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FOREWORD

Apvances IN CHEMisTRY SERIES was founded in 1949 by the
American Chemical Society as an outlet for symposia and
collections of data in special areas of topical interest that could
not be accommodated in the Society’s journals. It provides a
medium for symposia that would otherwise be fragmented,
their papers distributed among several journals or not pub-
lished at all. Papers are reviewed critically according to ACS
editorial standards and receive the careful attention and proc-
essing characteristic of ACS publications. Volumes in the
ApvaNceEs IN CHEMISTRY SERIES maintain the integrity of the
symposia on which they are based; however, verbatim repro-
ductions of previously published papers are not accepted.
Papers may include reports of research as well as reviews since
symposia may embrace both types of presentation.
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PREFACE

THE MOLECULAR THEORY OF LIQUIDS AND DENSE GASES is currently in the
midst of a healthy period of growth and expansion. Much of the activity
in the area has been instigated by the wide-spread availability of high-
speed digital computers coupled with significant advances in a number
of experimental methods for measuring fluid properties and exploring
fluid-phase behavior. The computer has not only provided the means
for generating quantitative results for problems defying analytic solution,
but it also has enabled direct simulation of molecular behavior in fluids
via techniques known as Monte Carlo, molecular dynamics, and Brownian
dynamics. Important experimental advances include high-flux nuclear
reactors and pulsed-neutron sources for determining a variety of static
and dynamic fluid properties; lasers for extracting information on dynamic
relaxation processes; improved molecular beams for ascertaining details
of intermolecular pair potential functions; and ellipsometry for probing
fluid interfaces. These various computer simulation and experimental
methods are providing molecular theorists, as never before, with a wealth
of data to be digested, organized, interpreted, and made predictable.

Numerous theoretical tools have been developed in attempts to cope
with the profusion of simulation and experimental data. The more suc-
cessful theoretical developments include integral equations for molecular
distribution functions, perturbation and variational theories, analytic
expressions for the thermodynamic properties of the hard-sphere and
Lennard-Jones fluids, and improved forms for intermolecular potential
energy functions. The success of the molecular approach to the study
of fluid behavior is indicated by the fact that many of these theoretical
advances are replacing empiricisms in engineering design and process
analysis computations. Furthermore, molecular-based corresponding states
and conformal solution theories are now widely used by the engineering
community.

Thus, the molecular-based study of fluids is a multidisciplinary
endeavor that involves chemists, physicists, and engineers. This volume
reflects the breadth of the endeavor as indicated by the variety of phe-
nomena under investigation, the diversity of scientists and engineers
involved in the research, and the internationally recognized importance
of the problems to be solved. In this collection of papers, we have
emphasized, with some exceptions, static properties at the expense of
dynamic properties, because substantially more progress has been made
in resolving difficulties in the theory of static properties. The only con-

xi
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straints we have placed on the authors are to insist that results take
priority over methodology and that the papers present a juxtaposition of
two from the following triad: theory, experiment, and computer simula-
tion. We hope this collection of papers communicates to the research
specialist, the curious nonspecialist, and the practicing engineer the
recent progress made towards a more complete explanation of fluid-
phase behavior.

J. M. HaLe
Cornell University
Ithaca, NY 14853

G. A. MANSOORI

University of Illinois at Chicago
Chicago, IL 60680

November 29, 1982
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Molecular Study of Fluids: A Historical
Survey

G. A. MANSOORI

University of Illinois at Chicago, Department of Chemical Engineering,
Chicago, IL 60680

J. M. HAILE
Clemson University, Department of Chemical Engineering, Clemson, SC 29631

This introductory chapter traces the development of the
molecular theory of fluids as it has evolved over roughly
the last 200 years. Many of the modern variations of mo-
lecular theory applied to fluids originated in the last quarter
of the 1800s with the contributions of van der Waals; this
chapter is organized to reflect that fact. The overview of
present day techniques presented here includes brief dis-
cussions of theoretical, experimental, and computer simu-
lation methods. The intent is to provide some historical
perspective for the remainder of this volume.

HE OBJECTIVE OF THE STUDY OF FLUIDS from a molecular basis is to
T develop means for accurately predicting thermophysical properties
and local structure in fluid systems. The thermophysical properties of
interest include thermodynamic properties, transport properties, and
phase equilibrium behavior. Local structure in fluids is measured by
spatial and temporal distribution functions; in general, these distribution
functions are proportional to the probability of finding molecules at par-
ticular points in the fluid at particular times. To attain the desired pre-
dictive capability, molecular theories usually start from a few well-defined
characteristics of the constituent molecules. These characteristics typi-
cally include the geometric structure of individual molecules; the nature
of forces acting among different molecules (i.e., intermolecular potential
energy functions); and the nature of forces acting among sites on indi-
vidual molecules (i.e., intramolecular potential energy functions).

In recent years, the molecular-based study of fluids has been mo-
tivated not only by scientific demands to improve on existing knowledge,
but also by practical demands from increasingly sophisticated industry.
Hence, developments in molecular theory are serving as a foundation
for engineering design calculations in a growing number of industrial

0065-2393/83/0204-0001/$07.75/0
© 1983 American Chemical Society
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2 MOLECULAR-BASED STUDY OF FLUIDS

situations in which fluids are the primary media for transporting matter
and energy and for supporting chemical reactions.

Throughout this book, fluid refers collectively to the liquid and
gaseous states of matter, including those states in the region of the phase
diagram above the critical temperature and critical pressure. The dis-
tinctions between gases and liquids and between liquids and solids are
not so easy to put into words as one might think. It should suffice to say
that by gas we mean a substance whose volume increases continuously
and indefinitely as the system pressure is reduced isothermally. In con-
trast, a liquid is a substance whose volume does not change continuously,
without limit, if the system pressure is either increased or decreased
isothermally. Further, a liquid is an equilibrium state of matter and,
therefore, is distinct from an amorphous solid. Figure 1 gives a repre-
sentation of the three phases.

