to various experiments in a solution at 
room temperature with viscosity of 1 centipoise. The relationship of the 
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17. EVANS Liquid State Dynamics of Alkane Chains 431 

T = 

Figure 2. Time evolution of n-nonane with Q = 5k B T. Reduced times 
are labeled on the left, and on the right are the time scales for various 
experiments in a room-temperature solution with viscosity of 1 centipoise. 

To convert reduced times to real time, multiply by 8.4 ps. 
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432 MOLECULAR-BASED STUDY OF FLUIDS 

various modes to experiment will be discussed later. It is evident from 
Figure 2 that the terminal bonds reorient on a faster time scale than the 
end-to-end vector, which hardly moves at all during the length of the 
run. During the middle of the trajectory, a crankshaft is formed but 
diffuses away; hence, from this single run, we see no evidence of coherent 
crankshaft rotation. Other events occurring during the trajectory include 
the formation of structures that look as though a five- or six-membered 
ring is about to form. No evidence supports the formation of an eight-
or nine-membered ring, in agreement with the organic chemist's adage 
that five- and six-membered rings form easily, whereas medium-size rings 
form with some difficulty. Clearly, from a single trajectory, one cannot 
draw sweeping general conclusions unless the trajectory is very long. 
Nevertheless, it is heartening that the same trends observed in the en­
semble averaged time correlation functions are seen directly in a single 
trajectory. 

Comparison with Experiment 

There are several experiments that, under favorable circumstances, 
are capable of detecting the motion of a single chain in a simple solvent. 
A few candidates are dielectric relaxation, NMR relaxation, depolarized 
light scattering, torsional isomerization, and ring-closure rates. Before 
we compare BD calculations with actual experimental correlation times, 
we must attempt to substantiate the use of Equation 10 for the friction 
constant per backbone atom. Since all the high-friction results scale lin­
early with friction constant, it is important to fix a value for J. Toward 
this end, consider the translational and rotational diffusion coefficients 
DT and DR, respectively. DT is an insensitive indicator of the subtleties 
of chain dynamics. Kirkwood's expression for the center-of-mass trans­
lational diffusion constant is not amended in any way by the theory 
presented earlier, therefore DT can be determined using the standard 
Oseen formula. Mazo (30) has analyzed DT for several alkanes and has 
found that, to fit experiment, the friction coefficient per backbone item 
must be chosen as in Equation 9. To test Mazo's necklace model of an 
alkane, wherein each backbone atom is represented by a sphere using 
its covalent radius, we have determined the rotational diffusion tensor 
for several small rigid molecules such as carbon disulfide, benzene, and 
chloroform (31). Here, too, the agreement of theory and experiment is 
very good, even so far as representing the anisotropy of the rotational 
diffusion tensor as well as its trace. Given this supportive evidence from 
two sources, we will select the friction constants for flexible chains by 
using Stokes' law expressed in terms of the carbon covalent radius. 

Dielectric Relaxation. The study of dielectric relaxation in chain 
systems is a mature discipline, with its pioneering work dating back to 
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17. EVANS Liquid State Dynamics of Alkane Chains 433 

Debye (32). In the simplest case, the frequency-dependent dielectric 
constant e(o>) is related to the one-sided Fourier transform of the nor­
malized dipole-dipole correlation function; thus 

where e 0 and eoc are the zero-frequency and infinite-frequency dielectric 
constants. Equation 12 is strictly applicable to a dilute solution of dipolar 
molecules in a nonpolar solvent. In this limit, dielectric relaxation can 
measure single particle, as opposed to collective, orientational motions 
(32). Our goal is to compare dipolar time correlation functions from BD 
simulations of an infinitely dilute solution of a homogeneous chain mol­
ecule with experimental correlation times and Cole-Cole plots. Figure 
3 shows the experimental relaxation times of 1-bromoalkanes in cyclo-
hexane (33), along with the BD calculations. 

We have assumed that a bromine atom can be mimicked as a carbon 
atom, and that the dipole in 1-bromoalkane lies entirely along bv Clearly, 
the first approximation is not entirely satisfactory, although the second 
is adequate. The correlation times increase with increasing barrier height, 
Q, and with increasing chain length. The freely rotating chain shows 
very little dependence on chain length. The Q = oo value is a rigid-body 
result, and was not obtained from BD. This rigid body (RB) is a composite 
structure consisting of an average of all possible rigid bodies consistent 
with the three minima in the potential given by Equation 10. Thus, we 
have calculated the correlation time associated with each of the 3 N ~ 2 

conformers for an N-bond chain and have simply added them. The BD 
calculations approach the RB limit as they should. The experimental 
points lie between the cases of Q = 4kBT and Q = 8kBT. Since Q = 
5kBT is usually assumed to be a typical barrier, the agreement between 
experiment and theory in this case looks reasonable, although there is 
more to say about the agreement (which we believe to be somewhat 
fortuitous). 

A more interesting test of the dynamics arises in the Cole-Cole plot 
displayed in Figure 4 for neat n-octyl iodide. Despite all the qualifications 
made earlier regarding the restrictive nature of our calculations and the 
applicability of Equation 12 to dilute solutions, we shall make a cavalier 
comparison of a neat solution with the exact results of a BD simulation. 
Figure 4 contains the experimental data (34, 35), a rigid-body simulation 
(actually, 3 N ~ 2 rigid-body arcs superimposed) and the BD results. The 
BD plot was obtained by a pointwise Fourier transform of the correlation 
function using 200 time points. Several interesting features emerge from 
the analysis of Figure 4. 

(12) 
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NUMBER OF BONDS 

Figure 3. Variation of the first-rank terminal dipole correlation times 
with N and barrier height, Q. The Q - ^ Une is a composite rigid body. 
Key: A, first rank; O, second rank; #, experimental values (33). (Repro­
duced with permission from Ref. 21. Copyright 1980, American Institute 

of Physics.) 

First, BD and experiment do not match. There is a high frequency 
skewness in the BD calculations, and the angle at which the BD arc 
approaches the (0,0) point is neither 90° nor the 60° of the experimental 
data. Furthermore, the BD arc nearly approaches the (0.5,0.5) point 
expected for the Debye semicircle. By comparison, the medium fre­
quency regime of the RB simulation is closer to experiment than the 
true BD. The obvious conclusion to draw about these calculations is that 
experiment and theory do not match, since they do not pertain to the 
same system. Although we cannot disagree with that fact, it is important 
to point out that the BD calculation does not provide the desired skewed 
arc. Any theory that approximates the BD scheme, by modeling torsional 
isomerization in some way, will also fail to produce the desired skewed 
arc. Our Cole-Cole plot has some resemblance to the results of Glauber 
(36), which again approximate the true dynamics. It would appear that 
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O-40 # C 
o-30 # 

A - 2 0 # 

Figure 4. Calculated and experimental (35) Cole-Cole plot for n-octyl 
iodide. The calculated results were derived from the b1 • bx(t) time cor­

relation function with Q = 5k BT and for a composite rigid body. 

the nature of skewness resides in the multiparticle nature of the dipolar 
correlation function rather than in an exotic model for single particle 
reorientations. In constructing the Cole-Cole plot we encountered some 
pitfalls, which turned out to be very instructive. At first, we curve-fitted 
the (bl • &x(£)) time correlation function piecewise, using a power law at 
short times and an exponential at long time. Equipped with the curve-
fitting parameters, we should execute the Fourier transform analytically 
and assemble the plot. In particular, for several chains we found that 

c w = j 1 - ' f™** a s ) 
[a exp(-bt) , long t 

From chains with five bonds or more, the (3 values for the bx modes are 
between 0.6-0.7 for barrier heights of the order of 5kBT. The short time 
expansion worked well down to times when the correlation function had 
decayed to 0.5-0.6. The Cole-Cole plot achieved using Equation 13 was 
indeed a skewed arc and resembled the experimental data. Unfortu­
nately, although Equation 13 fits the data in the time domain, it poorly 
represents the data in the frequency domain as it forces nonanalytic 
behavior for all small time increments. Whereas the BD algorithm gen­
erates a manifestly analytic expansion in powers of t, Equation 13 ov-
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errides this analyticity. Suffice it to say that the BD results, when properly 
manipulated, do not explain the skewness of the Cole-Cole plot. 

NMR Relaxation. NMR relaxation in chain systems will be dis­
cussed by Levy and Karplus (37) in this volume, and we will not reanalyze 
their data. However, because NMR is such a good detector of single 
particle reorientation, as opposed to collective reorientation, we must 
mention our results. The appropriate NMR experiment involves the 
measurement of the TX for protons (or 1 3C) down the backbone of a chain 
molecule (38). By means of these experiments, one can measure the 
second-rank dynamics of the hydrogen-hydrogen vector, or the 
1 3C-hydrogen vector. To a good approximation, measurements of TX for 
methylene groups are measurements of the Dj modes corresponding to 
the different carbons down the chain. Correlation times for these modes 
have been reported in tabular form (21). Comparison of the BD results 
with experimental correlation times obtained by Allerhand et al. (38) on 
heptane indicates that the theoretical times are too small by a factor of 
two. Theory and experiment do agree in the finding that the correlation 
times decrease at the chain extremities. 

Light Scattering. As in the case of dielectric relaxation, depolar­
ized light scattering (DPLS) can measure single-particle orientational 
correlation times provided that the chain molecule is the dilute com­
ponent of the solution. Unlike dielectric relaxation, DPLS has an added 
complication arising from the uncertain form of the polarizability tensor 
for a polyatomic molecule (39). 

The observable in DPLS is the Fourier transform of the autocor­
relation function of the total molecular polarizability tensor ot; thus 

where 7(co) is the spectrum of scattered light. The correlation time is 
derived from the time integral of the normalized polarizability correlation 
function. For chain molecules, problems arise regarding the form of the 
single-particle molecular polarizability. Qualitatively, there are two ways 
to model a. The bond additive approximation (BAA) assigns an axially 
symmetric polarizability tensor to all bonds in the chain (in our case, this 
means all C - H bonds as well as the C - C bonds). The total polarizability 
is the sum of all the individual bond polarizability tensors. Alternatively, 
one can view the chain as consisting of a collection of polarizable spheres 
interacting with all the other atoms in the chain by the dipole tensor, 
and this model is called the interacting atom model (IAM). Neither the 
BAA nor the IAM have strict validity for chain molecules in solution, 
but possibly the use of both models could enable one to bracket the 
behavior of a real alkane. 

(14) 
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17. EVANS Liquid State Dynamics of Alkane Chains 437 

In Figure 5, we show the second-rank orientational correlation times 
(40) for the Dl mode, the BAA and IAM polarizabilities, the E mode, 
and the experimental measurements on neat alkanes (41). The DY mode 
was chosen because it is the fastest second-rank mode, and its correlation 
time is appropriate to an NMR measurement of a relaxation time for the 
second carbon. As a rule, the IAM times are longer than the BAA times, 
since the IAM has more long-wavelength, slowly fluctuating components. 
The E mode is the upper limit for the single-particle times; it, too, lies 
below the experimental results. It is premature to read too much into 
our findings, but it would appear that to force theory on dilute-solution 
scattering to mimic scattering from concentrated solutions, one would 
have to implement a static orientation-pair correlation function of the 
order of one to two for these alkanes; there is some support for this notion 
(42). Certainly, experiments on dilute solutions of alkanes would be very 
valuable in guiding our insights into the nature of the molecular polar­
izability and the accuracy of the predictions of BD. 

Torsional Isomerization. There are no real experiments on the 
torsional dynamics of butane, but because butane is the simplest molecule 

NUMBER OF BONDS 

Figure 5. Second-rank orientational time correlation functions for the 
D 1 ? BAA, 1AM, and E modes compared with DPLS correlation times 
obtained from neat alkanes. Points, experimental values (41). (Reproduced 
with permission from Ref. 40. Copyright 1981, American Institute of 

Physics.) 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

17



438 MOLECULAR-BASED STUDY OF FLUIDS 

with a torsional degree of freedom, it has been the vehicle for testing 
theory versus theory. It is safe to say that, at this moment (December, 
1981), the density dependence of the correlation time for the cosine of 
the torsion angle and the isomerization rate are not well understood. 

Our early work on this subject used the diffusion equation for butane 
Equation 6, which was solved exactly using Green's function methods 
for the cosine correlation functions and the trans-to-gauche isomerization 
rate k (43). Comparison of the results of the diffusion equation with 
molecular dynamics calculations of Weber (7) and Ryckaert and Belle-
mans (8, 9) indicated that the differences in rates were of the order of 
5%. It appeared that a BD model worked very well, even though, from 
a strict standpoint, the free energy function for the torsional coordinate 
varied too quickly to be followed accurately by a diffusion equation. It 
was argued by Chandler (16, 44), Berne (44, 45), Skinner and Wolynes 
(45, 46), and Hynes (47) that the diffusional regime was not reached in 
normal low-viscosity solvents, and that the momentum degrees of free­
dom must be included in the equations of motion for flexible systems. 
Furthermore, in a simulation of butane in a rigid lattice, where the 
viscosity is ill-defined, it was found that the isomerization rate was still 
in the neighborhood of the predictions of the diffusion model equipped 
with a shear viscosity of 1 centipoise (11). It is clear that the role of the 
medium or the shear viscosity in governing the isomerization rate is not 
well understood at solid densities. 

Qualitatively, at nonsolid or fluid densities, the isomerization rate 
shows two different dependences (44-46). At low density, k increases 
with density to a maximum of the order of the transition state rate. 
Further increases in density cause a diminution of the rate. Physically, 
this is understandable because, at low friction, those molecules with 
enough energy to isomerize once can escape the other potential minima 
as well, thereby leading to no effective isomerizations. Molecules with 
energy less than the barrier height, on the other hand, will never iso­
merize. By increasing the friction, one is able to trap more effectively 
those molecules with energies greater than the barrier height. Increasing 
friction in the high-friction regime decreases the rate, since the drag on 
a conformer makes it harder for it to cross the barrier. Once it has crossed 
the barrier, the molecule is locked into torsional oscillations around the 
potential minimum, and therefore the rate-determining step is barrier 
crossing. 

Recent experiments on the chair-chair interconversion in cyclo-
hexane (48) provide evidence for the nonmonotonic dependence of the 
isomerization rate predicted by the original Kramers theory (1), as well 
as by the modern revisions (44—46). Cyclohexane has a barrier of 12-15 
kcal/mol to internal rotation, as opposed to the 3-kcal barrier in butane. 
As a result of the increased barrier height, the potential in cyclohexane 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

17



17. EVANS Liquid State Dynamics of Alkane Chains 439 

has a sharper curvature in the vicinity of the maxima and minima. Con­
sequently, one would expect that the failure of a diffusion equation would 
be more striking than for butane. Nonetheless, the cyclohexane exper­
iments give strong support to the contentions that one must include 
momentum transport in the isomerization kinetics in order to account 
properly for the density dependence of the rate. 

Torsional Dynamics in Stilbene. The mechanism of trans-cis iso­
merization of stilbene has been the subject of much debate. Both quan­
tum mechanical calculations and experiment support the following mech­
anism for photoisomerization (49). It is thought that stilbene can absorb 
a photon to form an excited Sx singlet state. There is another state S2, 
called the phantom singlet, which is a 90° torsional conformer with respect 
to the planar S1 state. Separating the Sx and S 2 states is a barrier whose 
height is roughly 2.5-4.0 kcal/mol. Crossing over the barrier from Sx to 
S 2 produces the phantom singlet, which can convert radiationlessly to 
the cis isomer, thereby completing the isomerization. 

The proposed mechanism for the isomerization involves a barrier-
crossing event. In order to determine the frequency of barrier crossing, 
one must obtain the inertia component appropriate to the reaction co­
ordinate, the coupling of the internal coordinate to the overall rotational 
degrees of freedom, and the molecular resistance tensor. Equipped with 
these quantities, one can then determine D(<t>), the diffusion coefficient 
for the internal degree of freedom, for use in Equation 6. The differential 
equation for the orientational Green's function can be solved exactly; 
hence, one can determine the correlation time associated with the fluc­
tuation of the number of conformers in the trans well. Finally, the iso­
merization rate is just the inverse of the number-density correlation time. 
The calculations indicate that the diffusive model can accommodate 
Hochstrasser's experimental isomerization rates (50) using the experi­
mental shear viscosity, provided that the barrier heights hindering in­
ternal rotation are of the order of 3kBT. In light of the experimental 
findings on the isomerization rate of cyclohexane (48) one would have to 
anticipate effects of momentum relaxation to be operative here as well. 
However, since the curvature of the torsional potential is much smaller 
for stilbene than for cyclohexane, an unambiguous assignment of the role 
of momentum relaxation might not be possible. 

Ring-Closure Reaction Rates. Reactive chains longer than four 
bonds can close to form cyclized products. The probability of a ring-
closure reaction and the rate of closure will not depend on the rate of 
overall rotation, but rather on the torsional flexibility of the chain and 
the equilibrium probability of chain-end contact. There is interest in the 
ring-closure phenomenon for two reasons: (1) it may provide another 
route to understanding chain motion, and (2) it has chemical importance 
in understanding a class of chemical reactions. 
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One can learn about the dynamics of ring closure from two types of 
experiments, the magnetic-field dependence of biradical chemically in­
duced dynamic nuclear polarization (CIDNP) (51) and the electron ex­
change reactions of alkane chains with terminal benzenoid substituents 
(52). Neither of these is as unequivocal in interpretation as NMR. For 
example, CIDNP is sensitive to magnetic parameters and a host of other 
nonin teres ting chemical reactions, as well as the ring-closure rate. Like­
wise, the electron transfer reactions involve doping the chain with large 
plate-like substituents that can alter the reorientation dynamics of a sim­
ple homogeneous chain. Nonetheless, these experiments do yield some 
insights into chain motion and therefore should be investigated. Szwarc 
et al. (52), have demonstrated that the rate of electron transfer, kR, 
between the terminal naphthyl substituents on an alkane chain exhibits 
an N~3/2 power law. One can attempt to understand this finding by 
applying the Wilemski and Fixman (WF) (53) theory of diffusion-con­
trolled reactions. In the W F theory, the diffusion-controlled reaction rate 
is given by the square of the probability that the chains are within a 
reaction volume divided by the time integral of the autocorrelation func­
tion for the fluctuation of the number of conformers with the reaction 
volume. Employing the prescription of WF, together with BD simula­
tions of the correlation function, it follows that the rate of ring closure 
is given approximately by (54) 

k = exp(-Q/kBT)N-™ (15) 

for a chain with a torsional potential given by Equation 10, and where 
rx is the distance at which chemical reaction takes place. Several ap­
proximations were made in calculating Equation 15, but, to within a 
factor of two, it will accommodate the dependence of the chemical re­
action on the parameters incorporated. 

Summary 

In closing, there are a few points that we wish to emphasize. First, 
different experiments measure different properties of chain molecules. 
Although this statement falls somewhat short of profundity, it is a point 
worth stressing, as a few examples will demonstrate. 

BD calculations illustrate that the DPLS correlation time (using 
IAM) is nearly equal to the dielectric correlation time for a terminal 
dipole. Normally, for small molecules when the first- and second-rank 
orientational correlation times are equal, one then asserts that Ivanov's 
(55) large-angle jump diffusion is operative. Here, that is completely 
wrong. The BD algorithm implements infinitesimal steps; moreover, 
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from the analysis of specific trajectories, there is no evidence of coop­
erative motions that could resemble a large-angle jump. Dielectric re­
laxation of a terminal vector detects the fast motions associated with the 
chain, but these are observed through a first-rank function that is itself 
a slowly varying function. On the other hand, depolarized light scattering 
detects a slow variable, viz., the total polarizability, but this function is 
of second rank, has more nodes, and fluctuates rapidly. As a result, the 
dielectric and depolarized light scattering correlation times will be similar 
in medium-size alkane chains. Figures 2 and 5 also indicate that the 
DPLS and the NMR DY correlation times are vastly different, even though 
both experiments detect tensors of the same rank. In this case, NMR 
detects a local high frequency process, whereas DPLS is more sensitive 
to the longer wavelength global processes. Returning to Figure 2, it is 
somewhat surprising that the butane isomerization rate is slow compared 
to most of the correlation times already mentioned. Despite the fun­
damental slowness of the isomerization process (due to the barrier-hin­
dering rotation), several shape changes occur during the nonane trajectory, 
presumably because the generic isomerization rate for and N-bond chain 
is roughly N — 2 times the value for butane. 

Second, it is commonplace to use the Rouse modes (56-59) to under­
stand chain dynamics. For long chains, the Rouse modes can predict 
quantitatively the correct eigenvalues of the chain Liouville operator 
(19). For short chains, it has been found that the Rouse eigenvalue 
associated with the lowest Rouse eigenfunction is in agreement with BD 
calculations; for all other Rouse eigenfunctions, BD calculations yield 
smaller eigenvalues than the original Rouse values (18, 60). In other 
words, the Rouse eigenvalues get progressively worse for shorter wave­
length motions. Furthermore, by means of a mode-coupling reduction 
of the diffusion equations, one can show that the relaxation rates for the 
Rouse basis functions depend on the Kramers isomerization rates for the 
short wavelength fluctuations (60). 

Finally, theory most likely can account for most reorientational trans­
port coefficients to within factors of two. The definitive experiments on 
dilute solutions of alkanes have yet to be performed and there is much 
work remaining to determine the legitimacy of the approaches summa­
rized here. 
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Note Added in Proof 

Since December 1981, a number of pertinent papers have been 
written. Velsko et. al. (61) provided experimental evidence that a fre­
quency-dependent friction coefficient might be necessary to explain the 
viscosity dependence of isomerization rates in viscous media. Also, Garcia 
de la Torre et al. (62) improved our parameterization of the friction 
coefficient (31) by using Oseen hydrodynamic interactions and slip boundary 
conditions. Recently, we applied the FP and BGK transport equations 
to investigate the full density (or friction) dependence of the butane 
isomerization rate (63). Also, in collaboration with Ladanyi (64), we have 
reanalyzed the photoisomerization rates of trans-stilbene implementing 
a FP equation for the torsion angle and its canonical momentum, the 
potential of mean force, and the Rotne-Prager hydrodynamic interaction 
tensor. The operation of convective effects and hydrodynamic interaction 
decreased the stilbene isomerization rate by 30-40% from that predicted 
by a diffusion equation. 

Literature Cited 

1. Kramers, H. A. Physica 1940, 7, 284. 
2. Erpenbeck, J. J.; Kirkwood, J. G. J. Chem. Phys. 1958, 29, 909. 
3. Kirkwood, J. G. J. Polymer. Sci. 1954, 12, 1. 
4. Eckhart, C. Phys. Rev. 1935, 47, 552. 
5. Zwanzig, R. W. In "Lectures in Theoretical Physics"; Interscience: 1961; 

Vol. 3, p. 106. 
6. Kawasaki, K. Ann. Phys. 1970, 61, 1. 
7. Weber, T. A. J. Chem. Phys. 1978, 69, 2347. 
8. Ryckaert, J. P.; Bellemans, A. J. Chem. Soc., Faraday Disc. 1978, 66, 95. 
9. Ryckaert, J. P.; Bellemans, A. Chem. Phys. Lett. 1975, 30, 123. 

10. Rebertus, D. W.; Berne, B. J.; Chandler, D. J. Chem. Phys. 1979, 70, 
3395. 

11. Rosenberg, R. O.; Berne, B. J.; Chandler, D. Chem. Phys. Lett. 1980, 75, 
162. 

12. Pear, M. R.; Weiner, J. H. J. Chem. Phys. 1979, 71, 212. 
13. Levy, R. M. ; Karplus, M. ; McCammon, J. A. Chem. Phys. Lett. 1979, 

65, 4. 
14. Helfand, E. J. Chem. Phys. 1978, 69, 1010. 
15. Helfand, E. Bell Syst. Tech. J. 1979, 58, 2289. 
16. Montgomery, J. A.; Holmgren, S. L.; Chandler, D. J. Chem. Phys. 1980, 

73, 3688. 
17. Fixman, M. J. Chem. Phys. 1978, 68, 2983. 
18. Ibid., 1978, 69, 1527. 
19. Ibid., 1978, 69, 1538. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

17



17. EVANS Liquid State Dynamics of Alkane Chains 443 

20. Helfand, E.; Wasserman, Z. R.; Wever, T. A. J. Chem. Phys. 1979, 70, 
2016. 

21. Evans, G. T.; Knauss, D. C. J. Chem. Phys. 1980, 72, 1504. 
22. Pear, M. R.; Northrup, S. H.; McCammon, J. A. J. Chem. Phys. 1980, 73, 

4703. 
23. van Gunsteren, W. F.; Berendsen, H. J. C.; Rullman, J. A. C. Mol. Phys. 

1981, 44, 69. 
24. Evans, G. T. J. Chem. Phys. 1980, 72, 3849. 
25. Evans, G. T.; Knauss, D. C. J. Chem. Phys. 1981, 75, 4647. 
26. Lebowitz, J. L.; Resibois, P. Phys. Rev. 1965, 139A, 1001. 
27. Fixman, M.; Rider, K. J. Chem. Phys. 1969, 51, 2425. 
28. Knauss, D. C.; Evans, G. T. J. Chem. Phys. 1980, 72, 1499. Ibid., 1980, 

73, 2017. 
29. Fixman, M. ; Kovac, J. J. Chem. Phys. 1974, 61, 4939. 
30. Paul, E.; Mazo, R. M. J. Chem. Phys. 1968, 48, 1405. 
31. Knauss, D. C.; Evans, G. T.; Grant, D. M. Chem. Phys. Lett. 1980, 71, 

158. 
32. McQuarrie, D. A. "Statistical Mechanics"; Harper & Row: NY, 1976. 
33. Crossley, J. Adv. Mol. Relax. Proc. 1974, 6, 39. 
34. Mopsik, F. I.; Cole, R. H. J. Chem. Phys. 1966, 44, 1015. 
35. Mopsik, F. I., Ph.D. thesis, Brown Univ., 1964. 
36. Glauber, R. J. J. Math. Phys. 1963, 4, 294. 
37. Levy, R. M. ; Karplus, M. Chap. 18 in this volume. 
38. Doddrell, D.; Glushko, V.; Allerhand, A. J. Chem. Phys. 1972, 56, 3683. 
39. Kivelson, D.; Madden, P. A. Annu. Rev. Phys. Chem. 1980, 31, 523. 
40. Keyes, T.; Evans, G. T.; Ladanyi, B. M. J. Chem. Phys. 1981, 74, 3779. 
41. Champion, J. V.; Dandridge, A.; Meeten, G. H. J. Chem. Soc., Faraday 

Disc. 1979, 66, 266. 
42. Patterson, G. D.; Flory, P. J. J. Chem. Soc., Faraday Trans. II 1972, 58, 

1098. 
43. Knauss, D. C.; Evans, G. T. J. Chem. Phys. 1980, 73, 3423. 
44. Montgomery, J. A.; Chandler, D.; Berne, B. J. J. Chem. Phys. 1979, 70, 

4056. 
45. Berne, B. J.; Skinner, J. L.; Wolynes, P. G. J. Chem. Phys. 1980, 73, 4314. 
46. Skinner, J. L.; Wolvnes, P. G. J. Chem. Phys. 1980, 72, 4913; Ibid., 1978, 

69, 2143. 
47a. Northrup, S. H.; Hynes, J. T. J. Chem. Phys. 198, 73, 2700. 
47b. Groote, R. F.; Hynes, J. T. J. Chem. Phys. 1980, 73, 2715. 
48. Hasha, D. L.; Eguchi, T.; Jonas, J. J. Chem. Phys. 1981, 75, 1571. 
49. Knauss, D. C.; Evans, G. T.; J. Chem. Phys. 1981, 74, 4627, and references 

mentioned therein. 
50. Greene, B. I.; Hochstrasser, R. M.; Weissman, R. B. Chem. Phys. Lett. 

1975, 62, 427. 
51. Kanters, F. J.; den Hollander, J. A.; Huizer, A. H. Mol. Phys. 1977, 34, 

857. 
52. Shimada, K.; Szwarc, M. J. Am. Chem. Soc. 1975, 97, 3313. 
53. Wilemski, G.; Fixman, M. J. Chem. Phys. 1974, 60, 866. 
54. James, C.; Evans, G. T. J. Chem. Phys. submitted for publication. 
55. Ivanov, E. N. Sov. Phys. JETP 1964, 18, 1041. 
56. Rouse, P. E. J. Chem. Phys. 1952, 21, 1272. 
57. Stockmayer, W. H. Pure App. Chem. 1967, 15, 539. 
58. Stockmayer, W. H.; Gobush, W.; Norvich, R. Pure App. Chem. 1971, 26, 

537. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

17



444 MOLECULAR-BASED STUDY OF FLUIDS 

59. Stockmayer, W. H. Pure App. Chem. Suppl. Macro. Chem. 1973, 8, 379. 
60. Evans, G. T. J. Chem. Phys. 1981, 74, 4621. 
61. Velsko, S. P.; Waldeck, D . H.; Fleming, G. R. J. Chem. Phys. 1982, 78, 

249. 
62. Garcia de la Torre, J.; Lopez Martinez, C . Chem. Phys. Lett. 1982, 88, 564. 
63. Evans, G. T. J. Chem. Phys. 1983, 78, March 1. 
64. Ladanyi, B. M. , Evans, G. T. J. Chem. Phys. 1982, 78, submitted. 

RECEIVED for review January 27, 1982. ACCEPTED for publication September 
17, 1982. 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

17



18 
Trajectory Studies of NMR Relaxation 
in Flexible Molecules 
RONALD M. LEVY 
Rutgers University, Department of Chemistry, New Brunswick, NJ 08903 
MARTIN KARPLUS 
Harvard University, Department of Chemistry, Cambridge, MA 02138 

Stochastic dynamics trajectories for alkanes in aqueous so­
lution have been used to examine a variety of problems that 
arise in the interpretation of 13C-NMR relaxation experi­
ments. Exact results for spin-lattice and spin-spin relaxation 
times, and nuclear Overhauser enhancement values ob­
tained from these trajectories, have been employed to ana­
lyze the relaxation behavior of small alkanes and macro-
molecular side chains and to test the validity of simplified 
relaxation models for these systems. A molecular dynamics 
simulation of a protein has been used to demonstrate the 
effects of picosecond fluctuations on observed 13C spin­
-lattice relaxation times. It is shown how an increase in spin­
-lattice relaxation time can be related to order parameters 
for the picosecond motional averaging of the carbon-hy­
drogen dipolar interactions, and how the order parameters 
can be calculated from a protein molecular dynamics tra­
jectory. The present work provides a firm theoretical foun­
dation for the continuing effort to use NMR measurements 
for the experimental analysis of the dynamics of molecules 
with internal degrees of freedom. 

NU C L E A R MAGNETIC RESONANCE RELAXATION MEASUREMENTS provide 

an important probe of the dynamics of molecules because the spin-
lattice (TL) and spin-spin (T2) relaxation times and the nuclear Overhauser 
enhancement (NOE) factor (r|) all depend on the thermal motions. For 
protonated carbons, 1 3 C NMR is particularly well suited for the study of 
dynamics because the relaxation is dominated by the fluctuating dipolar 
interactions between 1 3 C nuclei and directly bonded protons. Applica­
tions of 1 3 C NMR have been made to the dynamics of small molecules 
in solution (1-6), polymers (7-13), and molecules of biological interest 
including lipids (14-16) and proteins (17-23). Because the motions of 

0065-2393/83/0204-0445$07.00/0 
© 1983 American Chemical Society 
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446 MOLECULAR-BASED STUDY OF FLUIDS 

molecules with many internal degrees of freedom (e.g., macromolecules) 
are complicated, the interpretation of NMR measurements for such sys­
tems is often not unique. Empirical rules have been developed to fit the 
relaxation data to the molecular tumbling time combined with internal 
segmental motions (6-8). Alternatively, the experimental results have 
been interpreted in terms of analytically tractable descriptions of the 
dynamics based on continuous diffusion (9-24), restricted diffusion (25-
28), and lattice jump models (24, 26, 29, 30). While it is usually possible 
to fit the experimental results in this way, the data in themselves generally 
are not sufficient to determine whether or not a model gives the correct 
description of the dynamics. 

A powerful method of testing relaxation models is provided by com­
puter-generated trajectories that make use of realistic potentials to sim­
ulate the motion of the system of interest. From such trajectories, the 
time-dependent correlation functions can be determined and Tl9 T2, and 
T| can be calculated. Thus the trajectory provides simultaneously a com­
plete knowledge of the dynamics and exact values of the NMR param­
eters. It is now possible to proceed by using the calculated values of T 1 ? 

T2, and r\ as "experimental" quantities and fitting the various models to 
them. The resulting model dynamics can then be compared with the 
exact dynamics from the trajectory to determine how well the former 
corresponds to the latter. Also, the results of the trajectory studies may 
be compared directly with experiment without recourse to simplified 
theories. 

In this chapter we review our work, which employs the results of 
computer simulations for the analysis of experimental and theoretical 
NMR studies of the motions of flexible molecules. The systems consid­
ered include butane and heptane tumbling in aqueous solution and the 
short- and long-time dynamics of side chains attached to macromolecules. 
The first section of this chapter reviews the procedures used to generate 
the trajectories and outlines the methodology employed to extract the 
NMR parameters from them. Then the butane and heptane trajectories 
are used, in the next section, to evaluate the relaxation times for these 
alkane chains in the motional narrowing limit, and the results are com­
pared with experiment and with simplified models. The following section 
analyzes the dynamics of a side chain protruding from a macromolecule 
and employs the heptane trajectories to critically examine a lattice jump 
model for the relaxation. In the final section we make use of a full 
molecular dynamics simulation of a protein to demonstrate the effects of 
fast protein motions on observed 1 3 C - N M R relaxation times. 

Methodology 

In this section we outline the method used for obtaining the alkane 
trajectories and present the procedure for determining NMR relaxation 
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18. LEVY AND KARPLUS NMR Relaxation in Flexible Molecules 447 

parameters from these trajectories. We show how trajectory results can 
be applied to study simplified dynamical models that have been used to 
interpret NMR relaxation data. For the analysis of 1 3 C spin lattice re­
laxation in proteins we show how an increase in the relaxation time is 
related to order parameters for the picosecond motional averaging of the 
1 3 C , H dipolar interactions, and how these order parameters are calcu­
lated from a molecular dynamics trajectory. 

Diffusive Langevin Dynamics of Model Alkanes. The equation of 
motion descriptive of Brownian particles is the Langevin equation (31) 

where m-v^ and are the mass, velocity, and friction constant of the ith 
particle and F t is the systematic force acting on the fth particle due to 
the potential of mean force; F{ in general depends on the coordinates of 
all the particles. The stochastic term Af(t) represents the randomly fluc­
tuating force on the particle due to the solvent. In the diffusive regime, 
the particle momenta relax to equilibrium much more rapidly than the 
displacements. With the assumption that the forces are slowly varying, 
i.e., that it is possible to take time steps that are large compared to the 

momentum relaxation time ^At » Equation 1 can be integrated 

to obtain the equation (31-33) for the displacement vector, ri 

rlt + At) = rtf) + [FJWQAt + Ar((t) (2) 

The term Ar((t) is the random displacement due to the stochastic force; 
it is chosen from a Gaussian distribution with zero mean and second 
moment 6DtAt, where D f , the diffusion coefficient, is KT/^. 

Equation 2 is the equation used to calculate the trajectories of the 
hydrocarbon chains (34). An extended-atom model was introduced, in 
which the C H 3 and C H 2 units are represented as spheres of van der 
Waals radius 1.85 A; the bond lengths and angles of the alkane chains 
were set equal to 1.523 A and 111.3°, respectively. Each extended-atom 
group along the chain acted as a point center of frictional resistance with 
a Stokes* law friction constant ^ = 67rr|a. To determine r\, the viscosity 
of water at 25 °C (T) = 0.01 poise) was used and a was set equal to the 
extended-atom van der Waals radius; with these parameters, £4 = 3.45 
X 1 0 " 9 g/s. This is to be compared with the value of ^ = 2.2 X 1 0 " 9 

g/s obtained from the experimental diffusion coefficient of methane in 
water at 25° C. 

POTENTIAL FUNCTION. The negative gradient of the potential of 
mean force is used for F, in Equations 1 and 2. This is a combination of 

American Chemical 
Society Library 
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448 MOLECULAR-BASED STUDY OF FLUIDS 

the potential energy arising from the interactions among the particles 
composing the solute molecule and the effective potential due to the 
solvent molecules. The molecular potential was expressed as a sum of 
two types of terms; the first is a torsional potential energy for each of 
the dihedral angles, and the second consists of pairwise Lennard-Jones 
interactions between extended atoms separated by four or more bonds 
(35, 36). For butane there is one angular degree of freedom and only 
the associated torsional potential was used, but for heptane both torsional 
and nonbonded terms are required. 

The solvent contribution to the torsional nonbonded potential was 
obtained from the work of Pratt and Chandler (3), which expresses the 
potential due to the solvent as — kT ln (y) where y is the cavity distri­
bution function. The differences in energy at 25 °C between the trans 
and gauche butane geometry in the vacuum and in the solvent are 0.70 
kcal/mol and 0.16 kcal/mol, respectively. For the solvent effect on the 
nonbonded interaction, the cavity distribution function for two methane 
molecules dissolved in water was used (37). The solvent-modified po­
tential has a slightly deeper energy minimum (— 0.38 versus — 0.30 kcal/ 
mol), which occurs at a smaller interparticle separation (3.0 versus 
4.15 A); at larger separations the attraction is more quickly screened in 
the solvent. 

For all the systems considered, Equation 2 was integrated in Carte­
sian coordinates with the bond lengths and angles of the molecule con­
strained to the initial value by use of the SHAKE algorithm (35). In 
general, a correction term should be introduced when the Langevin 
equation is solved with constraints (38). This term was omitted from the 
present simulation, in which the effect is expected to be small (39). 

For the butane simulation, time steps of 0.005 ps and 0.05 ps were 
compared; for the other molecules, time steps between 0.025 and 0.05 
ps were used. Butane trajectories were run for 90 ns (25 °C) and 20 ns 
(50 °C) on the solvent-modified potential surface and 20 ns (25 °C) on 
the vacuum molecular potential surface. Heptane trajectories on the 
solvent-modified surface (25 °C) were recorded for 20 ns without con­
straints and for 10 ns with three atoms held fixed. For 10 ns of the butane 
trajectory (0.05-ps time step), the required central processing unit time 
on an IBM 370/168 computer was 15 min. 

Exact Calculation of N M R Parameters. The NMR relaxation pa­
rameters probe angular correlation functions of the relaxing nucleus. 
These correlation functions and their Fourier transforms, the spectral 
densities, can be obtained directly from the alkane trajectories, which 
provide the complete chain dynamics in the diffusive limit. For the 1 3 C 
nucleus in an alkane chain, the dynamical quantities of interest are the 
spherical polar coordinates (with respect to a laboratory frame) of the 
C - H internuclear vectors. The well-known relations between the NMR 
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18. LEVY AND KARPLUS NMR Relaxation in Flexible Molecules 449 

relaxation parameters TLF T2, and T] and the spectral densities for the 
case of dipolar relaxation involving two different spin 1/2 nuclei (40) are 

Y2 = % i4/o(0) + / o ( « c - « H ) + 3 / t ( « c ) 

+ B / K ) + 6/2(coc + coH)} (4) 

Is 
7c 

6/2(coc + coH) - /Q(COc ~ coH) 
_/0(wc - wH) + S/̂ Wc) + 6/2(coc + coH)_ 

(5) 

where yc, yH and a>c, coH are the gyromagnetic ratios and Larmor fre­
quencies of the 1 3 C and L H nuclei, r is the C - H bond distance, and N 
is the number of protons directly bonded to the relaxing carbon nucleus. 
The spectral densities, /m(co), are the Fourier transforms of the second-
order spherical harmonics, Y^(6, <(>) given by 

/,» = [ O&WM)] y%2 [e(0)cb(0)]> cos co* dt 
Jo 

(6) 

where the spherical-harmonic time correlation function is defined as the 
ensemble average 

= \d*d$ \dvdv Y* (e, 4>) G(e, t; e', o)Y£2(e'c|>') (7) 

Here G(6, ((), f; 6', (j)', 0) is the conditional probability that a C H vector 
has spherical polar coordinates (6<J>) at times t, given that they were equal 
to (6'()>') at time 0. The spherical-harmonic time correlation functions are 
obtained from the alkane trajectories by replacing the ensemble average 
(Equation 7) with a time average (41). Since the orientation of the lab­
oratory z axis is arbitrary for freely rotating molecules, the angular cor­
relations and their spectral densities are independent of subscript m. 

Once the correlation functions (Equation 7) have been evaluated 
from the time integral over the trajectory, the spectral densities are 
obtained by numerical Fourier transformation, as indicated in Equation 6. 
The resulting values of /m(co) are then introduced into Equations 3-5 to 
determine the NMR parameters. 
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450 MOLECULAR-BASED STUDY OF FLUIDS 

Relaxation Models. The 1 3 C - N M R spectra of low molecular weight 
species in solution have tumbling times that are much smaller than the 
reciprocal of the Larmor frequencies of current spectrometers. Conse­
quently, the resonances of such systems are observed in the motional 
narrowing limit (OOCT)2 < < 1, where the relaxation time T is the time 
integral of the angular correlation function 

T - f <Y2je(*)<b(*)] y* 2 [6(0)4,(0)]) dt (8) 
Jo 

In the motional narrowing limit, the NMR relaxation times 7\ and T2 

are equal and independent of the Larmor frequency and the 1 3 C dipolar 
N O E is maximal (J, 40); that is, Equations 3-5 reduce to 

— = .(4irr) (9) 

T2 = Tx (10) 

N O E = 1 + r, = 2.99 (11) 

For rigid spherical molecules in solution, the rotational motion is de­
scribed by the angular Debye diffusion equation and the second-order 
spherical harmonics decay as a single exponential (41) with relaxation 
time T = 1/(6D), where D is the rotational diffusion coefficient. For 
flexible molecules, a distribution of relaxation times is required to de­
scribe the motion of a given C - H vector. For liquid alkanes, an effective 
relaxation time T E F F has been extracted from experimental T t values; T E F F 

may be thought of as a weighted average of the distribution of relaxation 
times. Empirically, T E F F has been separated into contributions from mo­
lecular tumbling and segmental motions (6, 10, 11) 

T eff TO T i 

where T 0 is the molecular tumbling time, and T£ is the segmental motion 
relaxation time for the ith carbon. To test the validity of Equation 12 
using the alkane trajectories, we have considered a local coordinate sys­
tem centered on the relaxing nucleus and analyzed its motion relative 
to a coordinate frame embedded in the molecule (41). To express the 
angular correlation functions (Equation 7) in terms of these coordinate 
systems we use the Wigner rotation matrices D 2 ^, which transform the 
spherical harmonics between coordinate frames related by the Euler 
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angles ft. The resulting expression is 

<Y2
m[ew<bW] y f [e(o)<b(o)]> 

aa' 
bb' 

x Yi(e m o b <bmol) Yb*.2(6mol> <bmol) (13) 

Where D2
ah(Vi) is the Wigner rotation matrix, ft0(*) are the Euler angles 

for the transformation from the laboratory to the molecular coordinate 
system, and ft^t) are the Euler angles for the transformation from the 
molecular coordinate system to the local coordinates centered on the fth 
relaxing nucleus. The angles (8mol, c()mol) are the time-independent spher­
ical polar coordinates of the C - H internuclear vector in the local coor­
dinate system. An expression of the form of Equation 12 for T e f f can be 
obtained with the assumptions that tumbling and internal motions are 
independent, and that the correlation functions describing the tumbling 
and internal motions decay as a single exponential. For this situation, 
the correlation functions of Equation 13 can be broken into a sum over 
products of correlation functions of the form: 

Substitution of this result into Equation 13 permits one to obtain an 
expression of the form of Equation 12 for T e f f. In the next section of this 
chapter we employ the stochastic trajectory results for butane and hep­
tane to evaluate the correlation functions (Equation 13), compare cal­
culated NMR relaxation times with experimental trends for liquid al­
kanes, and analyze the validity of the approximations inherent in 
Equation 12 and Equations 14a and 14b. 

More realistic models of NMR relaxation in polymers take into ac­
count the presence of torsional barriers and of excluded volume effects. 
One type of analytic model, which has been applied to hydrocarbon 
chains in membranes and in solution, is the so-called jump model (26, 
27). In practice, there have been few attempts to interpret experimental 
NMR relaxation data within the context of a complete lattice jump model 
because the number of adjustable parameters rapidly becomes unwieldly. 
For the hydrocarbon relaxation problem, it has been common to employ 
the model with the product approximation for the relaxation; this omits 
excluded volume effects and the possibility of concerted motions. Each 
carbon-carbon bond is allowed to jump between three states, trans, 

<D*5[flo(t)DL'(fto(0)]> = e-<*\ (14a) 

(14b) 
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452 MOLECULAR-BASED STUDY OF FLUIDS 

gauche ( + ), and gauche ( — ). The rate constant for jumping from the 
trans (T) to gauche (g + , g") states is KT, and the inverse rate constant is 
KQ. For this simplified lattice jump model the correlation functions for 
each of the internal degrees of freedom (Equation 13) can be written as 
a sum over the conditional probabilities for the allowed transitions in the 
form (24, 29, 41) 

<Dg[n(*)]DŜ [n(o)]> 
= 2 2 Po(4>')P(4>*l4>fO) (15) 

<t> =T. g ,g + 4> = T ,g - ,g + 

The d*b terms are real reduced Wigner matrix elements, with (3 the 
complement of the rigid C C C bond angle, P(c|>f|cj>'0) is the conditional 
probability that a rotational angle is (f) at time t, given that it was <$>' at 
time 0, and P0(<|>') is the equilibrium probability of a ()>' state. Explicit 
expressions for the conditional probabilities are derived in terms of the 
eigenvalues and eigenvectors of the rate matrix (29, 41). 

The lattice jump model is studied in some detail later in this chapter. 
The heptane trajectory is used to evaluate Tl9 T2, and N O E for a model 
amino acid side chain with four internal rotational angles. Figure 1 shows 
the four rotational angles and indicates the nature of the three types of 
coordinate systems that are used to define the configurations of the chain; 
that is, the laboratory system, the macromolecular system with respect 
to which the overall tumbling is defined, and the four local coordinate 
frames associated with the internal degrees of freedom. For the analysis, 
the coordinate frame centered on C2 is assumed to be rigidly attached 
to the macromolecule, which is tumbling isotropically with relaxation 
time T 0 . Only carbons C2 through C6 are considered, because the C7 
methyl protons cannot be located from an extended-atom alkane model. 
The NMR parameters calculated exactly from the trajectory are compared 
with those obtained from the independent lattice jump model. For the 
latter, only the isomerization rate constants KT and KQ for each of the 
rotational angles are required (34, 43). 

Another class of NMR relaxation problems for which excluded vol­
ume effects are important deals with the contribution of fast (picosecond) 
motions to the relaxation of amino acid side chains in the interior of 
proteins (21-29). In the last section of this chapter we review our use of 
a full molecular dynamics simulation of the protein pancreatic trypsin 
inhibitor (PTI) to demonstrate the effects of picosecond fluctuations on 
observed 1 3 C Tt values. The protein trajectory has been used to evaluate 
the short time decay of internal correlation functions (Equation 14b), 
which determine the NMR relaxation (44-45). Because of the highly 
restricted nature of the motion in the protein interior, the internal cor­
relation functions generally do not decay to zero. Instead, a plateau value 
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H H H H 

H H H H H H 

< 
Y 4 

X 4 

Figure 1. Schematic representation of a side chain with four internal 
rotational angles attached to a tumbling macromolecule. The laboratory 
coordinate system, molecular tumbling coordinate system, and a coordi­
nate system attached to C4 are labeled. (Reprinted from Ref. 4. Copyright 

1981, American Chemical Society.) 

is often reached after tp picoseconds, where tp is a time short compared 
with the length of the trajectory. We have previously shown that, for 
such a plateau value, the internal correlation function is equal to the 
equilibrium orientation distribution obtained from the entire run 
(45, 46) 

07 = ^ 2 I VlWMtM* (16) 
O a 

The quantity 5/̂  defined by Equation 16 is the generalized order param­
eter for the restricted motion of the internuclear dipole vector (45-48). 
The carbon relaxation, corrected for the picosecond motional averaging 
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454 MOLECULAR-BASED STUDY OF FLUIDS 

of the internuclear dipole vector, is 

T v - S T 2 T* (17) 

where the rigid relaxation time, is calculated from Equation 3 with 

/ N = j - , / ; , 2 a s ) 

4TT 1 + (COT0) 

In a later section we review our results concerning the evaluation of 
order parameters from protein trajectories and show that under suitable 
conditions, 1 3 C - N M R relaxation data can serve to probe the picosecond 
reorientation dynamics of the C - H bond vector. 

NMR Relaxation of Model Alkanes in the Motional Narrowing 
Limit 

In this section we employ the stochastic trajectory results for butane 
and heptane to analyze the contributions to the 1 3 C relaxation times in 
simple alkanes. The calculated relaxation times are compared with ex­
perimental trends. We also examine some simplified models that have 
been proposed for interpreting alkane NMR data and test them by com­
parison with the trajectory results. 

Relaxation Time: Theory and Experiment. In the motional nar­
rowing limit applicable to the small alkanes, the 1 3 C dipolar spin lattice 
relaxation times (7\; see Equation 9) are inversely proportional to the 
relaxation times (T) of the second-order spherical harmonics. The com­
puted relaxation times for each of the internuclear vectors of butane and 
heptane, obtained from a least-squares fit of a single exponential to the 
decay of the calculated correlation functions, are listed in Tables I and 

Table I. Relaxation Times of Butane Angular Correlation Functions 

Bond 
w o w 

j(ps) 
<Yf(0)Yg(t)> 

j(ps) 
<Yf(0)Yf(t)> (Yf(O)Yl(t)) 

r(ps) 

C1-C2 (18.5)° 16.0 5.7 5.6 5.8 
C2-C3 (19.1) 16.9 6.1 5.9 6.4 
C3-C4 (19.0) 15.9 6.0 5.6 5.8 
C2-H (7.6)b 8.1 (3.9)b 5.0 (4.0)fe 4.9 (3.9)6 5.1 
C3-H (7.8) 8.3 (4.1) 5.2 (3.9) 4.8 (3.9) 5.1 

Note: Relaxation time from least-squares fit of the relaxation to a single exponential 
over 10 ps, except as noted. 

a Least-squares fit to single exponential over 20 ps. 
b Least-squares fit to single exponential over 5 ps. 
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Table II. Relaxation Times of Heptane Angular Correlation Functions 

<Y (̂0)Y (̂t)) (Yf(0)Yi(t)> (Yf :2(0)Yf(t)> <Yf(0)Yi(t)> 
Bond i(ps) j(ps) T(ps) -r(ps) 

C1-C2 (39.3)a 33.4 13.4 14.7 15.9 
C2-C3 (46.7) 42.2 16.5 15.1 16.5 
C3-C4 (51.9) 49.8 17.6 19.6 20.2 
C4-C5 (50.3) 46.7 18.1 16.9 18.3 
C5-C6 (47.3) 41.6 16.5 17.2 18.3 
Cr>-C7 (37.3) 35.7 13.7 12.9 13.5 

C2-H (32.6)a 29.1 12.6 11.7 11.9 
C3-H (31.5) 29.4 13.9 11.3 13.5 
C4-H (35.1) 33.1 15.1 11.6 13.3 
C5-H (33.8) 33.4 13.4 12.3 12.5 
C6-H (25.4) 23.3 9.9 12.9 12.7 

Note: Relaxation time from least-squares fit of the relaxation to a single exponential 
over 10 ps, except as noted. 

a Fit to a single exponential over 20 ps. 

II, respectively. Since the relaxation is not due to isotropic rigid body 
rotation, the single exponential fit is approximate. In Table III we com­
pare the relaxation times obtained from a single exponential fit to the 
C 6 - H vector in heptane with the results from the time integral of the 
angular correlation function (Equation 8). For the complete dynamics 
(top row of results), the time integral of the correlation function gives a 
value for the relaxation time about 14% smaller than that estimated from 
a single exponential fit. Such a difference is not important for the analysis 
described below. 

The relaxation times listed in Tables I and II demonstrate a number 
of important trends. They can be summarized as follows: 

1. The relaxation times for these small alkanes in water, whose 
overall tumbling puts them in the motional narrowing limit, 
are typically between 5 and 50 ps. 

2. The relaxation times increase as the chain length increases 
from butane to heptane. 

3. The relaxation times increase from the ends of the heptane 
chain toward the center. 

4. The relaxation of the YJ correlation functions are always 
slower than that of the Y2

M functions, but the ratio of 
T / = 1 / T / = 2 is less than three. 

5. The C - H internuclear vectors relax faster than the C - C 
vectors. 
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456 MOLECULAR-BASED STUDY OF FLUIDS 

Table III. Time Integral of Angular Correlation Function of C6-H 
Vector and Exponential Relaxation Times 

[Vg[e(0)<K0)Me(t)<i>(t)]>cit 
JO 

Relaxation Time by 
Single Exponential 

(ps) Fit (ps) 

Complete dynamics 0.68 9.9" (0.79)fc 

10.5C (0.84) 
Tumbling and inter­ 0.58 9.7* (0.77) 

nal motions uncou­ 11. T (0.93) 
pled 

Tumbling relaxation 1.21 13.0° (1.03) 
only 15.8C (1.26) 

Internal relaxation — 39c (3.1) 
only 40.r f (3.2) 

a Least-squares fit to a single exponential over 10 ps. 
h Values in parentheses are l/4ir times the exponential fit to correspond to the time 

integral (Equation 8). 
0 Least-squares fit to a single exponential over 20 ps. 
d Least-squares fit to a single exponential over 50 ps. 

The first three results are in accord with experiment; there are no data 
concerning the final two. 

From the C - H relaxation times listed in Tables I and II, the 1 3 C -
spin-lattice relaxation times (Tx) are calculated by means of Equation 9. 
Table IV lists the predicted 1 3 C 7\ values for each of the methylene 
carbons of butane and heptane; the final column gives the ratio of T : for 
carbon C2 and the ith internal carbon. Unfortunately, experimental 
measurements of these relaxation times for small alkanes in aqueous 
solution are not available. However, measurements of Tx values have 
been reported for neat liquid alkanes (10, 11), and some of these results 
are given in Table IV. Quantitative comparison of the heptane results 
shows that the Tx values calculated from the trajectories are shorter than 
the experimental results by a factor of six. One source of this difference 
is in the larger viscosity of the aqueous solution relative to the neat 
liquids. The viscosities of the neat alkanes at the experimental temper­
ature of 40 °C are three to four times smaller than the viscosity used for 
the aqueous solution calculation (T| = 0.27 centipoise for hexane at 
40 °C, T| = 0.34 centipoise for heptane at 40 °C, compared with TJ = 1 
centipoise for aqueous solution). If we assume the trajectory results scale 
linearly with the viscosity (as they are expected to do in the diffusive 
limit), we find that the calculated relaxation times for heptane are a factor 
of 1.5-2 shorter than the experimental values. Differences of this order 
may be due to the limitations of the stochastic dynamics model (34); these 
include the neglect of the inertial term of the complete Langevin equa-
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18. LEVY AND KARPLUS NMR Relaxation in Flexible Molecules 457 

Table IV. Alkane NMR Spin-Lattice Relaxation Times 

Trajectory Results" 
Butane carbons 

C2, C3 5.9 ± 0.12 
Heptane carbons 

C2, C6 1.94 ± 0.18 — 
C3, C5 1.82 ± 0.14 1.07 
C4 1.75 ± 0.24 

Experimental Results1" 
1.11 

Heptane carbons 
[CI, C7] [10.9] [0.81c] 
C2, C6 13.2 — 
C3, C5 12.8 1.03 
C4 12.0 1.10 

Eicosane carbons 
[CI, C20] [3.6] [0.43c] 
C2, C19 2.3 — 
C3, C18 1.6 1.44 
C4, C17 1.1 2.09 
Interior** 0.8 2.88 

a 25 °C, y\ = 1 centipoise, aqueous solution. 
b 39 °C, T| = 0.34 centipoise for neat heptane (10). 
c Normalized to the same number of directly bonded protons. 
d Individual values not obtained. 

tion, the neglect of hydrodynamic interaction, and the use of an atomic 
friction coefficient obtained from the translational diffusion coefficient of 
a monomer unit in the Langevin equation for the alkane chain. In this 
regard, if the covalent radius (0.77 A) is used to obtain the monomer 
friction coefficient, as has been suggested (49), the calculated TY values 
are increased by 2.4 and are closer to experimental values. It is important 
to note that, while the absolute values of the predicted T x values are 
somewhat too short, the trajectory results reproduce the experimentally 
observed gradient in the values of T1 along the heptane chain. 

Test of Simplified Models. To explore whether relaxation in the 
motional narrowing limit can be divided into contributions from tumbling 
and segmental motions, the relaxation of the C6 carbon of heptane was 
analyzed. The molecular tumbling axis of the heptane molecule was 
defined by atoms C1-C2-C3. Both the tumbling correlation function and 
the correlation functions describing the internal relaxation were calcu­
lated directly from the trajectory. Figure 2 compares the decay of the 
second-order spherical harmonics of the C 6 - H internuclear vector cal-
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458 MOLECULAR-BASED STUDY OF FLUIDS 

4 7 T 

C ( t ) 

6 0 

Air 

C ( t ) 

P ICOSECONDS 
6 0 

Figure 2. Relaxation of the second-order spherical harmonics <Yg(6(t)<J>(t)) 
X Yo(9(0)<|>(0))) of the C6-H internuclear vector calculated from the hep­
tane trajectory, (a) Exact results from trajectory (Equation 13). (b) Results 
when correlations between tumbling and internal motions are broken 
(Equation 14a). (c) Relaxation of diagonal tumbling correlation function, 

~T~X (no(t)) Dflia (ft(0))) in Equation 14a. (d) Relaxation of internal 

correlation function, £ (D^W) D£. (Sl/p))) n ( ^ n J Y* 2 (6̂ <t>w), 
5 bb' 

in Equation 14b. (Reprinted from Ref. 41. Copyright 1981, American 
Chemical Society.) 
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J _ 

4 7 T 

C ( t ) 

• ••• M • ••••••••• 

6 0 

4 7 T 

C ( t ) 

•••••• 

P I C O S E C O N D S 

Figure 2. (continued) 

culated exactly from the trajectory with the relaxation of this vector 
obtained when correlations between the tumbling and internal motions 
are broken. Also given in the figure are the separate relaxation of the 
tumbling and the internal motion parts of the correlation function. The 
first three correlation functions (Figure 2, a-c) decay to zero, but the 
internal motions part (Figure 2d) does not, because there is not enough 
freedom to sample all solid angles in this short alkane. Table IV lists the 
time integrals (Equation 8) of these correlation functions and the fits to 
them of single exponentials over several time spans. The results indicate 
that, for this particular carbon and choice of molecular tumbling axis, 
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460 MOLECULAR-BASED STUDY OF FLUIDS 

separating the dynamics into contributions from tumbling and internal 
relaxation is a rather good approximation. Further analysis of the appli­
cability of Equation 12 requires individual values for T 0 and T{ from the 
stochastic trajectory. With estimates of the tumbling and internal relax­
ation times of T 0 — 16 ps and T{ — 39 ps (41), the empirical relation 
(Equation 12) yields an estimate for the total relaxation time of T E F F = 11 ps, 
as compared with the value of T E F F = 10 ps obtained from a fit of the 
exact dynamics to a single exponential. Thus, the present trajectory re­
sults support the usefulness of the empirical relation, Equation 12. A 
more detailed analysis for longer hydrocarbons is in progress (50). 

NMR Relaxation of a Side Chain Attached to a Tumbling 
Macromolecule 

In this section, the heptane trajectory is used as outlined in the 
section on methodology to evaluate T 1 ? T2, and N O E for a model aliphatic 
side chain with four internal rotational angles protruding from a tumbling 
macromolecule. 

Exact Trajectory Results. The NMR relaxation parameters Tl9 T2, 
and N O E for each of the carbons (C2 through C6) calculated exactly by 
means of Equations 3-6 and 13 from the trajectory are listed in Table 
V. Results obtained for three isotropic molecular tumbling times (T = 
1 ns, 10 ns, and 100 ns) and for two spectrometer frequencies (15 MHz 
and 68 MHz) are compared. 

Of the many comparisons that can be made with the results in Table 
V, we consider first the calculations for 15 MHz, T 0 = 1 ns where the 
NMR relaxation parameters are characteristic of the motional narrowing 
limit; i.e., Tx equals T 2 for all of the carbons along the chain and the 
N O E value is almost maximal, even for the slowest-relaxing carbon. The 
NMR relaxation times for this case are inversely proportional to the time 
integrals of the angular correlation functions (Equations 8-10). The much 
more rapid decay for the C 6 - H vector results in a 25-fold increase in 
the value of T x over that for the C2 carbon; i.e., the fast reorientation 
of the C 6 - H vector averages out the effect of the macromolecular tum­
bling, which is in the frequency range to produce highly efficient relax­
ation (as found for C2). Thus, the internal flexibility has a dramatic effect 
on the NMR relaxation. This is to be contrasted with the results for the 
heptane chain in solution. For that system, which is also in the motional 
narrowing limit, the much higher tumbling rate (on the same order as 
the internal motions) leads to longer relaxation times and a much weaker 
variation of T x with position in the chain. It is of interest that in the 
macromolecule the T1 value of C6 with its large internal motional freedom 
approaches that obtained for the free heptane. 

To examine the contributions of internal motions to the relaxation, 
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18. LEVY AND KARPLUS NMR Relaxation in Flexible Molecules 461 

Table V. Side Chain NMR Parameters, Exact Result 

15 MHz 68 MHz 

T 2 NOE T, T 2 NOE 
Tumbling Time (ms) (ms) (1+t)) (ms) (ms) (i+n) 

T 0 = 1 ns 
C2 (analytic) 26.5 25.8 2.80 58.3 48.9 1.70 
C3 112 110 2.86 179 163 2.34 
C4 290 290 2.97 312 308 2.90 
C5 452 450 2.96 493 486 2.90 
C6 627 625 2.97 682 672 2.90 

T 0 — 10 ns 
C2 (analytic) 11.9 7.3 1.30 133 11 1.16 
C3 60 40 1.63 230 57 2.44 
C4 243 223 2.74 292 247 2.91 
C5 368 313 2.50 492 358 2.95 
C6 519 454 2.60 665 515 2.92 

T 0 — 100 ns 
C2 (analytic) 

T 0 — 100 ns 
C2 (analytic) 62.4 1.2 1.16 1,270 1.2 1.15 
C3 171 7.1 2.18 302 7.2 2.87 
C4 274 101 2.93 293 103 2.93 
C5 466 99 2.86 496 100 2.94 
C6 617 163 2.89 667 165 2.94 

we compare the high field (68 MHz) results at the two slower tumbling 
times (10 ns and 100 ns). For the rigid carbon C2, the macromolecule 
is tumbling too slowly for efficient relaxation; consequently, T2, Tx and 
the N O E value are minimal. Side chain flexibility can enhance relaxation 
rates because of the presence of additional frequency components closer 
to the Larmor frequency. This does not occur for the side chain tumbling 
at T = 10 ns, where the increase in Tx along the chain is monotonic. 
However, the micelle tumbling (100 ns) is so slow with respect to the 
Larmor frequency that internal motions do increase the relaxation rates. 
The rigid C2 carbon T x is longer than 1 s while C3, which can reorient 
about one side chain rotation axis, has a TY of only 302 ms. The high-
field Tl and T 2 values for C6, which is farthest out along the chain, 
demonstrate that T x is sensitive to the high frequency molecular motions, 
whereas T 2 probes primarily the low frequency motions. For C6, the Tx 

values at T = 10 ns and at 100 ns are almost identical (665 and 667 ms, 
respectively). By contrast, T 2 is much shorter for the longer tumbling 
time (for C6, T 2 = 515 ms at T = 10 ns and T2 = 165 ms at T = 
100 ns). This result demonstrates the importance of measuring both TY 

and T2 in order to obtain information about molecular dynamics from 
NMR. 
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462 MOLECULAR-BASED STUDY OF FLUIDS 

Simplified Models. We now evaluate the NMR parameters ob­
tained from simplified models for the side chain dynamics and compare 
the results obtained from these models with the exact results. In the 
product approximation, motions about the side chain rotational axes are 
assumed to be uncorrelated. We have found, for most of the cases stud­
ied, that the NMR parameters calculated from the product approximation 
are close to the exact results. For example, at T 0 = 1 ns or 10 ns, the 
results for C4 are calculated in the product approximation to be within 
5% of the exact values (41). Even for C6 the approximate NMR param­
eters are within 50% of the exact results. That the product approximation 
generally gives good results suggests that correlations among neighboring 
dihedral angles do not play a significant role in the chain isomerization 
dynamics. 

The independent lattice jump model idealizes the chain dynamics 
to instantaneous jumps among stable side chain configurations; between 
jumps the side chain is assumed to be tumbling rigidly with the mac­
romolecule. NMR parameters calculated from the independent lattice 
jump model using isomerization rate constants calculated from the hep­
tane trajectory (34) are listed in Table VI. In contrast to the product 

Table VI. Side Chain NMR Parameters, Lattice Jump Model 

15 MHz 68 MHz 

T 2 NOE T, T 2 NOE 
Tumbling Time (ms) (ms) (1+rO (ms) (ms) (1+rO 

T 0 = 1 ns 
C2 (analytic) 

T 0 = 1 ns 
C2 (analytic) 26.5 25.8 2.80 58.3 48.9 1.70 
C3 99 97 2.86 162 147 2.31 
C4 226 225 2.96 252 247 2.85 
C5 339 339 2.98 358 355 2.92 
C6 511 510 2.98 520 518 2.97 

T 0 = 10 ns 
C2 (analytic) 

T 0 = 10 ns 
C2 (analytic) 11.9 7.3 1.30 133 11 1.16 
C3 52 35 1.59 216 50 2.40 
C4 179 158 2.63 235 183 2.85 
C5 296 278 2.81 338 301 2.92 
C6 477 469 2.94 496 481 2.96 

T 0 = 100 ns 
C2 (analytic) 62.4 1.2 1.7 1270 1.2 1.15 
C3 159 6.0 2.11 295 6.1 2.88 
C4 219 60 2.90 241 61 2.91 
C5 324 151 2.94 339 153 2.95 
C6 437 377 2.98 496 380 2.98 
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18. LEVY AND KARPLUS NMR Relaxation in Flexible Molecules 463 

approximation, which yields 7\ and T2 values that are uniformly longer 
than the exact results, those calculated from the jump model are uni­
formly shorter than the exact results. The jump model relaxation times 
are generally within 30% of the exact values, although the high field T 2 

values for micellar tumbling (T0 = 100 ns) differ by 50% for C6. An 
important source of error introduced by the jump model is readily ap­
parent when plots of the angular correlation functions are examined 
(Figure 3). The plots of the product approximation and the exact relax­
ation for the C 6 - H vector are very similar. The jump model, however, 
exhibits a considerably slower initial decay as compared with the two 
other functions. The reason for the absence of the fast initial decay in 
the jump model is that it does not include the high frequency, small-
amplitude oscillations that occur within a given potential well. The good 
results obtained from the jump model in the present case are due to a 
cancellation of errors. Uncoupling the correlation in the motions along 
the chain leads to a more rapid decay (less efficient NMR relaxation), 
while ignoring the short time oscillations of the chain leads to a slower 
decay (more efficient NMR relaxation). Although these corrections are 
not very large for the present system, there are cases (e.g., in the interior 
of proteins) where jumps are so rare that the oscillations within a well 
make a more important contribution to the relaxation. In the following 
section we briefly review the results of our trajectory studies of the 
picosecond motional averaging of NMR probes in the protein interior. 

Picosecond Motional Averaging of NMR Probes of Protein 
Dynamics 

In spite of the close-packed structure of native proteins, molecular 
dynamics simulations (51) have shown that significant atomic fluctuations 
occur on a picosecond time scale. We have used a molecular dynamics 
simulation of the pancreatic trypsin inhibitor (PTI) to demonstrate the 
effects of picosecond fluctuations on the observed 1 3 C T( values. The 
NMR relaxation rates are determined by time correlation functions, and 
these correlation functions decay on several different time scales. On the 
shortest time scale, there is a rapid initial loss of correlation in the first 
few picoseconds (44). The fast decay results from the combined effect of 
the vibrational potential of the residue containing the nucleus and of 
collisions between the atoms of the residue and those of the surrounding 
cage in the protein. For residues that are involved in larger, more com­
plex fluctuations, the initial decay is followed by a much slower loss of 
correlation over the next tens to hundreds of picoseconds. If the internal 
motions are restricted, the correlation functions will decay to a plateau 
value that is equal to the inverse of the square of the order parameter 
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18. LEVY AND KARPLUS NMR Relaxation in Flexible Molecules 465 

that describes the distribution of NMR probe orientations (Equation 16). 
Finally, for experiments in solution, the correlation functions relax to 
zero due to the overall tumbling of the proteins. 

For an examination of the effect of fast motional averaging on 1 i 
values, we have evaluated the order parameters (Equation 16) and the 
increase in T1 values (Equation 17) for 62 protonated (44) and 4 non-
protonated (45) carbons in PTI. In 13 out of 14 a-carbons studied, mo­
tional averaging increased the 7\ values by less than 20% (1.05 ^ TJ 
Tf ^ 1.11). An examination of the NMR correlation functions for these 
atoms demonstrated that they do approach a plateau value within 2 ps. 
We therefore concluded that it is unlikely that lower frequency internal 
fluctuations contribute significantly to the relaxation of these atoms. For 
the 12 residues studied that have side chains, all of the (3 carbons exhibit 
more motional averaging than the a carbons to which they are attached. 
An approximate plateau value appears within 2 ps (1.11 ^ TJTf ^ 1.23). 
Of all the carbons studied, the aliphatic 7 carbons had the greatest 
increase in Tx. However, for these carbons the motional averaging does 
not plateau within 2 ps and lower frequency fluctuations contribute to 
the NMR relaxation. 

The motions of aromatic side chains in proteins have been the subject 
of several recent experimental and theoretical investigations (45, 52-55). 
A large number of experimental techniques can be used to study the 
ring motions, including 1 3 C NMR relaxation, lH and 2 H lineshape, and 
fluorescence depolorization measurements. Levy et al. (43^46) have used 
molecular dynamics simulations of pancreatic trypsin inhibitor (PTI) to 
evaluate the picosecond motional averaging of order parameters for NMR 
and fluorescence probes of ring motions. In the course of this work it 
was observed that the order parameters were anomalously small for cer­
tain probe orientations on the two rings in PTI that flipped during the 
trajectory. Levy and Sheridan (56) subsequently developed a simple 
analytical model that can be used to evaluate order parameters for probes 
of ring motions when the rings are undergoing both restricted diffusion 
and 180° jumps about the side chain axes. It was demonstrated that, 
within the model, the restricted high frequency ring motions can have 
a large effect on the probe order parameters. Extension of this work to 
analyze the effect of restricted ring motions on NMR line-shapes in the 
solid state is underway. 

Conclusions 

Stochastic dynamics trajectories for alkanes in aqueous solution have 
been used to examine a variety of problems that arise in the interpretation 
of 1 3 C - N M R relaxation experiments. Exact results for Tlf T2, and N O E 
values obtained from these trajectories have been employed to analyze 
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466 MOLECULAR-BASED STUDY OF FLUIDS 

the relaxation behavior of small alkanes and macromolecular side chains 
and to test the validity of simplified relaxation models for these systems. 
Results were obtained for the spin lattice relaxation times of butane and 
heptane in aqueous solution. A gradient in relaxation times along the 
heptane chain was found that is in agreement with the measured values 
for the neat liquid. The empirical separation of the relaxation contri­
butions in these molecules into a tumbling term plus an internal motion 
term was shown to yield useful results. We have also been able to analyze 
models for side chain relaxation in macromolecules. For macromolecules 
with short alkanelike side chains moving freely in aqueous solvent, the 
lattice jump model was shown to provide a satisfactory description of the 
NMR relaxation. 

A molecular dynamics simulation of a protein has been used to 
demonstrate the effects of picosecond fluctuations on observed 1 3 C T x 

values. It is shown how an increase in T1 can be related to order param­
eters for the picosecond motional averaging of the C, H dipolar inter­
actions, and how these order parameters can be calculated from a protein 
molecular dynamics trajectory. 

In summary, the present work provides a firm theoretical foundation 
for the continuing effort to use NMR measurements for the experimental 
analysis of the dynamics of molecules with internal degrees of freedom. 
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19 
Influence of Flexibility on the 
Properties of Chain Molecules 

R. SZCZEPANSKI and G. C. MAITLAND 
Imperial College, Department of Chemical Engineering, London, S.W.7., 
England 

Simulation results are reported for conformational prop­
erties and diffusion coefficients for a system of n-octane­
-like molecules in the liquid phase at about 400 K. The effects 
of chain flexibility have been studied by changing the nature 
of intramolecular interactions, keeping the same intermo­
lecular potential. The presence of an excluded volume po­
tential acting between atoms on the same chain is found to 
be of crucial importance in determining the size and shape 
of molecules in a liquid. The influence of a torsional po­
tential is of secondary importance for the properties we 
have examined. In the case of a realistic n-alkane model, 
the balance between intermolecular and intramolecular forces 
is such that chain dimensions in the liquid are close to their 
values at infinite dilution. 

C HAIN FLEXIBILITY INFLUENCES both the static and dynamic properties 
of large molecules, but for experimental systems, it is not possible 

to identify the precise effects of flexibility changes because they are 
usually accompanied by modifications to the intermolecular interactions. 
It is, however, possible to vary the details of molecular interactions in a 
well-controlled way by computer simulation. By using this technique, 
the effects of intermolecular and intramolecular potentials on molecular 
and bulk properties may be separately assessed. 

The flexibility of chain molecules depends on the possibility of ro­
tation about the bonds that connect the backbone atoms. In our model, 
there is a potential associated with torsional motion, an excluded volume 
potential that (except at the most extreme and unrealistic temperatures) 
prevents chains from passing through themselves, and an intermolecular 
potential. We have examined the effects on chain shape and dynamic 
properties of changing the two intramolecular interactions while keeping 
the same intermolecular potential. By varying the potentials we have 
been able to simulate a range of molecular types from the very flexible 

0065-2393/83/0204-0469$06.00/0 
© 1983 American Chemical Society 
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470 MOLECULAR-BASED STUDY OF FLUIDS 

(freely rotating chains) to the very rigid (the type of molecules that form 
liquid crystals). The real n-alkane forms an intermediate case. A consid­
erable amount of work has been done on the torsional and orientational 
dynamics of chain molecules using both analytical techniques and ap­
proximate numerical simulation (i). However, the work described in this 
chapter has a somewhat different scope because it is concerned with the 
effects of rather large changes in the nature of intramolecular potentials 
in the presence of intermolecular interactions, rather than small varia­
tions solely in the torsional potential. 

In this chapter we present the results of molecular dynamics sim­
ulations of n-octane-like molecules in the liquid phase, using an alkane 
model that is based on those used in previous simulations of chain mol­
ecules (2-7). This work forms part of a more general study of the effects 
of the interactions within and between polymer molecules on their bulk 
properties. In the first section, we describe in more detail the molecular 
model and potentials used in the simulations. Brief details of the mo­
lecular dynamics method and specifications of the simulation experiments 
are then given. The following section of this chapter describes results 
for those static properties that characterize the size and shape of indi­
vidual chains and the structure of the liquid. The dynamic properties of 
molecules that are of interest in this study include correlations between 
individual bonds, the rate of change of chain length and shape, and both 
rotational and translational diffusion of molecules as a whole. Results for 
translational diffusion are included in the final section. An analysis of the 
other dynamic properties will be presented elsewhere (8). 

The n-Alkane Model 

The model used in this work is a combination of those adopted by 
Weber (2) and Ryckaert and Bellemans (6). The n-alkane is represented 
by a carbon-atom backbone, and hydrogen atoms do not appear explicitly. 
The total mass of the molecule is distributed equally between backbone 
atoms, with no distinction between C H 3 and C H 2 groups. Interactions 
between and within molecules are modeled by a set of potentials as 
described below. 

Intermolecular Lennard-Jones Potential. Molecules interact by a 
site-site potential between backbone atoms. The form of this potential 
is 

(i) 
U(r) = 0 r > r c 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

19



19. SZCZEPANSKI AND MAITLAND Influence of Flexibility 471 

vhere 

wLJ(r) = 4e 

and r is the distance between atom-atom centers. The form of Equation 1 
ensures that both the potential and force go smoothly to zero at the cut­
off distance r c. Values for the potential parameters in Equation 1 are 
taken from Ryckaert and Bellemans (7) 

a = 3.923 x I O " 1 0 ™ 

elk = 72 K 

rc = 2.5 a 

Torsional and Bond-Bending Potentials. Part of the n-alkane chain 
is shown in Figure 1. The bond vector b{ runs from atom i to i +1, and 
all bonds have a fixed length b0. The potential associated with deformation 
of the bond angle Q{ is defined as 

v 9 = p e ( c o s e0 + - ^ r ^ ) (2) 

where 7 e is a force constant and 90 is the equilibrium bond angle. The 
torsional potential for rotation of adjacent parts of the chain about bond 
b( is defined as 

V* = 74,(1.116 + 1.462 cos <J> - 1.578 cos2<|> 

- 0.368 cos3c|) + 3.156 cos4(() - 3.788 cos5$) (3) 

where 

& - cos290 . . 
cos d> = — (4; 

snr6 0 

= b i ' l
w t

b i + l (5) 
hi 

and 7^ is a constant. 
The rotational potential and molecular conformations corresponding 

to the three minima are shown in Figure 1. At fixed bond length b0, the 
angle c|> corresponds to the torsional angle when all bond angles are at 
the equilibrium value 0O. 
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19. SZCZEPANSKI AND MAITLAND Influence of Flexibility 473 

Molecular flexibility may be adjusted by varying the parameters in 
the bond-bending and torsional potentials. We have chosen to fix the 
chain geometry by using the same bond angle potential in all calculations. 
The parameter 7^ in the torsional potential is varied by writing it as 

7* = <*(7<i>)o (6) 

where (7^)0 is the value of 7^ corresponding to a torsional potential that 
is thought to be approximately the same as that for a real n-alkane. The 
adjustable parameter a ranges from 0, for a molecule with no barriers 
to rotation, to values exceeding unity for more rigid molecules. 

It is our primary aim to compare differences between molecular 
models with varying flexibilities rather than to find optimum potential 
parameters for an n-alkane. For this reason, we have been content to 
adopt the following values for parameters, which have been used in 
previous n-alkane models (2-7), in Equations 2-6 

7e = 1.3 X 105 J/mol 

b0 = 1.53 x 10" 1 0 m 

60 = 109.47° 

(7J0 = 8.314 x 103 J/mol 

Intramolecular Lennard-Jones Potential. The potentials de­
scribed above take no account of the so-called pentane effect, whereby 
the simultaneous occurrence of adjacent gauche+ and gauche' confor­
mations along a chain has a low probability because of repulsive exclusion 
forces acting between the two C H 2 groups brought into close proximity. 

We include this effect by allowing Lennard-Jones interactions be­
tween atoms on the same chain, provided they are separated by at least 
three other atoms. The following potential is used 

VL J(r) = pt/(r) (7) 

where U(r) is defined in Equation 1, and (3 is an adjustable parameter 
that has a role similar to a; in our realistic alkane model, (3 = 1. Any 
value 6f (3 > 0 introduces an excluded volume effect, making it impos­
sible for a chain to pass through itself (except, as noted earlier, at extreme 
temperatures). 

Molecular Dynamics Simulations 

All of the simulations described here were carried out using 45 
molecules, each of 8 atoms, enclosed in a cubic box. The usual periodic 
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474 MOLECULAR-BASED STUDY OF FLUIDS 

boundary conditions were applied with nearest image interactions (9) for 
the intermolecular potential. The bulk density of the fluid was 564 kg/m3 

(molar mass = 0.114 kg), which corresponds to a saturated liquid at 440 
K for real n-octane. 

The equations of motion were integrated in Cartesian coordinates 
using the Verlet algorithm and the SHAKE procedure (10) for introducing 
bond length constraints. Although it has been shown that rigid constraints 
on both bond length and bond angle do not always produce correct 
physical behavior (IJ, 12), there is evidence (13) that using bond length 
constraints alone, as is the case here, does not introduce any significant 
error. 

Details of the simulations runs are given in Table I, where the 
potentials A-E are defined in terms of the parameters a and (3. Potential 
A is the reference potential, which is thought to be a reasonable model 
of a real n-alkane. Potential C describes a freely rotating chain, and B 
corresponds to a freely rotating chain with excluded volume. Potentials 
D and E both represent very rigid molecules. 

The starting configuration for each run was derived from a previous 
simulation, using a potential similar to A, which represented 250 ps of 
real time. Model parameters were then changed to those shown in Table 
I, and the simulations were continued. The velocities were rescaled at 
5-ps intervals until a temperature of about 400 K was achieved; then a 
further period of equilibration (typically 50 ps) was allowed. 

Static Properties 

Chain Conformation. The size and shape of a chain molecule is 
most simply characterized by its end-to-end distance and radius of gy­
ration about the center of mass. It is interesting to compare our results 
with those for some idealized models of isolated chains. For a freely 

Table I. Specifications of Simulation Runs 

Potential a P T(K) kT 

Integration1' 
Time Step 
(10~3 ps) 

Total 
Simulation 
Time (ps) 

A 1 1 396 3.8 5 80 
B 0 1 393 0. 5 41 
C 0 0 405 0. 5 35 
D 5 5 354 25.7 1 77 
E 10 10 444 33.6 1 52 

Note: Chain length was eight units; volume was 5.56 crVmolecule. 
a At/ is the potential barrier between trans and gauche states. 
b Execution time per step on a C D C 7600 computer was 0.24 s. 
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19. SZCZEPANSKI AND MAITLAND Influence of Flexibility 475 

joined chain of n bonds, each of length b0, it may be shown that (14) 

(R2/nb2
0) = 1 

l ( n + 2) (8> {S2lnbD = -—— 
6 (n +1) 

and for a chain with fixed bond angles but no rotational barriers 

<H-/nfc8>='1 + ^ 2 a ( 1 " a n ) 

{S2lnbD « 

1 - a / n (1-a) 2 (9) 

(n + 2)(l + a) a 
6(n+l)(l-a) ~ (n + l ) ( l - a ) 2 

where a = cos 0O. 
In Table II, conformational averages for our simulations are com­

pared with Equations 8 and 9 and with Flory's calculations (15) by using 
the rotational isomeric state approximation with parameters appropriate 
to a poly methylene chain. 

Even though there is no rotational barrier for potential B, the sizes 
and shapes of the molecules are surprisingly close to those for A. The 
effect of intermolecular and excluded volume potentials for A and B is 
to cause chain dimensions to be expanded relative to the predictions of 
Equations 8 and 9. In fact, the two potentials show close similarities in 
nearly all the properties we have examined, indicating the dominance 
of long-range intramolecular interactions along the chain as compared 
with near-neighbor interactions. 

Table II. Conformational Averages and Diffusion Coefficients for 
Octane Simulations 

Potential T(K) <R> (R2) (S) (S2) (R2)/7 7/<S*> (m/(s2) (10-* m2/s) 

A 396 4.73 22.64 1.69 2.88 3.23 2.43 7.86 0.94* 
B 393 4.50 20.52 1.64 2.69 2.93 2.60 7.62 1.10 
C 405 2.61 8.54 1.27 1.67 1.22 4.19 5.11 1.20 
D 354 4.57 21.25 1.65 2.75 3.04 2.54 7.23 0.63 
E 444 4.51 20.73 1.64 2.72 2.96 2.57 7.62 1.22 

Freely jointed chain, Equation 8 1 5.33 5.33 
Fixed bond angles, Equation 9 1.79 3.42 6.13 
Rotational isomeric state approximation 

(14), 413 K 3.1 2.5 7.75 
Note: All distances are in units of bond length, b0. 
a Estimate of experimental value based on an extrapolation of high-temperature data 

of Douglass and McCall (16) is 0.7 - 1.1 x IO" 8 m2/s. 
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476 MOLECULAR-BASED STUDY OF FLUIDS 

Results for potentials A and B compare well with the rotational 
isomeric state approximation for isolated polymethylene chains. This 
agreement between chain dimensions at infinite dilution and in a dense 
liquid shows that there is a balancing out of intermolecular and intra­
molecular forces in the dense phase. Even for the relatively small chain 
length studied in this work, the details of the torsional potential are of 
secondary importance compared with the excluded volume potential. 

Potential C does not have rigidly fixed bond angles, but otherwise 
this model should conform to Equation 9 in the limit of isolated chains. 
The results in Table II show that the infinite dilution limit (in terms of 
chain size) is not obtained for potential C, demonstrating large effects 
due to intermolecular forces. 

In the cases of potentials D and E, both torsional and excluded 
volume terms are very large. Because a small time step is required (see 
Table I) in order to maintain energy conservation, it is not practical to 
carry out calculations covering very long real times. It is evident from 
the results for dynamic properties that the simulations for D and E were 
not long enough to allow a sufficient number of configurations to be 
sampled. As a result, reliable averages cannot be estimated, and too 
much significance should not be attached to the precise values in Table 
II for potentials D and E. 

Distributions of Intramolecular Distances. Probability distribu­
tions for end-to-end distances are compared in Figure 2. The similar 
distributions for A and B are as expected in view of the similarities in 
conformational averages. The peak for B is shifted relative to A because 
conformations are not restricted by a torsional potential. About 40% of 
molecules with potential C have an end-to-end distance of two bond 
lengths or less. The absence of any intrachain interactions allows a mol­
ecule to curl up on itself in a ring conformation. The peak in F(r) at 1.6 
b0 is consistent with such a ring structure. Figure 2 (bottom) shows the 
very similar distributions for potentials D and E. Both simulations were 
started from the same configuration, which was itself the result of a 
previous simulation with a lower torsional potential. It is clear that no 
major conformational changes have taken place for either D or E. 

Further information about chain conformation is provided by the 
intramolecular pair distribution function, g'(r), which is proportional to 
the probability of finding two atoms on the same molecule with centers 
separated by a distance between r and r+dr. The actual values of g'(r) 
shown in Figure 3 were obtained using the same normalization as used 
for g(r), the intermolecular pair distribution function (see the section on 
Bulk Fluid Structure). 

For a dense fluid, potential C clearly leads to unrealistic behavior, 
with different atoms on a molecule occupying the same position in space. 
By assuming a compact shape, molecules minimize the energy of inter-
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19. SZCZEPANSKI AND MAITLAND Influence of Flexibility 477 

Figure 2. Distribution of end-to-end distances for octane molecules. Top, 
Potentials A, B, C. Bottom, Potentials D and E. 

molecular interactions—the ring structure is energetically favored in the 
absence of intramolecular forces. 

The pair distribution function for potential A clearly shows peaks 
that may be associated with different combinations of trans and gauche 
torsional angles along the chain. The excluded volume term in potential 
B tends to stretch out the chain, and hence favors the trans state without 
particularly favoring intermediate rotational states. The general shape of 
g'(r) is thus similar to that for A, but the only detailed feature is the 
trans peak. 

Distribution of Rotational States. The octane molecule has 5 tor­
sional angles, corresponding to rotations about internal bonds, which we 
denote as (jh, . . . , (t>5. Because of molecular symmetry, § l and <j>5 are 
equivalent for the purposes of calculating the distribution of torsional 
angles. The probability distributions for potential A, shown in Figure 4 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.c
h0

19



478 MOLECULAR-BASED STUDY OF FLUIDS 

1.0 

B O N D ANGLE OISTANCE A N O 

CIS TORSIONAL ANGLES 

2.0 3.0 

r/b0 

4.0 
I 

5.0 

Figure 3. Octane intramolecular pair distribution function. 
Potential A(—). Potential B (••-). Potential C (-—). 

6.0 

(top), are highly symmetric, indicating that equilibrium between 
gauche± and trans states has been established. Distributions for inner 
angles 4>2 and fa are virtually identical, but there is a pronounced shift 
from trans to gauche conformations for the outer angle, <\>l (cos (|> > 0.5 
defines a trans state). 

Removing the torsional potential, Figure 4 (center), results in a much 
more uniform distribution, but as mentioned above, the excluded volume 
potential favors a stretched-out conformation with most angles in the 
trans state. There is a well-defined variation in the proportion of near-
trans conformers for different angles along the chain that must be a result 
of the balance between intramolecular and intermolecular Lennard-Jones 
potentials. The distribution for fa is again the most uniform because 
rotations of the end bond vectors do not involve cooperative movements 
of the rest of the molecule. 

Removing the excluded volume potential (potential C) makes angles 
near ±TT the preferred conformation; this is shown in Figure 4 (bottom). 
The large number of cis angles indicates a compact globular structure in 
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FRACTION 

ANGLE TRANS 

4>/T RAO 

0.4 -

0.3 

0.0 
•1 .0 o.o 1 .0 

Figure 4. Distribution of torsional angles in octane. Top, Potential A. 
Center, Potential B. Bottom, Potential C. 

accordance with other results already described. Differences between 
the three distributions are small, but once again, the distribution of <$>i 
is the most uniform. 

Distributions for potentials D and E are not shown because they 
simply consist of spikes as <)> = 0 and ±2TT/3. There were no transitions 
between gauche and trans states during the simulations, for the reasons 
given earlier. 

Bulk Fluid Structure. The intermolecular pair distribution func­
tion, g(r), provides a measure of structure in the fluid as a whole. The 
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480 MOLECULAR-BASED STUDY OF FLUIDS 

value of g(r) gives the probability of finding atoms on different molecules 
separated by distances in the range r to r + dr relative to the same 
probability for a uniform fluid. 

The distributions for potentials A and B (which are virtually iden­
tical), and C are shown in Figure 5 out to a distance of 2.5a, which is 
the cut-off distance for the Lennard-Jones potential. Oscillations in g(r) 
die out rapidly, and no peaks beyond the second were observed in any 
simulation. For r > 2.5a, g(r) was evaluated with lower precision and 
is not shown. 

The distribution for potentials A and B is rather featureless compared 
with g(r) for monatomic Lennard-Jones fluids, and it is typical of previous 
calculations on alkanes (2-7). The large first peak in g(r) for potential C 
is shifted out to greater distances than that for A and B, showing the 
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effect of intramolecular forces on intermolecular spacings through changes 
in molecular shape. The compact symmetric structure of molecules with 
potential C enhances the effective intermolecular potential by concen­
trating several Lennard-Jones atoms in a small volume. Molecules pack 
in a more regular way but at larger separations. 

Translational Diffusion 

Values of the self-diffusion coefficient were computed from the mean 
squared displacement of the centers of mass of the octane molecules, 
according to the equation (10) 

Dtr = jt <(r(0) - r{t)f) (10) 

A typical plot of ((Ar)2) is shown in Figure 6 (top). As observed by 
Weber (3), there is a considerable delay before the center of mass of a 
molecule moves any distance from its initial position. Discarding this 
initial start-up period, the diffusion coefficients were estimated from the 
subsequent linear portions of (Ar 2) plotted against t. Values of Dtr are 
listed in Table II. 

Weber's calculations give a value of Dtr — 1.15 X 10"8 m2/s at 
400 K ? compared with 0.94 X 10"8 m2/s for this work using potential A. 
Even though these simulations are not intended to correspond exactly 
to real liquid octane, it is worthy of note that these two values lie within 
the range of uncertainty for the extrapolated experimental measurements 
of Douglass and McCall (16). Because the results reported here are mostly 
isothermal, it is not possible to say how well the temperature dependence 
of Dtr is reproduced. 

Comparing potentials A, B, and C, there is a trend to more rapid 
translational diffusion as the molecule becomes more flexible. With po­
tentials B and C it is easier for molecules to change their shapes in order 
to move past each other. Molecules with potential C are also smaller on 
average than are those with A or B, hence diffusion is easier. In contrast, 
potentials D and E allow very little change in molecular shape, and 
diffusion is thus hindered (note that simulation of D and E are at tem­
peratures significantly different from those in other runs). 

We have also evaluated the velocity autocorrelation function, de­
fined as 

(ID 
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2 -i 

1 1 1 1 1 1 1 

0 1 2 3 4 5 6 
time (ps) 

Figure 6. Functions related to translational diffusion. Top, Mean squared 
displacement of centers of mass. Bottom, Velocity autocorrelation func­

tions . 
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19. SZCZEPANSKI AND MAITLAND Influence of Flexibility 483 

where V(t) is the center of mass velocity of a molecule at time t. Diffusion 
coefficients may be obtained by integrating Equation 11 (17) 

We find that diffusion coefficients calculated from Equation 12 are con­
sistent with those derived from the mean squared displacement of centers 
of mass (Equation 10). 

For potentials A - C , Cv(t) is shown in Figure 6 (bottom). The absence 
of any large negative region in Cv has been noted in previous simulations 
of chain molecules (5, 6). 

Discussion 

In this study we have carried out simulations with molecular models 
that represent a wide range of chain flexibilities. Our results characterize 
in detail the properties of a realistic n-alkane model (potential A) and 
two models of flexible molecules (potentials B and C). Results on very 
rigid molecules (potentials D and E) are less complete because of the 
limitations of the molecular dynamics technique. 

We find that both static and dynamic properties are sensitive to the 
balance between intermolecular and intramolecular forces. For confor­
mational properties, this is illustrated by the fact that although our sim­
ulations are of the liquid phase, the values of (R2) and (S2) are in good 
agreement with calculations using the rotational isomeric state approx­
imation for isolated chains. Similar agreement has also been noted by 
Dettenmaier in neutron scattering experiments (18) on liquid n-alkanes. 
We are currently investigating the detailed reasons for this agreement 
by performing simulations for a system as a function of density. 

In our model, intramolecular forces are divided into short-range 
forces, (i.e., those associated with torsional rotation) and long-range forces 
that provide excluded volume effects. For all of the properties we have 
considered, it is the excluded volume potential that is most important, 
because it is responsible for the size and shape of the molecules. Con­
formational properties for the realistic model and the model with only 
excluded volume interactions (B) are very similar. Removing rotational 
barriers and excluded volume effects (C) leads to a very compact mo­
lecular shape with the chain tightly folded into a ring structure. The 
behavior of this model is interesting but unrealistic for a liquid phase. 
We have carried out some preliminary gas-phase calculations with po­
tential C and obtain reasonable agreement with the freely rotating chain 
model (Equation 9). Our conclusions concerning the importance of in­
tramolecular interactions in determining the conformations of longer al-

(12) 
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484 MOLECULAR-BASED STUDY OF FLUIDS 

kane chains are in broad agreement with the findings of van Gunsteren 
et al. (19) in their recent study of Brownian dynamics simulations for 
these systems. 

Large rotational barriers for potentials D and E make the molecules 
very rigid. We have not calculated the number of trans-gauche transi­
tions for any of the simulation runs, but it is evident from the distribution 
of end-to-end distances (Figure 2) and from the very sharp spikes of the 
distribution of torsional angles (not shown) that no large-scale confor­
mational changes took place. In contrast, the runs with potentials A-C 
have reached equilibrium—further results (8) show that correlations be­
tween bonds decay with a characteristic time of about 1 ps, and van 
Gunsteren et al. (19) have found an average residence time of 3 ps for 
trans bonds in liquid n-decane at 481 K. 

The standard molecular dynamics technique is not an efficient way 
of examining the high-rigidity limit for chain molecules. For static prop­
erties, the Monte Carlo method described by Bigot and Jorgensen (20) 
should offer a better approach. Molecular dynamics calculations for some­
what smaller increases in the height of the torsional barrier from that of 
potential A are now being carried out. 

The translational diffusion coefficient is not greatly affected by changes 
in the intramolecular potentials. The relatively small difference between 
Dtr for potentials A and C is particularly surprising, in view of the large 
difference in both chain length and overall molecular shape between 
these two cases. The effect of changes in intramolecular forces is much 
greater for other dynamic properties and longer chains (8) although, 
again, not nearly as marked as the changes in molecular shape and size 
would lead one to expect. This illustrates the importance of specific 
intermolecular interactions rather than shape factors (such as hydrody­
namic volume) in determining the dynamic properties of chain molecules. 
The present work represents a first step towards interpreting phenomena 
generally attributed to such concepts as "chain entanglements" in terms 
of more specific interactions. 
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20 
Simulation of Polyethylene 

THOMAS A. WEBER, EUGENE HELFAND, and ZELDA R. 
WASSERMAN1 

Bell Laboratories, Murray Hill, NJ 07974 

Both Brownian and molecular dynamics simulations have 
been performed for polyethylene fluids. The polymer is 
represented as a backbone skeleton of carbon atoms with 
flexible bonds and angles in addition to a torsional rota­
tional potential. Conformational transitions g t are ob­
served to occur with an activation energy of one barrier 
height, although some second-neighbor cooperativity is ob­
served. Reaction rates have been measured from first pas­
sage times using hazard analysis and also from orientational 
and conformational autocorrelation functions. The dynam­
ics of vectors along and perpendicular to the polymer chain 
have been studied. The time dependence of the correlation 
functions can be reasonably fitted on the basis of a model 
with three types of processes. The two fastest correspond 
to independent conformational transitions and to two-bond 
correlated transitions. A much slower process, probably 
related to concerted motion of large segments of the chain, 
is also observed. 

A R E C E N T PROGRAM OF STUDY involving computer simulation of poly­
mers has yielded a wealth of both quantitative and qualitative in­

formation about these systems (1-3). These studies have been of two 
types. For one, we have simulated the Brownian motion of a single 
polymer molecule in a viscous medium. From this one learns about 
polymer internal dynamics, particularly the kinetics and mechanisms of 
conformational transitions. We have also performed molecular dynamics 
simulations of a collection of polymer molecules at normal polymer melt 
densities. In addition to being able to analyze the internal dynamics, we 
are then able to study equilibrium properties, such as correlations arising 
from the packing of the molecules. 

This report will be devoted exclusively to discussing some of the 
latest findings from the Brownian dynamics simulations. First, let us 
summarize several of the results of the earlier research (more detail will 

1Current address: DuPont Experimental Station, Wilmington, DE 19898 

0065-2393/83/0204-0487$06.00/0 
© 1983 American Chemical Society 
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488 MOLECULAR-BASED STUDY OF FLUIDS 

be presented later). From the trajectories it has been possible to extract 
the total transition rate for the trans(t) *± gauche plus or minus (g*). 
For this purpose the method of hazard analysis, borrowed from reliability 
theory, has proved to be a valuable technique for sharpening quantitative 
analysis. An Arrhenius plot of the rates (3) reveals that the activation 
energy is approximately the height of the potential barrier for the rotation 
of a single bond. Hazard analysis and inspection of the trajectories (at a 
level of detail unavailable to experimentalists) reveals that many of the 
transitions occur as cooperative pairs, involving two second-neighbor 
bonds separated by a trans. These two bonds undergo counterrotation 
in a crank-like fashion (cf. Equations 7b and 7c). Such a process helps 
to localize the overall motion involved in the transition process. 

In the latest series of very long runs (trajectories corresponding to 
the order of 10 ns) reported here, we have been able to calculate several 
different orientational autocorrelation functions similar to those measured 
in dielectric relaxation, NMR, and ESR experiments. Using a diffusional 
model to describe the conformational transitions, it is possible to compare 
directly the three different approaches: orientational autocorrelation 
functions, conformational autocorrelation functions, and hazard analysis 
(3). We thus aim to establish a closer connection between what the 
experimentalist can measure and what the simulator can observe. In this 
chapter we will restrict our focus to only one of the four different vector-
orientational autocorrelation functions we have calculated—that vector 
which bisects two carbon-carbon bonds. Analysis is more complicated 
for those vectors that retain significant correlation after g^t relaxation. 

In the next section, the model potential used to specify the poly­
ethylene is outlined. Both the bisector-orientational and the bond-con­
formation autocorrelation functions are defined. Then, in the following 
section, the three-process model used to approximate the time depend­
ence of the autocorrelation function is defined. In the final section a 
comparison is made between the rates determined using the different 
methods. In all instances the results on which we will focus were obtained 
using the Brownian dynamics method. This allows the calculation of long 
trajectories, which are necessary for accurate determination of the au­
tocorrelation functions. 

Potential and Autocorrelation ¥ unctions 

The Brownian dynamics simulation of an infinite chain of polyeth­
ylene uses interactions along the backbone to maintain bond lengths and 
bond angles and to model the rotational potential around the torsional 
angle. The carbon-carbon bonds are maintained near the equilibrium 
bond length, b0, by a quadratic potential in bond length (the force con­
stants and parameters chosen correspond to potential A of Reference 3). 
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20. WEBER ET AL. Simulation of Polyethylene 489 

The bond angles are maintained near the tetrahedral configuration by a 
quadratic potential in the cosine of the bond angle. The rotational po­
tential chosen is the Scott and Scheraga (4) potential originally used in 
the Ryckaert and Bellemans (5) simulation of butane. The potential is a 
fifth-order polynomial in the cosine of the torsional angle and is shown 
in Figure 1. No other explicit interactions between carbon centers along 
the chain have been included. This potential is thus a type of phantom 
chain model since the polymer may pass through itself. Excluded volume 
interactions such as the pentane effect, which prohibits g ± g" F pairs, are 
neglected. Also, specific interactions involving hydrogen atoms are not 
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490 MOLECULAR-BASED STUDY OF FLUIDS 

included, although the mass of the C H 2 group is used for the mass of 
the "carbon" center. 

The simulations were performed on a system of 200 carbon centers, 
which have been periodically repeated to form an infinite chain. This 
additional boundary condition makes all carbon centers equivalent, im­
proving transition statistics. The position of the 201st carbon center is 
given as 

where ex is a unit vector along the x direction and (R2) is the average 
mean-squared end-to-end distance for a chain of200 units with the model 
potential. 

Once an initial starting configuration for the polymer chain is chosen, 
the equations of motion for a Brownian particle, in the high-friction limit, 
are solved; that is 

In Equation 2, fj is the friction constant divided by the mass, V is the 
potential for the polyethylene chain and A((t) is a random force repre­
senting the incoherent part of the solvent interactions on the ith particle. 
A representative value for (3 of 105 n s - 1 has been chosen; since the time 
scales with (3, rates for other values are easily determined. 

A representative trajectory is generated using the extension of the 
Runge-Kutta method to stochastic differential equations recently pro­
posed by Helfand (6). The integration time step is At = 5 x l 0 ~ 6 ns. 
For each of the two temperatures reported here, over 40,000 transitions 
were observed. Between 2 and 3 million integration time steps were 
necessary, and the total calculation required in excess of 12 hours on the 
CRAY-1 computer. 

The primary motivation for extending the calculations reported pre­
viously (3) by a factor of 10 was to enable the accurate determination of 
autocorrelation functions to be made. Several different autocorrelation 
functions were investigated; however, here we will focus on the bisector-
orientational autocorrelation function and the frans-conformational au­
tocorrelation function. 

The vector bisector of the two carbon-carbon bonds is given by 

r 2 0 i = r, + (R2)1,2ex (1) 

ft = (bt- bi+1)/V2(1-008^) (3) 

where b{(t) is the unit vector along the ith bond at time t and 0f(̂ ) is the 
angle between the ith and i H- 1st bond vector. The manner in which this 
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20. WEBER ET AL. Simulation of Polyethylene 491 

vector relaxes as a function of time is given by the autocorrelation function 

(/mm = ^ i \m'+m')dt' ^ 

where the summation is over all vertices. 
The frans-conformational autocorrelation function measures the re­

laxation of a £rans-conformational state of a bond, and provides a means 
of estimating the transition rate. This autocorrelation function is given 
by the function 

<r(t)r(o)> = ̂  J) j nt'+t)nt')dt' 
where T{(t) is defined as 

(5) 

1 if bond i is trans at time t 
0 otherwise 

We first postulate that the important mechanisms for g 
are 

ttt*±g±tg* 

g ± t t * ± t t g = 

(6) 

t transitions 

(7a) 

(7b) 

(7c) 

with forward rates X0, X 1 ? and X2, and reverse rates XQ, X[, respectively. 
Equation 7a represents the rate for single independent transitions, whereas 
the other two reactions are the most important cooperative transitions 
observed in our previous study (3) of the transition data. If we define 
the probabilities that a bond is g + , t, or g~ as P+, Pt, and P_, respectively, 
then using simple first-order rate theory and a mean-field approximation 
for the state of neighboring bonds 

dt 

P+ 

Pt = -M Pt 

p_ 
(8) 

The overall rate of transitions is 

X = P+Mu + PtM22 + P _ M 3 3 (9) 
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492 MOLECULAR-BASED STUDY OF FLUIDS 

where Pk is the equilibrium fraction of state k. Using a detailed balance 
it is easy to show that 

o f 
K = Y ^ T K ( 1 0 A ) 

K = 
2T 

1 - T 
X t (10b) 

where T ( = Pt) is the average fraction of trans conformer. The transition 
rate (7) is then given as 

X = 4TX 0 + 8T 3 X! + 4T 2 (1-T)X 2 (11) 

The autocorrelation function defined by Equation 5 is 

<T(t)T(0)> = TP t{t) (12) 

where Pt(t) is the solution of Equation 8 subject to the boundary condition 
that Pt(0) = 1. If we focus on only the decay of the frans-autocorrelation 
function it is easy to show that 

<T(t)r(0)> - T2 

-=-— = exp(-Lo*) (13a) (T2) 

where 

2 4 T 2 — 
L ° = r ^ r x ° + Y^YK + 2T K (13b) 

Another method that we have successfully employed to measure the 
overall rate of transition is hazard analysis. If h(t)dt is the probability 
that a bond that has not undergone a transition in time t will undergo a 
transition in time t + dt, then h(t) is the hazard rate. The cumulative 
hazard is defined as the integral of the hazard 

H(t) = t'hWdt' (14) 
Jo 

In the simulation, a transition is defined as follows: Initially, the 
state of each bond is specified by the region in which its torsional angle 
falls. The three regions, g~, t, and g + , are delimited by the maxima of 
the torsional potential curve, Figure 1. A transition to a new state is 
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20. WEBER ET AL. Simulation of Polyethylene 493 

regarded as having occurred when the torsional angle reaches the bottom 
of the potential well of some other region. From the collection of times 
between transitions a hazard plot, such as Figure 2, is prepared. The 
asymptotic slope is the total transition rate, X. A comparison will be made 
between the transition rates as measured by hazard analysis and as de­
termined using the autocorrelation function approach. 

Time Dependence of Autocorrelation Functions 

The bisector-orientational and frans-conformational autocorrelation 
functions described in the previous section were measured for two very 

3.0 

0.0 • 1 1 1 1 

0 0.05 0.10 0.15 0.20 
time (ns) 

Figure 2. Hazard plot for the 425-K simulation of the polymer. 
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494 MOLECULAR-BASED STUDY OF FLUIDS 

long runs at 372 K and 425 K. The nonlinearity of a log plot of these 
autocorrelation functions shows that more complicated processes than a 
single Poisson transition process occur. This reconfirms our earlier spec­
ulations deduced from studying the data via hazard analysis (3). In fact, 
we postulate that at least three processes are responsible for the loss of 
correlation. On a fast time scale, at least two processes are occurring— 
single isolated conformational transitions, and correlated transitions in­
volving at least two bonds. Also, for those vectors that do not completely 
lose correlation when a bond undergoes g +± t equilibration, it may be 
necessary to move large segments of the chain to destroy the correlation 
completely. This third process is so slow that accurate measurement of 
its rate is not possible even with the very long trajectories that we have 
accumulated. The bisector-orientational function, however, completely 
loses correlation by conformational transitions, which greatly simplifies 
the data analysis. 

A general form for the phenomenological equation describing the 
time dependence of this three-process autocorrelation function is 

The single exponential in 0 is from simple diffusional loss of correlation 
due to single bond conformational transitions. The exponential in T de­
scribes the rather slow loss of correlation due to rotational diffusion of 
larger segments of the polymer backbone. The parameter a partitions 
the correlation loss between the mechanisms, and it may in some sense 
be viewed as the amount of correlation remaining after many confor­
mational transitions prior to significant loss through this third mechanism. 
For the bisector-orientational autocorrelation function, a is identically 
zero. The function F(f/p) describes the loss of correlation due to the two-
bond correlated transitions. 

In our previous studies using hazard analysis (2, 3), we found that 
shortly after a transition there was an enhanced probability that the 
second neighbor would undergo a transition. This second-neighbor coop­
erativity was especially enhanced when the intervening bond was a trans 
conformer. In addition, the type of transition observed corresponds to 
counterrotation of bonds, which had the effect of causing only minor 
translational movement of the polymer tails. The favored types of cor­
related transitions we observed were those described by Equations 7b 
and 7c. 

This two-bond cooperativity may be modeled by a difiusional process (8) 

= (l-a)e-t/eF(t/p) + ae -th (15) 

F(t/p) = 2 Q+nQ — n (16) 
n = 0 
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20. WEBER ET AL. Simulation of Polyethylene 495 

where Q + n is the probability of making n transitions along the chain and 
Q-n is the probability of making n transitions in the reverse direction. 
Therefore, Q + nQ_n is the probability of returning to the origin after an 
excursion of n transitions. If the transition rate for a step in one direction 
is l/(2p) then according to Poisson statistics 

F(t/p) = 2 
(f/2p)nexp(-f/2p) 

n\ (17) 
F(t/p) = exp(-t/p)Z 0 ( t/p) 

where / 0 is the zeroth-order Bessel function. 
The frans-conformational and bisector-orientational autocorrelation 

function have been fitted by using 

&(t) = e-me-^I0(t/p) (18) 

Since 6 represents the independent process and p models the correlated 
transitions, Equations 13 and 18 may be combined to give 

1 4T2 — 
- = ~ =K + 2T\ 2 (19b) 
p 1 - T 

A plot of the bisector-orientational autocorrelation function for the 
run at 425 K is shown in Figure 3. The fit between the data and the 
function defined by Equation 18 is exceedingly good. Attempts were 
made to fit the data using other functional forms, such as a sum of two 
exponentials and the exponential and error-function compliment form as 
suggested by the work of Monnerie et al. (9) and of Stockmayer and co­
workers (10). These alternate fitting functions, however, were unable to 
reproduce the curvature of the data in the region where \xt was of the 
order of 0.1. The 6 and p parameters, as extracted from a least-squares 
fit to the data at the two different temperatures, are given in Table I. 

A plot of the trans-conformational autocorrelation function as defined 
by Equation 13 is shown in Figure 4 for the run at 425 K. Here again, 
the fit using the form given by Equation 18 is exceedingly good. The 
two parameters, 0 and p, extracted from a least-squares fit to the data 
are given in Table I. 

Figure 2 shows the hazard plot for the data at 425 K. The slope of 
the long time portion of the curve is proportional to the total rate. We 
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Figure 3. Bisector-orientational autocorrelation function, Equation 13, 
vs. time (ns) for the run at T = 425 K. The points represent calculated 

data, the solid line is a fit to the function of Equation 18. 

have determined the rate by a maximum likelihood estimation of the 
parameters of a functional fit to the hazard (II). The total transition rates 
for the runs at the two different temperatures are given in the table. 
This is related to Ktg, the trans to gauche transition rate, which was 
previously (3) defined by the equation X = 4T\tg. 

Comparison of Rates 

The values for the 0 parameter as determined by the different auto­
correlation function techniques, either bisector-orientational or trans-
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20. WEBER ET AL. Simulation of Polyethylene 497 

Table I. Results of Long Runs 

Property Run 1 Run 2 

T(K) 372 425 
Number of transitions 40,069 40,052 
Total time (ns) 14.912 9.204 
E*/kBT 3.5 4.0 
% t actual 60.081 55.931 
% t theoretical 59.745 56.881 
Bisector acf a 

e 0.244 0.133 
P 0.0472 0.0324 

Trans acf a 

e 0.253 0.108 
P 0.0555 0.0368 

K 0.7940 1.9927 
K 1.7008 3.2150 
x2 10.0170 15.4305 
k 10.539 17.960 

Hazard \ 10.740 17.528 
a Autocorrelation function 

conformational relaxation, are exceedingly close, as are values for the p 
parameter. This similarity in rates indicates that both types of relaxation 
studies are monitoring the same fundamental processes. The relaxation 
of the frans-conformational autocorrelation function is the easiest to 
understand in terms of the simple single transition and correlated tran­
sition model. We will focus on comparing the total transition rates as 
determined from conformational relaxation studies with those deter­
mined directly from hazard analysis. 

To determine the overall transition rate \ from the relaxation data 
it is necessary to specify the rate \ 2 ( t n e r a t e f ° r t n e reaction 
g~tt—> ttg~) in terms of the rate \ x (the rate for the reaction ttt —> 
g±tg*). One approach that might be taken is to analyze the transition 
data for the relative frequency of the two types of reactions. This ratio 
is calculated to be 

T3X, + 
1 - T 

T 2 ( l - T ) \ 2 

(20) 
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Figure 4. The trans-conformational autocorrelation function, Equation 
4, vs. time (ns) for the run at T = 425 K. The points represent the cal­

culated data, the solid line is a fit using Equation 18. 

and was determined experimentally for the run (3) at 372 K to be x = 

407/523 = 0.778. 
Another approach is to estimate \ x and \ 2 using reaction rate theory. 

In this case, the rate is given as the rate of crossing the highest barrier 
separating the initial and final states. If there are two reaction channels 
the rates are added. In this way we write 

Xx = 2r e x p [ - ( £ * + £ g ) / f c B T ] (21) 

where r is a prefactor representing the rate of barrier crossing and entropy 
differences between initial and activated states; the number 2 arises from 
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20. WEBER ET AL. Simulation of Polyethylene 499 

the two equivalent channels (which trans transforms first); and the final 
factor is the activation energy term. Similarly, we write 

K2 = r{exp[-(E*-Eg)/kBT] + exp[-E*/kBT]} (22) 

where the sum in braces arises from the two channels (the g± —» t first, 
or the t —» g- first). Using these estimates we find 

K - (23) 

The value for x using Equations 20 and 23 at 372 K is found to be 0.504. 
This ratio is lower than is experimentally observed and amounts to an 
overestimate of the rate X2. 

The rates for the single isolated transitions and the cooperative tran­
sitions may be found by using Equations 19 and 23. The values for X0, 
X l 5 and \ 2 as determined from the frans-conformational autocorrelation 
function relaxation data for the two temperatures are listed in Table I. 
The total transition rate for all mechanisms is then calculated from Equa­
tion 11, and these rates are listed in Table I. The agreement between 
the rates as determined from hazard analysis and those determined from 
the relaxation rates is striking. This is especially so, considering that 
cooperative transitions were modeled in a mean-field approximation, and 
that the estimate used to relate Xl and X2 is rather crude. Furthermore, 
only the most important two bond transition mechanisms, Equations 7b 
and 7c, have been included, so that approximately 20% of the correlated 
transitions have been neglected (see Table VII of Reference 3). 

The study of the relaxation of the £r#ns-conformational autocorre­
lation function provides a means of separating the rates of isolated tran­
sitions from the rates for cooperative transitions. More importantly, the 
temperature dependence of the two competing processes may now be 
studied. 

From hazard analysis it is possible to determine total rates of tran­
sitions with relatively short trajectories, of the order of 4000 transitions. 
These rates have not changed substantially when the trajectory was in­
creased by a factor of 10 (3). It is not possible, however, to determine 
accurate autocorrelation functions for such short runs and still extract 
meaningful relaxation rates through fits to the data, using Equation 18. 
It is thus consoling to note that the rates determined by the two methods 
are in fundamental agreement. 

One of the most interesting aspects of the present work is the close 
agreement between the parameters determined by the tra ns-confor-
mational autocorrelation function and those determined from the bisector-
orientational autocorrelation function. This provides a strong verifi-
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500 MOLECULAR-BASED STUDY OF FLUIDS 

cation of the conjecture that relaxation within the polymer, at least on 
the time scales we are considering, is due primarily to the single and 
cooperative conformational transitions. Work is continuing to extract rates 
from the vector autocorrelation functions, because experimental relax­
ation techniques such as NMR, ESR, and depolarized light scattering 
measure the manner in which various orientational vectors or tags within 
the polymer relax. 
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Attractive forces 

parameter a in equation of state 7-8 
point-charge model 306, 322-25 

Autocorrelation function 
polarizability tensor, Fourier 

transform 436 
polyethylene 488-93 
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Binary liquid mixtures—Continued 
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data 101/ 
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field dependence 440 
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sampling 77-79 
Boltzmann factor potentials and electric 

moments 225-26 
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scattering 436 
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Verlet algorithm 473 
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water 281-95 
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Born-Green-Yvon hierarchy, equations for 
density at interfaces. . .' 140-46, 149-50 

Boublik-Nezbeda equation of state, scaling 
parameters 210-18 
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simulation 21-22 
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atom" 212-28 

Boyle's law 5 
Brownian dynamics 425-42 
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relative degree of determinum 22 
solvent viscosity 428, 430 

Bubble-point densities from eigensolutions 
of Born-Green-Yvon 
equation 149-50 

Bulk fluid structure of n-alkanes . . . 479-81 
Bulk viscosity 40-42 
Bunsen-Kirchloff discoveries 7 
Butane 

Euler angles 425-27 
geometry, trans and gauche . . . . 448-54 

C 

C-form of Kirkwood-Buff theory 102-3 
Cagniard de la Tour, gas-liquid critical 

point 5-7 
Calorimetric methods, review 16-19 
Canonical ensemble partition 

function 312 
Carbon, porous, adsorption of 

krypton 148-51 
Carbon-13, NMR relaxation of alkanes and 

macromolecular side chains . . . 445-66 
Carbon-carbon bonds 

polyethylene 489-93 
stereo view of chains 35/ 

Carbon-hydrogen dipolar interactions, mo­
tional averaging 445-66 

Carbon dioxide 
force parameters in calculations . . . . 383f 
models for condensed phase 

simulation 190-99 
thermodynamic properties 378-83 
virial coefficients 378-80 

Carbon dioxide-dimethvl ether, equation of 
state .' 360 

Carbon dioxide-ethane, van der Waals the­
ory vs. experiment 98/ 

Carbon monoxide 
force parameters in calculations . . . . 383/ 
thermodvnamic calculations using CRIS 

model 114, 129-31 
thermodynamic properties 378-83 

Carbon monoxide-argon and carbon monox­
ide-nitrogen, excess Gibbs free energy 
and enthalpy calculations 388-92 

Carbon tetrachloride mixtures 
with acetone and nitromethane, isother­

mal relations and excess Gibbs free 
energy 400-406 

with alkanes, pressure-temperature 
diagram 354-57 

Carnahan-Starling equation of state of a 
hard-sphere system 177-78 

Cavities of radius in liquid water. . . 334-47 
Cell dimensions, fluorine and 

chlorine 202f, 203f 
Chain, alkane, ensemble-averaged 

trajectory 425-32 
Chain conformation, n-alkanes . . . . 474-76 
Chain distribution theory, linear and 

quadratic 14 
Chain properties and flexibility . . . . 469-84 
Chair-chair interconversion in 

cyclohexane 438-39 
Charge centers as factor for water-water po­

tential, computational expense . . . 308f 
Charged hard spheres, applications of per­

turbation theory 55-60 
Charles' law 5 
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Potentials 74-84 
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Chemical potential calculations— 
Continued 

phase-equilibria 357 
scaled particle theory 174-78 
test particle method 80-84 

Chemically induced dynamic nuclear polari­
zation, biradical, magnetic-field 
dependence 440 

Chlorine, potential models 199-205 
cis-trans isomerization of stilbene 439 
Clebsch—Gordon coefficients, reference av­

erage Mayer-function theory 254 
Clerk Maxwell's kinetic theory of 

gases 10-11 
Close-packed structure 

iron, zero-Kelvin isotherm 132/ 
native proteins 463 

Coefficients 
thermal expansion 314 
transport, Navier-Stokes continuum lin­

ear theory 42-44 
virial—See Virial coefficients 

Coexistence curve for krypton, temperature 
and density 122/ 

Cohesive forces 6 
Cold curve of the solid and intermolecular 

interactions. . . . 107-8, 111-13, 115-16 
Cole-Cole plots, alkane 

dynamics 433-36 
Collision operator, Fokker-Planck-

like 426 
Composition derivatives of chemical poten­

tials, Kirkwood-Buff theory 102 
Compressibility 

isothermal 314 
isothermal, Kirkwood-Buff theory . . . 102 

Compressibility factor 
of hard convex bodies and hard interac­

tion site models 178-86 
Taylor's expansion 11-12 

Computer simulation 
of alkane chain dynamics in 

liquids 424-25 
equations of motion and forces. . . . 33-37 
free energy and chemical 

potential 74-84 
of hard convex bodies, virial 

coefficients 178-86 
historical survey 19-22 
of liquid water 

Monte Carlo 
atom-atom radial distribution 

functions 329-35 
equilibrium properties 297-348 
force-bias, convergence 

profile 319-21 
Metropolis, convergence 

profile 318/ 
structure 281-95, 297-348 

of nonpolar molecules, condensed 
phase 189-205 

potential difference as function of elec­
trode charge density for electrified 
interface 67/ 

Computer simulation—Continued 
of shock waves 42-45 
time required 319 

Condensed phase computer simulations of 
nonpolar molecules 189-205 

Configuration, electronic interaction, 
water 307-10, 335-47 

Configurational contributions to pressure, 
internal energy, and entropy 377 

Configurational Helmholtz free 
energy 370 

Configurational Helmholtz free energy of 
simulated liquid nitrogen 223f 

Configurational potential energy, 
definition 304-5 

Conformal solution theory, perturbation of 
hard spheres 88-92 

Conformation 
n-alkane chain 473-78 
of lipid monolaver, computer 

simulation 36/ 
frans-Conformational relaxation rates, of 

polyethylene. . 490-500 
Conic equation for binary 

systems 397-404 
Contact numbers in equations of 

state 359 
Continuum linear theory, Navier-Stokes, 

transport coefficients 42-44 
Continuum model for liquid 

water 300-301 
Convective operator, streaming 426 
Convergence profile for Monte Carlo com­

puter simulation of liquid 
water 316-21 

Convex bodies, hard, equations of 
state 173-78 

Cooperative effects 312 
Cooperative effects in structure in liquid 

and solid phases of water 325-34 
Cooperativity, two-bond, in 

polyethylene 494-95 
Coordinate systems, alternative, reference 

average Mayer-function 
theory 256-59 

Coordination number of liquid 
water 334-47 

Correlation functions 
pair, and reference average Mayer-func­

tion theory 254-69 
site-site, for linear symmetric hard tri-

atomic fluid 273/ 
Corresponding states 

for Henry's constant plot and limiting ac­
tivity coefficients for various solutes 
in fixed solvents 407-20 

principle 8, 214-18 
CRIS model, use for calculation of thermo­

dynamic properties 
for the hydrogen isotopes 124-28 
for liquia iron 131-36 
for methane, nitrogen, oxygen, and car­

bon monoxide 114, 129-31 
for rare gases 119-24 
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CRIS model, use for calculation of 
thermodynamic properties— 
Continued 

and zero-Kelvin 
isotherms . . . 107-8, 111-13, 115-16 

Critical densities, scaling 
parameters 210-18 

Critical phenomena, theory, and local flux 
fluctuations, renormalization-group 
techniques 163-170 

Critical point 
definition 7-8 
gas-liquid, Cagniard de la Tour 5-7 
isotherms calculated using CRIS 

model 115-16 
of neon and krypton 355 

Critical temperatures, calculated, for two-
center Lennard-Jones fluids compared 
with "united atom" 212-18 

Crystal structures of ice 299-300 
Cyclohexane, chair-chair 

interconversion 438-39 
Cylindrical pore, chemical potential for two 

pores of different size 148-51 

D 

Dalton, John 5 
Davy, Sir Humphrey, and gas 

liquefaction 6 
Debye diffusion equation 450 
Debye screening length, definition 56 
Debye-Huckel theory and the Stell— 

Lebowitz series 58-59 
Decomposition of molecular potential for 

different orientations in molecular per­
turbation theory 221/ 

Deformation 
potential of bond angle in 

n-alkanes 471 
shear, Hamiltonian mechanics . . . . 39-42 
shock, macroscopic scale 42-44 

Degrees of freedom 
Langevin and Brownian 

dynamics 424-25 
translational and internal, CRIS model 

calculations 111-14 
Dense fluid shock wave profile 44/ 
Density 

adsorption isotherm, theoretical vs. 
experimental 142-46 

of alkanes, spectral 449 
of argon adsorbed on graphite . . . 143-48 
of binary mixtures of nitrogen, methane, 

carbon dioxide, and carbon 
monoxide 381f, 382f 

Born-Green-Yvon equation vs. functional 
method 141 

bubble-point, from eigensolutions of 
Born-Green-Yvon 
equation 149-50 

dew-point 143-48 
dew-point, from eigensolutions of Born-

Green-Yvon equation 149-50 

Density—Continued 
distribution functions 

bond radial, liquid water 326-34 
probability 78/ 

of axes at angle arc cos A to each 
other 229 

in the test particle method for typical 
liquid state condition 83/ 

free liquid profiles 150-51 
of gas in contact with wall, van Kampen's 

method 140 
and isomerization rate 438 
of krypton, coexistence curve 122/ 
and momentum flux for soft 

spheres 153-70 
reduced 385-86 
reduced, plotted against two-center 

Lennard-Jones Helmholtz 
energies 219-24 

scaling parameters 210-18 
single-particle phase-space, for a 

chain 425-26 
and state of matter 4-5, 8 
of water 323-25 

bond radial distribution 
functions 326-34 

and temperature 299-301 
Depolarized light scattering (DPLS) of al­

kane chains 436-37 
Deterministic equation of motion, Langevin 

equation 154 
Deuterium 

equation of state, CRIS model 
calculations 126-28 

liquid, reflected shock and single shock 
Hugoniot 129/ 

phase diagram, CRIS model 
calculations 124-26 

Dew-point densities 143-48 
Dew-point densities from eigensolutions of 

Born-Green-Yvon equation . . . 149-50 
Diameter 

hard-sphere, variational principle and 
CRIS model calculations. . . . 107-10 

rectilinear, criterion and conic 
equation 400/ 

reduced, for equivalent hard spheres and 
hard dumbbells 217/ 

Diatomic systems—See also Dumbbells, 
Lennard-Jones molecules, and Site in­
teraction models 

hard homonuclear, reference system pair 
potentials 243/ 

hard homonuclear and heteronuclear, 
equation of state, reference average 
Mayer-function 
theory 257-59, 269-77 

Lennard-Jones, spherical harmonic ex­
pansion coefficients 266/ 274/ 

Dielectric constants, perturbation theory 
and effects on structural 
properties 55, 60-61, 64, 228-33 

Dielectric relaxation 
alkane chains 432-36 
review 16-19 
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INDEX 507 

Diffraction experiments on liquid 
water 325-34 

Diffusion 
ionic, review 16-19 
translation, of n-alkanes 481-84 

Diffusion coefficient 
for internal degree of freedom, alkane iso­

merization rates 439 
for octane simulations 475f 

Diffusion equation, Fokker-
Planck 426-27 

Diffusion rate, Monte Carlo calculation for 
water 320-21 

Diffusive Langevin dynamics of model 
alkanes 447-48 

Dilute solutions 
of binary liquid mixtures 395-420 
conformal solution theory 88-91 

Dimer, water, experimental equilibrium 
geometry 308, 309/ 

Dimerization energy 304 
Dimethyl-carbon dioxide ether, equation of 

state 360-63 
Dipolar hard sphere fluid, applications of 

perturbation theory 61-64 
Dipolar interactions, carbon-hydrogen, mo­

tional averaging 445-66 
Dipole angle, near neighbor, of liquid 

water 334-47 
Dipole-dipole correlation function, normal­

ized Fourier transform, alkane 
dynamics 433-36 

Dipole moments, for Helmholtz energies for 
one- and two-center Lennard-Jones 
liquids 227f 

Dipole polarizability tensor, 
electric 368, 377 

Dipole potential, effective 226 
Dipole vector, internuclear, carbon-hydro­

gen bond 454-60 
Discrete equations of motion and local flux 

fluctuations 158-61, 163-70 
Discrete hydrodynamics 156-59 
Dispersion 

anisotropic 95, 387-88 
electrostatic induction, nonspherical per­

turbation theory 95 
Distance 

end-to-end; of octane molecules... . 477/ 
intermolecular 

of fluorine and chlorine 201f 
of nitrogen and carbon dioxide potential 

models 191f 
as water-water potential factor, compu­

tational expense 308f 
intramolecular distributions, of 

n-alkanes 476 
Distribution functions 

Boltzmann, umbrella 
sampling 77-79, 314-15, 319-20 

chain molecule 427 
density 78/ 
end-to-end distances, octane 

molecules 477/ 
hard sphere 109-11, 173-78 

Distribution functions—Continued 
h-body and free energy 49-50 
intermolecular pair 479-80 
intramolecular distances, n-alkanes. . . 476 
one-particle, fluid interfaces 140 
quasi-component, in liquid 

water 334-37 
radial 

agreement of CRIS model with com­
puter simulation 118 

of argon 122/ 
free energy 54-56 

rotational states, n-alkanes 475-79 
spatial 313 

Distribution theory 
chain, linear and quadratic 14 
statistical mechanics 12-15 

Doll's tensor Hamiltonian 39-42 
Donors and hydrogen-bonded water 

trimers 311 
Double layer, electric, and perturbation 

theory 65-69 
Dumbbells, hard 

compressibility factor 185f 
configurational Helmholtz energy of liquid 

nitrogen 223* 
scaling parameters 210-18 

Dymond's formula for shear viscosity. . . 118 
Dynamics 

of alkanes 423-42, 473-74 
Brownian 488-93 
Langevin 424-25, 447-48 
molecular—See also Molecular dynamics 

of n-alkanes 473-74 
of polyethylene 492-500 

nuclear polarization, biradical-induced, 
and magnetic-field 
dependence 440 

picosecond motional averaging of NMR 
probes of protein 463-65 

E 

Effective pair potentials 305 
Eigensolutions of Born-Green-Yvon equa­

tion, obtaining bubble-point and dew-
point densities 149-50 

Electric dipole polarizability 
tensor 368, 377 

Electric double layer and perturbation 
theory 65-69 

Electric moments, added, and thermody­
namic effects to two-center Lennard-
Jones liquids 225-33 

Electrode, charged, applications of pertur­
bation theory 65-69 

Electronic configuration, 
water 307-10, 335-47 

Electronic entropy for aluminum as a func­
tion of temperature 114/ 

Electronic structure model for computing 
contributions from thermal electronic 
excitation 111-14 

Electrons, lone-pair, in water 341-43 
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508 M O L E C U L A R - B A S E D STUDY O F FLUIDS 

Electrostatic dispersion terms in perturba­
tion theory for nonspherical 
molecules 95 

Electrostatic interaction . . . 367-68, 372-78 
Electrostatic potential for carbon dioxide-

ethane in van der Waals fluid 
theory 97-99 

Ellipsoids of revolution, virial coefficient and 
compressibility factor 
determination 180-83 

Elongation of two-center Lennard-Jones 
fluids, anisotropy parameters . . 209-33 

Empirical intermolecular interaction 
energies 305 

Empirical potentials, transferable, based on 
point charges for electrons and 
nuclei 306, 322-25 

Energy 
binding, of liquid water 334-47 
dimerization 304 
free—See Free energy 
Helmholtz—See Helmholtz free energy 
hydrogen bond, Monte Carlo 

calculations 322-23 
intermolecular pair 

interaction 288/, 305-12, 318 
internal—See Internal energy 
pair, near-neighbor, of liquid 

water 334-47 
potential—See Potential energy 
V-structure analysis in liquid 

water 282, 287-95 
Energy fluctuations, simulation vs. Langevin 

theory 164-66 
Enhancement values, nuclear Overhauser, 

of alkanes and macromolecular side 
chains 445-66 

Ensemble-averaged trajectory of alkane 
chain 425-32 

Enthalpy, excess, of argon, nitrogen, oxy­
gen, and carbon monoxide binary 
mixtures 388-92 

Entropy 
configurational contributions 377 
definition 31 
electronic, for aluminum as a function of 

temperature 114/ 
Entropy of vaporization for solvent, correla­

tion of Henry's constant for solutes in 
n-hexadecane 411-13 

Equations of motion 
for n-alkanes 473-74 
fluctuations, discrete. . . . 158-61, 163-70 
forces, molecular dynamics 

simulation 33-37 
Langevin equation, 

deterministic 154-56 
for polymers 428 

Equations for sphere radius, INFERNO 
model 113 

Equations of 
state 257-59, 269-77, 357-60 

for argon 120/ 
Boublik-Nezbeda, scaling 

parameters 210-18 

Equations of state—Continued 
Carnahan-Starling of a hard sphere 

system 177-78 
CRIS model results 113-36 
for ideal gas 5 
for iron 131-36 
Monte Carlo results for a 6-12 

fluid 112/ 
for nonspherical hard body 

systems 173-86 
parameters a and b, definition 7-8 
reference average Mayer-function results 

for hard diatomic 
fluids 257-59, 269-77 

van der Waals 7-9 
virial coefficients 11-12, 88-89 

Equilibration, rate of, for water, Monte 
Carlo calculation 320-21 

Equilibria—See also Phase relationships, 
equilibria 

anisotropic pair interactions 365-92 
fluid phase 73-84 
fluid phase, at high pressure . . . . 353-63 
three-body nonadditive dispersion 

interactions 365-92 
vapor-liquid, for hydrogen-methane, ex­

periment vs. theory 101/ 
for water 

dimer 308, 309/ 
Monte Carlo computer simulation 

studies 297-348 
Ethane-methane, Henry's constant and ac­

tivity coefficients 414-15 
Ethanol-n-heptane, isothermal relations and 

excess Gilbbs free energy 400-406 
Ethylene in naphthalene, solubility . . . 420/ 
Euler angle 

alkane dynamics 450-54 
butane 425-27 
integrals over in perturbation 

theory 371, 372 
Evaporation—See also Vaporization. . . 2-10 
Excess volume curves for mixtures of hard 

molecules 85-87 
Excitation, thermal, use of electronic struc­

ture model for computing 
contributions 111-14 

Excluded volume potential for 
n-octane 478-79 

Expansion about a hard sphere reference 
system and equation of state. . . 107-12 

Expansions, perturbation—See Perturbation 
expansion 

Expense, computational, for factors to com­
pute water-water potentials 308* 

Experimental techniques, historical 
survey 15-19 

Exponentials as factor for water-water po­
tential, computational expense . . . 308* 

Faraday, Michael, and gas liquefaction . . . 6 
f-Expansion, perturbation theory, applica­

tions to charged and dipolar hard 
spheres 61-62 
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INDEX 509 

f-g sampling, test particle method for chem­
ical potential calculations 82-84 

First-order CRIS model 107-36 
First-order reference average Mayer-func­

tion theory 255-56 
Flexibility 

of alkane chains 423-42 
and chain molecule properties . . . 469-84 
and trajectory studies of NMR 

relaxation 445-66 
Flow, periodic, application of adiabatic non-

equilibrium molecular dynamics . . . 4 If 
Fluctuation formulas, Kirkwood-Buff 

theory 101-3 
Fluid phase 

definition 2 
equilibria—See Phase relationships, equi­

libria 
Fluid structure—See Structure 
Fluorine, potential models 199-205 
Flux, local, simulation vs. Langevin 

theory 153-70 
Fokker-Planck-like collision operator. . . 426 
Forces 

attractive 
parameter a in equation of state . . . 7-8 
point-charge mo del 306, 322-25 

cohesive 6 
for equations of motion in molecular dy­

namics simulation 33-37 
intermolecular 

fluctuating, in Langevin and Brownian 
dynamics 424-25 

vs. intramolecular 1,3-5,7-8, 
469-84 

from zero-Kelvin isotherm of 
the solid 107-8, 115-16 

overlap 367-68, 372-78 
repulsive, of polyatomic molecules. . . 173 

Force-bias Monte Carlo 
relative degree of determinum 22 
of water computer simulation. . . . 319-22 

Force constants, librational, for aqueous 
solutions 292-94 

Force field of water molecule, intermolecu­
lar Reimers, Watts, and Klein 
potentials 307, 322-25 

Force parameters for carbon monoxide, ni­
trogen, carbon dioxide, oxygen, meth­
ane, and argon mixtures 383*, 385 

Fourier transform 
of normalized dipole-dipole correlation 

function, alkane dynamics. . . 433-36 
of second-order spherical harmonics, 

alkanes 449, 457-60 
in x-ray and neutron diffraction experi­

ments of liquid water 325-34 
Free energy 427 

by computer simulation 74-84 
by CRIS model 108-11, 118-19 
in electric double layer 65-66 
Gibbs, of argon, nitrogen, oxygen, and 

carbon monoxide binary 
mixtures 388-92 

Helmholtz 
calculation methods 74-78 

Helmholtz—Continued 
configurational 370 
perturbation of hard 

spheres 88-92, 109 
reference average Mayer-function 

theory 237-39 
statistical thermodynamic 

definition 312-14 
and perturbation 

theory 48-52,54-56,61-62 
radial distribution functions 54-56 

Free liquid surface 148-51 
Full umbrella sampling by test particle 

method for chemical potential 
calculations 82-84 

Functions 
distribution—See Distribution functions 
pair correlation, and Born-Green-Yvon 

equation 141 
potential energy—See Potential energy 
thermodynamic—See Thermodynamic 

functions 
Fused hard sphere molecules 

equations of state 175 
virial coefficients and compressibility 

factor 183* 

G 

Gamma phase of nitrogen, potential 
models 197-99 

Gas 
adsorption 

on plane solid surfaces 140-46 
in pores 145-48 

ideal, behavior 5 
kinetic theory, Clerk Maxwell . . . . 10-11 
lattice, application of perturbation 

theory 52-53 
liquefaction, van Marum, Cagniard de la 

Tour, and Faraday 5-7 
rare 

sound speeds and vapor 
pressures 121/ 

thermodynamic calculations using CRIS 
model 119-24 

supercritical, and solubilities of 
liquids 407-20 

Gas-gas interface, equilibria at high 
pressure 353-63 

Gas-liquid interface—See also Phase rela­
tionships, gas-liquid 

critical point, Cagniard de la Tour . . . 5-7 
equilibria at high pressure 353-63 
structure and predicting surface 

tension 148-51 
Gas phase, definition 2 
gawcne-Conformations 

alkane chain 473, 478 
butane. 448-54 

Gay-Lussac's law 5 
Geometry 

of alkane chains 472/ 
of butane, trans and gauche . . . . 448-54 
of water 
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510 M O L E C U L A R - B A S E D STUDY O F FLUIDS 

Geometry—Continued 
dimer 308, 309/ 
V-structure 282, 284-87, 290-95 

Gibbs free energy 
of argon, nitrogen, oxygen, and carbon 

monoxide binary mixtures. . . 388-92 
excess 

composition-dependence 397 
of infinitely dilute binary 

mixtures 402* 
Gibbs, J. Willard 10-11 
Grand Canonical Monte Carlo, chemical po­

tential calculations 79-80, 84 
Graphite, theoretical and experimental ar­

gon adsorption isotherms 142-46 
Green-Kubo linear response theory to non-

equilibrium Hamiltonian 39-42 
Ground state of spherical molecules, CRIS 

model 108-15 

H 

h-Body distribution functions and free 
energy 49-50 

Halogens, potential models 199-205 
Hamiltonian mechanics, shear 

deformation 39-42 
Hard-body models 

convex, equations of state 173-86 
diatomic system 

compressibility factor 185/ 
configurational Helmholtz energy of liq­

uid nitrogen 233* 
homonuclear 

reference system pair 
potentials 243/ 

site-site pair correlation 
function 270-72 

spherical harmonic expansion 
coefficients 245-53 

heteronuclear, equation of state, RAM 
theory 257-59, 269-77 

scaling parameters 210-18 
site interaction models 

coordinate systems 256-57 
equations of state 173-78 

site-site distances 174-78, 224 
distribution function 109-11 
mixtures, review of theory 85-94 
nonspherical systems 173-86 
perturbation theory 383 

charged and dipolar 
molecules 55-64 

and CRIS model to calculate thermody­
namic properties 107-36 

and intermolecular potential 
energy 91, 92/ 

quadrupoles, imbedded point, reference 
system potential 260/ 261/ 

spherocylinders 
equation of state 275* 
pair correlation function gOOO . . . . 264/ 
prolate, virial coefficients and com­

pressibility factor 180-83 

Hard-body models—Continued 
reduced spherical harmonic expansion 

coefficients 252-53 
triatomic system, linear symmetric, site-

site correlation functions 273/ 
wall-particle potential 151 

Harmonic expansion spherical 
for homonuclear hard diatomic 

system 245-53 
for Lennard-Jones diatomic and quadru­

polar fluid 265-68 
for linear molecules, Legendre 

polynomial 244-46 
Pople expression 368-69 
radial coefficients 224 

Hartree-Fock approximation 307, 311 
Hazard analysis and reaction rates of 

polyethylene 492-93 
Heat, historical development of 

theory 30-33 
Heat capacity, constant pressure 

definition 314 
of water 319-20, 323-25 

Heat of mixing, contributions to excess 
Gibbs free energy and enthalpy calcula­
tions of binary mixtures 390-92 

Heidelberg, historical survey 6-7 
Helmholtz free energy 

calculation 
Bennett's method 77 
McDonald and Singer 

method 75-76 
multistage sampling 76-77 
reference average Mayer-function 

theory 237-39 
thermodynamic integration 74-75 
umbrella sampling 77-78 

configurational 370 
and density function 

theory 141, 219-24 
of Lennard-Jones liquids, one- and two-

center 
with added dipole or quadrupole 

moments 227* 
and reduced densities 219-24 

mixtures pair and three-body nonadditive 
interactions 386-88 

and perturbation of hard 
spheres 88-92, 109 

and phase equilibria 354-57 
statistical thermodynamic 

definition 312-14 
Henry's constant 

for infinitelv dilute binary 
system's 407-20 

for Lennard-Jones mixtures 91/ 92/ 
for solutes in n-hexadecane, correlation 

with entropy of vaporization for 
solvent 411-13 

n-Heptane 
and ethanol, excess Gibbs free energy and 

isothermal relations 400-406 
trajectory with aliphatic side 

chain 460-63 
Heteronuclear dumbbells, Monte Carlo vs. 

simulated virial coefficients and com­
pressibility factors 184-86 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.ix
00

1



INDEX 511 

n-Hexadecane, entropy of vaporization for 
solvent and correlation of Henry's con­
stant for solutes 411-13 

High frequency intermolecular motions and 
structure of liquid water 281-95 

Homonuclear diatomics 
Monte Carlo vs. simulated virial coeffi­

cients and compressibility 
factors 184-86 

reference system pair potentials.... 243/ 
site-site pair correlation 

function 270-72 
Hugoniot measurements 

and CRIS equation of state 
model 116-17, 123-29 

for iron, theoretical melting 
curve 134/ 135/ 

for xenon, theoretical calculations. . . 125/ 
Hydrodynamics 

discrete 156-69 
fluctuating, Langevin-Landau-Lifshitz 

equations 154-56 
Hydrogen, equation of state, CRIS model 

calculations 126-28 
Hydrogen bond(s) 

in ice 299-301 
in liquid water 

angle, probability distribution 
function 286/ 

distribution functions, radial and quasi-
component 325-47 

energy and well depth, Monte Carlo 
calculations 322-23 

parameters 334-47 
radial pair correlation 

functions 284-86 
structure 281-95 
trimers, acceptors and donors 311 

Hydrogen-carbon dipolar interactions, mo­
tional averaging 445-66 

Hydrogen isotopes, thermodynamic calcula­
tions using CRIS model 124-28 

Hydrogen-methane, vapor-liquid equilib­
rium data, experiment vs. 
theory 101/ 

Hypernetted chain, distribution function 
theory 13-15 

I 

I-structure as function of hydrogen bond en­
ergy criterion 292/ 

Ice, quasi-component distribution 
function 341 

Ideal gas equation of state 5 
Ideal gas law, deviations 8 
Ideal situations, infinitely dilute solutions, 

conformal solution theory 88-91 
Impulsive stochastic dynamics, relative 

degree of determinism 22 
Induction dispersion terms, perturbation 

theory for nonspherical molecules... 95 
Inert gases—See Rare gases 
INFERNO model vs. Thomas-Fermi-Dirac 

model 113-15, 123-25 

Interacting atom model (IAM) 436-37 
Interaction, electrostatic. . . 367-68, 372-78 
Interaction energies, 

intermolecular 305-12, 318 
Interaction site models, equations of state 

for hard spheres 173-78 
Interfaces 

electrified, and perturbation 
theory 65-69 

free liquid surface 148-51 
gas adsorption on plane solid 

surfaces 141-46 
gas-liquid and solid-fluid, computer 

simulation 15, 21-22, 37/ 
theory 139-41 

Intermolecular atomic radial pair correlation 
functions of oxygen and 
hydrogen 284-86 

Intermolecular force 
fluctuating, Langevin and Brownian 

dynamics 424-25 
of water molecule, Reimers, Watts, and 

Klein potentials 307, 322-25 
and zero-Kelvin isotherm of the 

solid 107-8, 115-16 
Intermolecular interactions, liquid 

water 281-95, 304-12, 318 
Intermolecular pair distribution 

function 479-80 
Intermolecular pair interaction energy, 

probability distribution for liquid 
water 288/ 

Intermolecular potential energy functions 
definition 1, 3-5, 9/ 
perturbation about hard-sphere 

fluid 91, 93 
Intermolecular potential functions 

for fluorine and chlorine 2011 
Lennard-Jones, for n-alkanes. . . . 470-78 
for liquid water 332 
for nitrogen and carbon dioxide . . . . 191* 
transferable 306-12, 322-25 

Internal degrees of freedom 
CRIS model calculations 111-14 
diffusion coefficient, alkane isomerization 

rates 439 
Internal energy 

configurational contributions 377 
for hard-sphere fluids, 

pressure 110-13 
Monte Carlo calculations 320-23 

Internal rotation, alkane chains 
dielectric and NMR relaxation and light 

scattering 432-40 
tumbling macromolecule system . . . 453/ 

Interpolation formula, Thomas-Fermi-
Dirac 130 

Intramolecular distances, distributions, 
n-alkanes 476 

Intramolecular Langevin and Brownian 
dynamics 424-25 

Intramolecular Lennard-Jones potential, 
n-alkanes 473, 478 

Intramolecular potential energv functions, 
definition 1, 3-5, 9/ 
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512 M O L E C U L A R - B A S E D STUDY O F FLUIDS 

Iodide, n-octyl, Cole-Cole p l o t . . . . 433-36 
Ionic contributions, electric double 

layer 68-69 
Ionic diffusion, review 16-19 
Ionic fluids and perturbation 

theory 55-65 
Ions near a charged electrode, applications 

of perturbation theory 65-69 
Iron 

shock vs. particle velocity 135/ 
thermodynamic calculations using CRIS 

model 131-36 
Isochores for methane 130/ 
Isomerization, torsional, of alkane 

chains 437-39 
Isotherm 

adsorption, at low densities, theoretical 
vs. experimental data 142-46 

hydrogen-methane 360-62 
zero-Kelvin, of the solid, and CRIS model 

to calculate thermodynamic 
properties '. 107-36 

Isothermal relations 
acetone-carbon tetrachloride 404-6 
compressibility 314 
compressibility, Kirkwood-Buff 

theory. .'. 102 
ethanol-n-heptane 404-6 

Isotopes, hydrogen, thermodynamic calcula­
tions, using CRIS model' 124-28 

J 
Jump model 446, 451-52 

K 

Kinetic theory, historical 
development 32-38 

Kinetic theorv of gases, Clerk 
Maxwell' 10-11 

Kinetics, alkane chains 426-42 
Kirkwood-Buff theory, fluctuation 

formulas 101-3 
Kirkwood factor, static dielectric constant 

determination 229 
Kronecker delta, reference average Mayer-

function theory 246 
Krypton 

adsorbed on graphite 145 
adsorbed on porous carbon 148-51 
binary systems 

with methane, equation of 
state 360-63 

with neon, pressure-temperature 
diagram 354, 355/ 

coexistence curve, temperature and 
density 122/ 

sound speeds, vapor pressures, and shear 
viscosities 119-24 

L 

Lagrangian mechanics 30 
Langevin dynamics 424-25 

Langevin dynamics— 
Continued 

diffusive, of model alkanes 447-48 
fluctuations of local flux in 

fluids 153-70 
general, relative degree of 

determinism 22 
Langevin-Landau-Lifshitz equations of fluc­

tuating hydrodynamics 154-56 
Laplace, Pierre Simon 4 
Lattice gas, application of perturbation 

theory 52-53 
Lattice jump model 446, 451-52 
Lattice jump model, side-chain NMR 

parameters 462* 
Lattice mode frequencies for -y-nitrogen, 

zone center 198* 
Lattice structure 

of ice 299-301 
microscopic, theories 12 

Lattice vibrational force constants of 
aqueous solutions 292-94 

Lattice vibrational frequencies of nitrogen 
and carbon dioxide 193-96 

Lattice vibrational motion of bonds in liquid 
water 284-86, 291 

Law of corresponding states, density and 
temperature scaling 214-18 

Le Chatelier's principle and water 
density 299 

Legendre polynomial, spherical harmonic 
expansion of g(12) for linear 
molecules 244-46 

Length 
bond 

constraints, SHAKE procedure and 
Verlet algorithm 473 

polyethylene 488-93 
Debye screening, definition 56 

Lennard-Jones fluids 
elongation and anisotropy 

parameters 209-33 
equation of state, reference average 

Mayer-function . . . . 257-59, 269-77 
interfacial behavior 139-51 
perturbation expansions 218-25 
pressure-temperature diagrams for a mix­

ture plus dipole-dipole 
potential 95-97 

scaling parameters 210-18 
spherical harmonic expansion 

coefficients 266-68, 274/ 
thermodynamic effects of adding electric 

moments 225-33 
Weeks-Chandler-Anderson 

expansion 378 
Lennard-Jones interaction 55 
Lennard-Jones potential 385 

of n-alkanes 470-78 
of nitrogen and carbon dioxide. . . 190-92 

Librational force constants of aqueous 
solutions 292-94 

Librational frequencies of nitrogen and 
carbon dioxide 193-96 

Librational motion of bonds in liquid 
water 284-86, 291 
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INDEX 513 

Light scattering 
of alkane chains 436-37 
Raman and Rayleigh, review 16-19 

Line-pair electrons in water 341-43 
Linear hypernetted chain distribution 

theory 14 
Linear molecules 

spherical harmonic expansion of g(12), 
Legendre polynomial 244-46 

symmetric hard triatomic fluid, site-site 
correlation functions 273/ 

Linear response theory 
Green-Kubo, to nonequilibrium 

Hamiltonian 39-42 
Navier-Stokes continuum, transport 

coefficients 42-44 
Lipid monolayer, conformation by computer 

simulation 36/ 
Liquefaction—See Phase relationships, gas-

liquid 
Liquid(s) 

densities, scaling parameters . . . . 210-18 
free surface 148-51 
interface with gas, structure and surface 

tension 148-51 
interface with wall 151 
Lennard-Jones, two-

center 209-33, 257-59, 269-77 
pure, V-structure 290-92 
simple, perturbation theory 54-55 
solubilities in supercritical 

gases 407-20 
vaporization 

Cagniard de la Tour 5-6 
hvdrogen-methane equilibrium 

data 101/ 
Weeks-Chandler-Anderson 

expansion 218-21 
Liquid phase, definition 2 
Liquid state dvnamics of alkane 

chains. . .' 423-42 
Local flux, fluctuations in fluids, simulation 

vs. Langevin theory 153-70 
Longitudinal momentum flux 156 

M 

Macromolecular tumbling, NMR relaxation 
of attached side chain 460-63 

Macroscopic property relations 10-12 
Macroscopic scale, shock deformation and 

heating 42-44 
Mansoori-Leland approximation 

infinite dilution of binary 
mixtures 410-11 

perturbation of hard spheres 93 
Margules equation, modifications for study 

of infinitelv dilute binarv 
mixtures . '. ' 397-404 

Markov chain 315-16 
Mass-point calculations 34 

Maxwell, James Clerk 32-33 
Mayer-function perturbation 

theory 235-77 
McDonald and Singer method for 

Helmholtz free energy 
calculation 75-76 

Mean spherical approximation for charged 
and dipolar hard 
spheres 58-60, 62-64, 66-67 

Mechanics 
Lagrangian and Newtonian 30-31 
statistical—See also Statistical 

mechanics 84 
Melting curve 

and CRIS equation of state model . . . 117 
theoretical and shock Hugoniots for 

iron 134/ 135/ 
Mendeleev, Dmitri Ivanovich 7 
Metals, liquid, thermodynamic calculations 

using CRIS model 131-36 
Methane ' 412/ 

binary systems 
with argon and ethane, Henry's con­

stants and activity 
coefficients 414-15 

with ethane, van der Waals theory vs. 
experiment 99/ 

with hexane, phase diagrams 87/ 
with krypton, equation of 

state 360-63 
with nitrogen, Henry's constants and 

activity coefficients 414-15 
force parameters in calculations . . . . 383* 
symmetry 377 
thermodynamic properties 378-83 
thermodynamic properties using CRIS 

model 114, 129-31 
vapor pressures and isochores 130/ 

Metropolis Monte Carlo . . . 22, 315-17, 322 
Microscopic property relations 10-12 
Microwave spectra, structure of linear water 

dimer 308, 309/ 
Migration, review 16-19 
Mixing heat, contributions to excess Gibbs 

free energy and enthalpy calculations 
for binary mixtures 390-92 

Mixtures 
binary 

See also Binary mixtures 
infinitely dilute solutions 395-420 
pressure-temperature diagram, carbon 

tetrafluoride-alkane 354-57 
thermodynamic properties . . . . 383-93 

equations of state 179, 360-63 
of hard molecules, review of 

theory 85-94 
perturbation theory 370-77 
quadrupole moment contribution . . . . 384 
of rare gases, equilibria 353-63 
van der Waals one-fluid theory . . 384-85 

Model 
CRIS, calculation of thermodynamic 

properties 107-36 
INFERNO vs. Thomas-Fermi-Dirac 

model 113-15, 123-25 
Molecular anisotropy effects 209-33 

Pu
bl

is
he

d 
on

 J
un

e 
1,

 1
98

3 
on

 h
ttp

://
pu

bs
.a

cs
.o

rg
 | 

do
i: 

10
.1

02
1/

ba
-1

98
3-

02
04

.ix
00

1



514 M O L E C U L A R - B A S E D STUDY O F FLUIDS 

Molecular dynamics 20-22, 424-25 
of n-alkanes 473-74 
applications and historical 

development 29-45 
definition 302 
equations of motion, forces 33-37 
fluid transport 38-42 
of liquid nitrogen and carbon 

dioxide 194* 
local flux fluctuations 161-63 
nonequilibrium 38-42 
and phase equilibria 37-38 
of polyethylene 492-500 
shock wave structure 42-45 

Molecular interactions 367-70 
Molecular interpretation of the second law 

of thermodynamics 10-11 
Molecular perturbation theory—See Pertur­

bation theory 
Molecular potentials—See Potentials 
Molecular relaxation processes, 

review 16-19 
Molecular shape 

nonspherical—See Nonspherical molecules 
reflection, hard sphere compressibility 

factor 87-88 
spherical—See Spherical molecules 

Molecular structure, historical development 
of theory 32 

Molecular theory of fluids, historical 
survey 1-15 

Molecular tilts, fluorine and 
chlorine 202*, 203* 

Molecular volume 
parameter b in equation of state 7-8 
partial, Kirkwood-Buff theory 102 

Molten iron, structure factor 132-33 
Moments 

permanent, in perturbation 
theory 367, 372, 376-77 

quadrupole 
contribution in mixtures 384 
contribution in pure fluids 383 

Momentum fluxes, numerical simulations for 
soft spheres 153-70 

Monoclinic angle in fluorine and 
chlorine 202*, 203* 

Monte Carlo 
computer simulation of liquid water 

atom-atom radial distribution 
functions 329-65 

equilibrium properties and 
structure 297-348 

force-bias, convergence 
profile 319-22 

equation of state for 6-12 fluid 112/ 
excess Gibbs free energy and enthalpv 

calculations 388-92 
Grand Canonical, chemical potential 

calculations 79-80, 84 
for hard convex bodies, virial coefficients 

and compressibility factor . . . 182-83 
Metropolis 

convergence and statistical error 
bounds 316-17 

simulations, Stillinger results 322 

Motion 
See also Molecular dynamics 
equations 

n-alkanes 473-74 
polymer 428, 492-500 

local flux fluctuations. . . . 158-61, 163-70 
Motional averaging of NMR probes for pro­

tein dynamics 463-65 
Motional narrowing limit, NMR relaxation of 

model alkanes 454-60 
Multistage sampling for Helmholtz free en­

ergy calculation 76-77 

N 

Naphthalene in ethylene, solubility . . . 420/ 
Navier-Stokes continuum linear theory, 

transport coefficients and solutions for 
shock waves 42-44 

Neon, sound speeds, vapor pressures, and 
shear viscosities 119-24 

Neon-krypton system 
pressure-temperature 

diagram 354, 355/ 
pressure-x diagram 363 

Neutron diffraction experiments on liquid 
water 324-34 

Neutron scattering, review 16-19 
Newtonian mechanics 30-31 
Nitrogen 412/ 

binary systems 
nitrogen-carbon monoxide, nitrogen-

argon, and nitrogen-oxygen, excess 
Gibbs free energy and enthalpv 
calculations 388-92 

nitrogen-methane, Henry's constant 
and activity coefficients . . . 414-15 

condensed phase simulation 190-99 
configurational Helmholtz energy. . . 223* 
force parameters 383* 
gamma phase, potential 

models 197-99 
thermodynamic properties 378-83 
thermodynamic properties using CRIS 

model 114, 129-31 
virial coefficients 378-80 

Nitromethane and carbon tetrachloride, ex­
cess Gibbs free energy 400-406 

NMR probes in protein dynamics, pico­
second motional averaging . . . . 463-65 

NMR relaxation 
alkanes 436, 454-60 
flexible molecules, trajectory 

studies 445-66 
side chain attached to tumbling 

macromolecule 460-63 
Noble gases—See Rare gases 
Nonadditive interactions, three-body, and 

anisotropy in pair interactions for 
Helmholtz free energy 378 

Nonane dynamics 431/ 
Noncubic systems, potential 

models 199-205 
Nonequilibrium molecular 

dynamics 38-42 
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INDEX 515 

Nonequilibrium molecular dynamics, appli­
cation of adiabatic periodic plastic flow 
via computer simulation 41/ 

Nonpolar molecules 412/ 
Nonpolar molecules for condensed phase 

computer simulations 189-205 
Nonspherical systems 

hard body equations 173-86 
perturbation theory 94-101 

Nonsphericity parameter, equation of state, 
and extended scaled particle 
theory 177-78 

Normalized dipole-dipole correlation func­
tion, Fourier transform, in alkane 
dynamics 433-36 

Nuclear Overhauser enhancement values for 
alkanes and macromolecular side 
chains 445-66 

Nuclear polarization, biradical chemically in­
duced, and magnetic-field 
dependence 440 

Number-density fluctuations 153 

O 

Oblate spherocylinders, virial coefficient and 
compressibility factor 
determination 180-83 

n-Octane, flexibility influence on 
properties 469-84 

n-Octyl iodide, Cole-Cole plot . . . . 433-36 
One-center Lennard-Jones fluids, reduced 

second virial coefficients . . . 212/ 213/ 
One-fluid theorv of mixtures, van der 

Waals ' 384-85 
One-particle distribution function at fluid 

interfaces 140 
Operator 

collision, Fokker-Planck-like 426 
convective, streaming 426 

Orbitals, lone-pair, of water 342 
Orientational bisector, relaxation rates, 

polyethylene 490-500 
Orientational relaxation rates of 

polyethylene 490-500 
Orientational structure of molecular fluids 

and reference average Mayer-function 
theory 245-56 

Orthobaric densities, scaling 
parameters 214-18 

Overhauser enhancement values, nuclear, 
for alkanes and macromolecular side 
chains 445-66 

Overlap forces 367-68, 372-78 
Oxygen 

binary mixtures with argon and nitrogen, 
excess Gibbs free energy and en­
thalpy calculations 388-92 

force parameters in calculations . . . . 383* 
thermodynamic properties 378-83 
thermodvnamic properties for using CRIS 

model 114, 129-31 
Oxygen-hydrogen bond, radial and quasi-

component distribution functions for 
liquid water 325-47 

Oxygen-oxygen bond 
angle bending 283-84 
distances in ice by Monte Carlo. . . .310-12 
intermolecular atomic radial pair correla­

tion functions 284-86 
radial and quasi-component distribution 

functions for liquid water . . . 325-47 

P 

Packing fraction, equation of state, and ex­
tended scaled particle theory . . 177-78 

Pade approximant 366-67, 383-84 
mixtures 387-88 
perturbation theory 376-77 

Pair anisotropic interactions, and pair cen­
tral potential, contributions to excess 
Gibbs free energy and enthalpy calcula­
tions of binary mixtures 390-92 

Pair correlation function 
and the Born-Green-Yvon 

equation 141 
for hard spherocylinder fluid 264/ 
for homonuclear hard 

diatomics 245-69 
intermolecular atomic radial, of oxygen 

and hydrogen pairs 284-86 
and Kirkwood-Buff theory 101-3 
and reference average Mayer-function 

theory 237-39, 245-53 
site-site 270-72 

Pair distribution function 
See also Radial distribution function 
intermolecular 479-80 
for n-octane 476, 478/ 

Pair energy, near-neighbor, of liquid 
water 334-47 

Pair interaction 
additive, assumption 304-6, 310 
anisotropic, in equilibrium property 

calculations 365-92 
nonadditive, for mixtures and Helmholtz 

free energy 386-88 
Pair interaction energy, intermolecular, 

probability distribution for liquid 
water 288/ 

Pair potential energy, infinitely dilute binary 
systems 407-8 

Pair potential(s) 
for carbon dioxide-ethane, van der Waals 

1 fluid theory 97-99 
effective 305 
for fluorine and chlorine 199-205 
lattice 110-11 
in perturbation theory 371 

Parameters 
a and b, definition in equation of 

state 7-8 
nonsphericity, in equation of state and ex­

tended particle theory 177-78 
Partial molecular volumes, Kirkwood-Buff 

theory 102 
Particle diffusion rate, Monte Carlo calcula­

tion for water 320-21 
Particle theory, scaled 85-87 
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516 M O L E C U L A R - B A S E D STUDY O F FLUIDS 

Particle velocity vs. shock velocitv for 
iron ! . . . . 135/ 

Particle and wall interface, potential for 
hard-sphere fluid 151 

Partition function, canonical 
ensemble 312 

Peng-Robinson equation of state. . . 358-63 
Percus-Yevick 

distribution function theorv 13-15 
equation for U (r) 222-23, 229-30 
excess Gibbs free energy and enthalpy 

calculations 388-92 
Permanent moment 

for mixtures 387-88 
and perturbation 

theory 367, 372, 376-77 
Perturbation theory 14-15, 47-69 

for gas lattice 52-53 
for hard-sphere fluids 

charged 55-60 
CRIS model calculations of thermo­

dynamic properties 107-36 
dipolar 61-64 
and Helmholtz free energy 109 
and intermolecular potential 

energy 91-93 
for nonspherical molecules 94-101 
for pure solvent in infinitely dilute binary 

systems 408-10 
reference average Mayer-

function 235-77 
for simple molecular liquids and 

mixtures 54-55, 370-77 
for spherical molecules 87 
for two-center Lennard-Jones 

liquids 218-25 
with electric moments 225-33 
scaling parameters 210-18 

Verlet-Weis version of Weeks-Chandler-
Anderson theory 378 

and virial expansion 51 
Phantom singlet, stilbene 439 
Phase(s) 

condensed, of nonpolar molecules . . . 189 
fluid 

definition 2 
equilibria 73-84, 353-63 

gamma, of nitrogen, potential 
models 197-99 

gas 
definition 2 
nitrogen and carbon dioxide. . . 378-83 

liquid 
alkanes, dynamics 423-42 
definition 2 
flexibility influence on 

properties 469-845 
fluorine, chlorine, nitrogen, and carbon 

dioxide potential 
models 190-201 

nitrogen, configurational Helmholtz 
energy 223* 

nitrogen and carbon dioxide potential 
models 190-99 

Phase(s)— 
Continued 

solid, definition 2 
water, cooperative effects and 

structure 325-34 
water equilibrium properties and struc­

ture by Monte Carlo computer simu­
lation studies 297-348 

Phase diagrams 
binary, classification 85, 86/ 87/ 
for deuterium, CRIS model 

calculations 124-26 
Phase relationships 

equilibria 2-10, 37-38, 73-103, 
353-63 

gas-liquid and solid-fluid, computer 
simulation 36/ 

vapor-liquid equilibrium data for hydro­
gen-methane 101/ 

Photoisomerization, torsional rates in alkane 
chains 437-39 

Physical properties of liquid 
water 298-304 

Planck, Max 32 
Plane solid surfaces and gas 

adsorption 141-46 
Plastic flow, application of adiabatic non-

equilibrium molecular dynamics . . . 41/ 
Point-charge model for attractive 

forces 306, 322-25 
Polar molecules in infinitely dilute binary 

systems 411-13 
Polarizability tensor 

electric dipole 368, 377 
total molecular, Fourier transform of auto­

correlation function 436 
Polarization, biradical chemically induced 

nuclear, magnetic-field 
dependence 440 

Polarization functions 312 
Polyatomic deterministic simulation 36 
Polyatomic molecules 

repulsive forces 173 
thermodynamic calculations 124-36 

Polyethylene 
potential and autocorrelation 

functions 488-93 
relaxation rates, bisector-orientational or 

frans-conformational 490-500 
simulation 478-88 

Polymer(s) 
equation of motion 428 
polyethylene simulation 487-500 

Polynomial, Legendre, spherical harmonic 
expansion of g(12) for linear 
molecules 244-46 

Pople expression 368-69 
Pores and gas adsorption 145-48 
Potential(s) 

n-alkanes 470-78 
Langevin dynamics 447-48 
torsional and bond bending . . . 471-73 

binary systems 98 
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INDEX 517 

Potential(s) 
binary systems— 
Continued 
carbon dioxide-ethane, van der Waals 

fluid theory 97-99 
and Gibbs free energy and enthalpy 

calculations 390-92 
infinitely dilute 407-8 

carbon dioxide 190-93 
chlorine 199-205 
in extended scaled particle 

theory 174-78 
fluorine 199-205 
and free energy 74-84 
hard-sphere fluid 

intermolecular energy and 
perturbation 91, 93 

reference system with imbedded point 
quadrupoles 260/, 261/ 

wall-particle 151 
lattice 110-11 
Lennard-Jones 385 

n-alkanes 470-78 
spherical, along site-site 

distances 224 
nitrogen 190-93 
n-octane, excluded volume 478-79 
pair 3-4, 110-11, 305, 371, 390-92 
perturbation 50-55, 371 
polyethylene 488-93 
pores, cylindrical 148-51 
quantum mechanical potential for elec­

trons and nuclei 307, 322-25 
simple point charge . . . . 306-12, 322-25 
soft sphere interaction 161-62 
solids 110-11 
spherically symmetric 

reference 366-67, 383-84 
Stillinger 306-12, 322-25 
transferable empirical, based on point 

charges for electrons and 
nuclei 306, 322-25 

wall-particle, hard-sphere fluid 151 
water 

computational expense for 
factors 308* 

intermolecular 332 
Reimers, Watts, and 

Klein 307, 322-25 
Rowlinson 306 
Stockmayers 306-7 

Watts, and virial coefficient data . . . . 310 
Potential difference across electric double 

layer 66, 67/ 
Potential energy 

configurational, definition 304-5 
in CRIS model, quantum 

correction 118-19 
of interaction 367-68 
intermolecular and intramolecular, 

definition 1, 3-5, 9/ 
pair, in infinitely dilute binary 

systems 407-8 
by the zero-Kelvin isotherm of the 

solid 110-11 

Poynting corrections, 
phase equilibria 
calculations 354 

Pressure 
See also PVT relationships 
of binary systems 

acetone-carbon tetrachloride and 
ethanol-n-heptane 405-6 

carbon dioxide, carbon monoxide, 
methane, nitrogen, and oxygen 
mixtures 381*, 382* 

neon-krypton 354, 355/ 
configurational contributions 377 
constant, heat capacity 

definition 314 
of water 319-20 

critical value, definition 7-8 
in extended scaled particle 

theory 174-78 
fluid phase equilibria 353-63 
internal energy, hard sphere 

fluids 110-12 
vapor, excess Gibbs free energy 404 
water 323-25 

Pressure-density diagram for a pure 
substance 2/ 

Pressure-temperature diagram 
of carbon tetrafluoride-alkane 

mixtures 354-57 
for a mixture of Lennard-Jones molecules 

plus dipole-dipole potential . . 95-97 
of neon-krypton system 354, 355/ 

Principle of corresponding states 8 
Probabilistic form of computer simulation, 

Monte Carlo method 302-48 
Probability, Boltzmann 313 
Probability density distribution 

functions 78/ 
Probability density distribution function 

for pair of molecular axes 
at angle arc cos A 229 

in test particle method for typical liquid 
state condition 83/ 

Probability distribution function 
for hydrogen bond angle in liquid 

water 286/ 
for intermolecular pair interaction energy 

for liquid water 288/ 
Probability matrix of the Markov 

chain 316-17 
Probes, NMR, in protein dynamics, pico­

second motional averaging . . . . 463-65 
Properties 

average, determination 315 
dynamic, alkane chains 423-42 
equilibrium 

anisotropic pair interactions . . . 365-92 
of liquid water, Monte Carlo computer 

simulation studies 297-348 
flexibility and chain molecule. . . . 469-84 
macroscopic vs. microscopic 10-12 
physical, of liquid water 298-304 
static 

n-alkanes 474-81 
of fluids, historical survey 3-22 
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518 M O L E C U L A R - B A S E D STUDY O F FLUIDS 

Properties—Continued 
thermodynamic 

of binary mixtures 
of nitrogen and carbon dioxide 

liquid 193 
of nitrogen, oxygen, methane, carbon 

dioxide, and carbon 
monoxide 378-83 

perturbation theory 383-93 
CRIS model 107-36, 365-92 
of liquid water 322-25 
of pure fluids 377-83 

transport, and fluid structure. . . . 117-18 
Protein dynamics, picosecond motional aver­

aging of NMR probes 463-65 
Pseudopotential, Stockmayer, and activity 

coefficients 413 
Pure fluid, quadrupole moment 

contribution 383 
Pure liauid, V-structure 290-92 
Pure solvent, perturbation in infinitely di­

lute binary systems 408-10 
Pure substance, pressure-density diagram 

of 2f 
PVT relationships 16-19, 357-63 
PVT relationships, corresponding states and 

critical point 5, 7-8 

Q 

Quadratic hypernetted chain distribution 
theory 14 

Quadrupolar fluid, Lennard-Jones 
radial slices through g(12) 268/ 
spherical harmonic 

coefficients 265/ 268/ 
Quadrupole moment contribution 

to hard sphere fluids, reference system 
potential 260/ 261/ 

to Lennard-Jones liquids, Helmholtz 
energies 227f 

to mixtures 384 
to pure fluids 383 
to static dielectric constant, effects of 

elongation, and structural 
properties 228-33 

Quantum correction to the hard-sphere free 
energy and potential energv in CRIS 
model '. . . . 118-19 

Quantum hypothesis 32-33 
Quantum mechanical calculations of equilib­

rium separation in water dimer. . . . 308 
Quantum mechanical dispersion, 

anisotropy 367-68, 372-78 
Quantum mechanical intermolecular interac­

tion energies 305 
Quantum mechanical potential for electrons 

and nuclei 307, 322-25 
Quasi-component distribution functions in 

liquid water 334-37 

R 

Radial coefficients, spherical 
harmonic 224 

Radial distribution function 
for argon 122/ 
CRIS model agreement with computer 

simulation 118 
free energy 54-56 
by x-ray diffraction 12-13 

Radial pair correlation functions, intermolec­
ular atomic, of oxygen and 
hydrogen 284-86 

Radial slices through g(12) for Lennard-
Jones quadrupolar fluid 268/ 

Radiation scattering experiments, 
review 16—19 

Radius of cavities in liquid water. . . 334-47 
Raman light scattering, review 16-19 
Rare gas 

mixture equilibria 353-63 
sound speeds and vapor pressures . . 121/ 
thermoavnamic calculations using CRIS 

model 119-24 
Rate of equilibration, for water bv Monte 

Carlo 320-21 
Rayleigh light scattering, review . . . . 16-19 
Reaction rate 

diffusion-controlled, alkane 
dynamics 440 

hazard analysis, polyethylene. . . . 492-93 
ring-closure 439-40 

Reactive properties of alkane 
chains 423-42 

Rectilinear diameter criterion, conic 
equation 400/ 

Redlich-Kwong equation of state. . . 358-63 
Reference average Mayer-function perturba­

tion theory 235-77 
Reference interaction site model 

equation 224 
Reference system potential for hard-sphere 

fluids with imbedded point 
quadrupoles 260/ 261/ 

Reimers, Watts, and Klein potentials for liq­
uid water 307, 322-25 

Relaxation processes 16-19 
dielectric, alkane chains 432-36 
NMR, in flexible molecules, trajectory 

studies . 445-66 
Renormalization group techniques in theory 

of critical phenomena and local flux 
fluctuations 163-70 

Repulsive forces of polyatomic 
molecules 173 

Repulsive Lennard-Jones diatomic liquid 
equation of state by reference average 
Mayer-function theory 257-59, 

269-77 
Restricted umbrella sampling in test particle 

method for chemical potential 
calculations 82-84 

Rigid body, definition and comparison to 
dynamic simulation 433-42 

Rigid spherical molecules in solution, rota­
tional motion 450 

Ring-closure reaction rates 439-40 
Roentgen's models of liquid 

water 299-300 
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INDEX 519 

Rotation 
of alkane chains 450-54 

internal and overall, by dielectric and 
NMR relaxation and light 
scattering 432-40 

tumbling macromolecule 
system 453/ 

Wigner matrices 450-54 
of rigid spherical molecules in 

solution 450 
Rowlinson potentials for liquid water. . . 306 

S 

Sampling methods 
combined f-g, test particle method for 

chemical potential 
calculations 82-84 

multistage, Helmholtz free energy 
calculation 76-77 

umbrella, Helmholtz free energy 
calculation 77-78 

Scaled particle theory 85-87 
Scaled particle theory, derivation of hard-

body equation of state 173-78 
Scaling parameters for two-center Lennard-

Jones fluids 210-18 
Second law of thermodynamics, molecular 

interpretation 10-11 
Second virial coefficients 

for fluorine and chlorine 200-205 
for nitrogen and carbon dioxide 197 
reduced, for two-center Lennard-Jones 

fluids 210-18 
Separation, equilibrium, in water 

dimer 308 
SHAKE procedure, bond length 

constraints 473 
Shape 

of mixtures 387-88 
reflection, and compressibility factor of 

hard spheres 87-88 
Shear momentum flux equations . . . 155-56 
Shear viscosity 

Dymond's formula 118 
Hamiltonian mechanics 39-42 
for liquid argon, krypton, and 

xenon 123/ 
for liquid iron 133/ 

Shock deformation, macroscopic 
scale 42-44 

Shock Hugoniots 
for deuterium 129/ 
for iron 134/ 135/ 

Shock velocity vs. particle velocitv for 
iron . . . ' ' . . . . 135/ 

Shock wave experiments, CRIS equation of 
state test 116-20 

Shock wave structure, application of molec­
ular dynamics simulation 42-45 

Side chain attached to tumbling macromole­
cule, NMR relaxation 460-63 

Simple liquids, applications of perturbation 
theory 54-55 

Simple point charge 
potential 306-12, 322-25 

Simple point charge and quasi-component 
distribution function 335-47 

Simulation 
vs. Langevin theory 153-70 
molecular dynamics, applications and his­

torical development . . . 19-22, 29-45 
Single-particle phase space density for a 

chain 425-26 
Single-shock Hugoniot for liquid 

deuterium 129/ 
Singlet, phantom, stilbene 439 
Site interaction models 

See also Hard-sphere systems, Lennard-
Jones fluids 

coordinate systems 256-57 
Site-site correlation function 

for homonuclear hard 
diatomics 270-72 

for linear symmetric hard 
triatomics 273/ 

Site-site distances 
in extended scaled particle 

theory 174-78 
and spherical Lennard-Jones 

potential 224 
Site-site potential, n-alkane 

model 470-71 
Soft spheres, molecular dynamics data and 

momentum flux 153-70 
Solid-fluid interface 37/ 
Solid phase 

argon, equation of state 120/ 
definition 2 
to gas phase—See Phase relationships, 

solid-gas 
ice, cooperative structural 

effects 325-34 
solubility in supercritical fluids . . 417-20 
surfaces, gas adsorption 141-46 
zero-Kelvin isotherm and CRIS model to 

calculate thermodynamic 
properties 107-36 

Solubilities in supercritical gases 
of liquids 407-17 
of solids 417-20 

Solutions 
aqueous, and V-structure of 

water 292-95 
infinitely dilute 

and binary liquid mixtures . . . .395-420 
conformal solution theory 88-91 

Solvent systems 
for argon 412/ 
for charged and dipolar hard spheres, 

contribution to perturbation 
theory 55, 60-61, 64 

electric double layer contribution to the 
potential difference 68-69 

n-hexadecane correlation of Henry's con­
stant with entropy of 
vaporization 411-13 

for infinitely dilute binary 
systems . . . . 408-10 
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520 M O L E C U L A R - B A S E D STUDY O F FLUIDS 

Solvent systems—Continued 
viscosity and Brownian 

dynamics 428, 430 
Sound speeds for rare gas liquids . . . . 121/ 
Spatial distribution functions, atom-

atom 313 
Spectra, microwave, structure of linear 

water dimer 308, 309/ 
Spectral densities of alkanes 449 
Sphere radius 

INFERNO model equation 113 
perturbation theory 55-64, 383 

Spherical approximation, mean (MSA), and 
charged and dipolar hard 
sphere perturbation 
theory 58-60, 62-64, 66-67 

Spherical harmonics 
expansion coefficients 

for hard spherocylinder fluid . . 252-53 
for homonuclear hard 

diatomics 245-53 
for Lennard-Jones diatomic 

fluid 266/ 
for Lennard-Jones quadrupolar (LJQQ) 

fluid 265/ 268/ 
for linear molecules, Legendre 

polynomial 244-46 
Fourier transforms of the second order, 

alkanes 449, 457-60 
Pople expression 368-69 
radial coefficients 224 

Spherical molecules 
in the ground state, CRIS 

model 108-15 
Lennard-Jones potential along site-site 

distances 224 
perturbation theory 55-64, 87, 383 
perturbation theory and intermolecular 

potential energy 91, 92/ 
rotational motion 450 
scaling parameters 210-18 
soft, molecular dynamics data and mo­

mentum flux 153-70 
Spherically symmetric reference potential 

(SSRP) 366-67, 383-84 
Spherocylinder fluid 

hard 
equation of state 275f 
pair correlation function g O O O . . . . 264/ 
reduced spherical harmonic expansion 

coefficients 252-53 
hard prolate, virial coefficient and com­

pressibility factor 
determination 180-83 

oblate, virial coefficient and compressibil­
ity factor determination . . . . 180-83 

Spin lattice relaxation times 457f 
State 

equation of—See Equation of state 
ground 108-15 

States of matter 
See also Phases, gas, liquid, or 

solid 5-6 
and density 4-5, 8 

Static dielectric constant and structural 
properties 228-33 

Static properties 
of n-alkanes 474-81 
of fluids, historical survey 3-22 

Statistical error bounds of Metropolis Monte 
Carlo calculations 316-17 

Statistical mechanics 
Boltzmann and Gibbs 10-11 
distribution function theories 12-15 
mixture theories, review 84 

Statistical thermodynamics 
Helmholtz free energy, 

definition 312-14 
Monte Carlo method 302-3 

Stell-Lebowitz series 58-59 
Stereochemistry of 200-atom aliphatic car­

bon chain 35/ 
Stilbene, torsional dynamics 439 
Stillinger potential 306-12, 322-47 
Stochastic dynamics, trajectories for alkanes 

in aqueous solutions 445-66 
Stochastic flux correlations, numerical simu­

lations for soft spheres 153-70 
Stockmayer fluid 231 
Stockmayer's potential for water . . . . 306-7 
Stockmayer's pseudopotential and activity 

coefficients 413 
Stokes' law for friction coefficient in alkane 

dynamics 428 
Streaming, definition 426 
Structure 

of n-alkanes 478-81 
electronic, model for computing contribu­

tions from thermal electronic 
excitation 111-14 

of fluorine and chlorine 202f 
of ice 298 
of iron 133/ 
of liquid close to wall 151 
liquid-gas interface predicting surface 

tension 148-51 
microscopic, lattice theories 12 
molecular, historical development of 

theory 32 
orientational, and reference average 

Mayer-function theory 245-56 
of proteins, close packed 463 
shock wave, application of molecular dy­

namics simulation 42-45 
and transport properties, CRIS equation 

of state model 117-18 
of water 

background 298-304 
cooperative effects in liquid and solid 

phases 325-34 
dimer from microwave 

spectra 308, 309/ 
intermolecular motions, high 

frequency 281-95 
Monte Carlo computer simulation 

studies 297-348 
Subcritical temperatures, and fluid adsorb-

tion on a plane surface 144-47 
Sublimation—See Phase relationships, solid-

gas 
Supercritical fluids 

solubility of liquids 407-17 
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Supercritical fluids—Continued 
solubility of solids 417-20 

Supercritical temperatures of argon ad­
sorbed on graphite, density 
profiles 143-48 

Surface 
free liquid 148-51 
plane solid, gas adsorption 141-46 

Surface area relationships in extended scaled 
particle theory 175-78 

Surface excess density equations for fluid 
interfaces 143 

Surface tension 
free liquid 150-51 
liquid-gas interface 148-51 

Surface thickness, liquid-gas 
interface 148-51 

Symmetry 
axial, perturbation theory term 372 
of methane 377 

T 

Taylor's expansion of the compressibility fac­
tor Z 11-12 

Temperature 
See also PVT relationships 
of binary mixtures of nitrogen, oxygen, 

methane, and carbon 
dioxide 381/, 382f 

Boyle and critical for two-center Len­
nard-Jones fluids compared with 
"united atom" 212-18 

critical, definition 7-8 
and electronic entropy for 

aluminum 114/ 
and internal energy 332-33 
of krypton, coexistence curve 122/ 
reduced 385-86 
and scaling parameters 210-18 
supercritical, of argon adsorbed on graph­

ite, density profiles . . . . . . . 143-48 
water measurements 323-25 

Tensor interactions 365 
Test particle method, chemical potential 

calculations 80-84 
Thermal electronic excitation and use of 

electronic structure model . . . . 111-14 
Thermal expansion, coefficient 314 
Thermodynamic calculations using CRIS 

model 
for the hydrogen isotopes 124-28 
for liquid iron 131-36 
for methane, nitrogen, oxvgen, carbon 

monoxide ' . . . 114, 129-31 
for rare gases 119-24 

Thermodynamic definition, statistical, of 
Helmholtz free energy 312-14 

Thermodynamic effects of added electric 
moments of two-center Lennard-Jones 
liquids 225-33 

Thermodynamic functions 
in extended scaled particle 

theorv 174-78 

Thermodynamic functions—Continued 
in perturbation theory 48-69 

Thermodynamic integration for Helmholtz 
free energy calculation 74-75 

Thermodynamic internal energy 313 
Thermodynamic properties 

of binary mixtures 
of nitrogen, oxygen, methane, carbon 

dioxide, and carbon 
monoxide 193, 378-83 

perturbation theory 383-93 
CRIS model calculation 107-36 
measurements, review 16-19 
of pure fluids 377-83 
of water 322-25 

Thermodynamics, second law, molecular 
interpretation 10-11 

Thickness, surface, of liquid-gas 
interface 148-51 

Thomas-Fermi-Dirac (TDF) model 
vs. INFERNO model . . . 113-15, 123-25 
interpolation formula 130 

Three-body forces 371 
Three-body nonadditive interactions 

and anisotropy in pair interactions to 
Helmholtz free energy 378 

contributions free energy and enthalpy 
calculations of binary 
mixtures 386-90 

Tilts, molecular, in fluorine and 
chlorine 202/, 203/ 

Time correlation functions, alkane 
chains 428-31 

Time dependence of autocorrelation func­
tions, polyethylene 493-96 

Time simulation 
alkane chains 474/ 
exposure of solid-fluid interface 37/ 

Torsional and bond-bending potentials of n-
alkanes 471-73 

Torsional isomerization of alkane 
chains 437-39 

Trajectory studies 
of alkane chain, ensembled-

averaged 425-32 
of flexible molecules, NMR 

relaxation 445-66 
Transfer, z-momentum, and content 

changes, simulation vs. Langevin 
theory 165/ 

Transferable intermolecular and empirical 
potentials 306-12, 322-25 

Transferable intermolecular potentials and 
quasi-component distribution 
function 335-47 

Translation diffusion of n-alkanes. . . 481-84 
Translational degrees of freedom, CRIS 

model calculations 111-14 
Transport properties 

of alkane chains 423-42 
CRIS equation of state model . . . 117-18 
Navier-Stokes continuum linear 

theory 42-44 
review 16-19 

Triatomic fluid, hard linear symmetric, site-
site correlation functions 273/ 
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Trimers, water, hydrogen bonded, acceptors 
and donors 311 

Triplet potentials, in perturbation 
theory 371 

Tumbling macromolecule, NMR relaxation 
of attached side chain 460-63 

Two-center Lennard-Jones fluids 
anisotropy parameters, 

elongation 209-33 
perturbation expansions 218-25 
scaling parameters 210-18 

U 

u-Expansion, applications of perturbation 
theory 54-56, 61-62 

Umbrella sampling 
full and restricted, test particle method 

for chemical potential 
calculations 82-84 

Helmholtz free energy 
calculation 77-78 

United atom, Boyle temperatures and calcu­
lated critical temperatures of two-center 
Lennard-Jones fluids 212-18 

V 

van der Waals theory 
and CRIS model, isotherms 115-16 
and density, critical 210-18 
and density functional theory 141 
vs. experiment for methanol-

ethane 99/ 
one-fluid theory of 

mixtures 88-99, 384-85 
and perturbation theory 53 
for water-water potential, computational 

expense 308/ 
van Kampen's method, local density of gas 

in contact with wall 140 
van Laar, modifications for study of infi­

nitely dilute binarv 
mixtures ' 397-404 

van Marum, and liquefaction of 
gases 5-7 

Vapor-liquid equilibria 
at high pressures 353-63 
for hvdrogen-methane, experiment vs. 

theory 101/ 
Vapor pressure 

and excess Gibbs free energy 404 
for methane 130/ 
for rare gas liquids 121/ 

Vaporization 
See also Phase relationships, liquid-gas 
and Cagniard de la Tour 5-6 
entropy of, for n-hexadecane . . . . 411-13 
isotherms, CRIS model and van der 

Waals loops 115-16 
Variational theories 14-15 
Variational theories and CRIS model 

calculations 107-10 
Velocity 

of backbone atom,, Langevin 
dynamics 424-25 

Velocity—Continued 
particle, vs. shock velocity for 

iron 135/ 
Velocity autocorrelation function for n-

octane 481-83 
Verlet algorithm, bond length 

constraints 473 
Virial coefficients 

second, for fluorine and 
chlorine 200-205 

second, reduced, for two-center Lennard-
Jones fluids 210-18 

second and third, of nitrogen and carbon 
dioxide 197, 378-80 

Stockmayer's potential for water. . . 306-7 
and Watts potential 310 

Virial equation of state 11-12 
Virial expansion 

densities at interfaces 140-48 
and perturbation theory 51 

Viscosity 
bulk 40-42 
shear 

Dymond's formula 118 
Hamiltonian mechanics 39-42 
for liquid argon, Krypton,and 

xenon 123/ 
for liquid iron 133/ 

solvent, Brownian dynamics . . . 428, 430 
Volume 

See also PVT relationships 
critical value, definition 7-8 
equation of state, parameter b 7-8 
excess, of mixtures of hard 

molecules 85-87 
excluded, of n-octane 478-79 
in extended scaled particle 

theory 175-78 
partial molecular, Kirkwood-Buff 

theory 102 
V-structure, energetic analysis and geomet­

ric analysis of liquid 
water 282, 284-95 

W 

Wall-particle potential for hard-sphere 
fluid 151 

Water 
convergence profile for Metropolis Monte 

Carlo computer simulation . . . . 318/ 
heat capacity, constant 

pressure 319-20 
intermolecular force field, Reimers, 

Watts, and Klein 
potentials 307, 322-25 

intermolecular interactions 304-12 
Monte Carlo simulation of cluster . . 346/ 
physical properties 298-304 
thermodynamic properties, calculated vs. 

observed 324/ 
trimers, hydrogen bonded, acceptors and 

donors 311 
x-ray diffraction 325-34 

Water-water potentials, computational ex­
pense for factors 308/ 
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INDEX 523 

Water-water radial distribution 
functions 332 

Watts potential and virial coefficient 
data 310 

Wave structure, shock application of molec­
ular dynamics simulation 42-45 

Weeks-Chandler-Andersen 
expansion for atomic liquids 218-21 
perturbation theory, Verlet-Weis 

version 378 
Wigner rotation matrices, alkane 

dynamics 450-54 

X 

Xenon 
HC1, phase diagrams 87/ 
Hugoniot data and theoretical 

calculations 125/ 
sound speeds, vapor pressures, and shear 

viscosities 119-24 
zero-Kelvin isotherm for solid 119/ 

x-Ray diffraction 
patterns of liquid water 325-34 

x-Ray diffraction—Continued 
radial distribution function 12-13 
review 16-19 

Y 

Yvon-Bogoliubov-Born-Green-Kirkwood, 
distribution function theory . . . . 13-15 

Z 

Z-momentum transfer and content changes, 
simulation vs. Langevin theory. . . 165/ 

Zero-Kelvin isotherm 
for hydrogen, CRIS model 

calculations 126-28 
for iron, close-packed 132/ 
for methane 128, 130 
of solid and CRIS model to calculate ther­

modynamic properties 107-36 
for xenon 119/ 

Zeroth-order reference average Mayer-func­
tion theory 255-56 

Zone center librational frequencies for nitro­
gen and carbon dioxide . . . . 196/, 198/ 
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