®
®
o o
&
\ 2
V- 0
Ll
Lo
i o
DENSITY
Figure 1. Macroscopic and microscopic descriptions of solid, liquid, and
gas phases.

The center is a schematic pressure-density diagram for a pure substance. The solid
lines represent two-phase equiZbria between pairs of the three basic states: solid, liquid,
and gas. The broken line represents the critical isotherm, which goes through a point
of inflection at the gas-liquid critical point. The inserts are schematic representations
of computer simulation results for each of the three basic states. Each insert shows a
typical packing configuration for the spherical molecules at one instant of time and
ty}fn'cal molecular trajectories for a period of time. The left insert represents the gas
phase, which is characterized by low density and long, straight-line trajectories occa-
sionally interrupted by binary collisions. The solid phase, represented in t{le right insert,
exhibits high density and close packing of the molecules, which are essentially confined
to fixed sites. The central insert represents the dense fluid and liquid states, which have
features, on the molecular level, between the extremes represented by solid and gas.
(Reproduced with permission from Ref. 149. Copyright 1981, Scientific American.)
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In this chapter we survey many of the significant developments in
the evolution of molecular theory applied to fluids. The goal here is to
provide background and perspective that will, to some extent, give con-
text to the various chapters of this volume. Because of the central im-
portance of the work of van der Waals, we have organized the presen-
tation into three major sections:

1. The era before van der Waals
2. The contributions of van der Waals
3. The era after van der Waals

In the hundred years or so since van der Waals, progress toward a
comprehensive molecular theory of fluids has been propelled by the
interaction of theory, laboratory experiment, and, more recently, com-
puter simulation. Each of these three modi operandi is addressed in the
discussion of the era after van der Waals.

The scope of this survey chapter is necessarily restricted. Although
intramolecular and intermolecular potential energy functions are usually
taken as known in molecular-based studies of fluids, the measurement
of such potentials and development of realistic model potentials is a
complex undertaking. We do not discuss studies of potential functions,
per se, other than to describe a basic pair potential in Figure 2. The
chapter by Murthy et al. in this volume and other literature (I-3) deal
with that subject in more detail. There are approaches toward prediction
of physical properties in which detailed knowledge of potential functions
is avoided; Kerley’s contribution to this book is one such approach.

More generally, the scope of this introductory chapter is limited to
prominent developments in the study of static properties of fluids. The
study of dynamic properties—transport properties, relaxation proc-
esses—is an important and active area of current research. In this volume,
the chapter by Kiefer and Visscher presents an original attack on one of
the many problems in that area. Other publications focus on the de-
scription of dynamic properties of fluids (4-6).

We have, in this introductory chapter, sacrificed thoroughness in
documentation in favor of an educational tone directed toward those
readers who are uninitiated in the mysteries of fluid state physics. We
hope those experts who do not find their work directly referenced here
will be able to find such citations in other chapters of this volume. In
any event, a thorough discussion of the historical development and recent
progress toward a complete molecular theory of fluids would be a veri-
table feast compared to the meager apéritif presented here.

The Erva Before van der Waals

Aside from a fairly superficial discussion of forces in fluids by Isaac
Newton in his Principia Mathematica near the end of the 17th Century
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r

Figure 2. Intermolecular potential functions.

A schematic intermolecular potential energy function is shown for two spherically
symmetric molecules, separated Zy a distance r. For separations r < r,,, the net force
acting on the molecules is repulsive and arises primarily from overlap of electron clouds.
For r > r,, the net force is attractive and is primariyy due to induction of temporary
dipoles via momentary distortion of the electron clouds. In general, a number o[ ex-
perimental techniques are required to determine the full potential curve shown here.
These techniques include: high (A) and low (B) temperature measurements of second
virial coefficients, high (D) and low (C) temperature measurements of dilute gas vis-
cosities, and molechar beam experiments (B and E). The letters (A-E) indicate the
approximate portion of the potential curve that is most sensitive to the corresponding
experiment. In addition, solid-state properties may be used to check values of the po-
tential parameters € and o determined from other experiments and to estimate the
magnitude of multi-body interactions, as opposed to the purely two-body potentials
described in this figure (3).

(7), there was little important experimental or theoretical work done on
dense fluids until the early 1800s. In 1808 Pierre Simon Laplace pub-
lished the first book of his multivolume treatise, Mécanique Céleste,
which contained a description of fluid equilibrium and fluid motion (8).
In a supplement to the treatise, Laplace developed a theory of capillary
phenomena that would influence many later workers, including van der
Waals.

Early Motivation for the Study of Fluids. There were several rea-
sons for the early research on fluids at moderate to high densities. A
primary motivation was to demonstrate that any substance would, under
the proper conditions of temperature and pressure, exist in any of the
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three states of matter—solid, liquid, and gas. This had been conjectured
much earlier than 1800; John Dalton was merely repeating the conjecture
when in 1807 he included the following statements in his formulation of
the atomic theory (9):

There are three distinctions in the kinds of bodies, or
three states . . . ; namely, those which are marked by the terms
elastic fluids, liquids, and solids. A very familiar instance is
exhibited to us in water, . . . which, in certain circumstances,
is capable of assuming all the three states.

A second motivation was the study of deviations from ideal gas
behavior. The combined laws of Charles, Boyle, and Gay-Lussac pro-
duced an ideal gas equation of state of the form

PVIT = R (1)

in which P is the absolute pressure exerted by a gas of specific volume
V at absolute temperature T, and R is a constant. There was considerable
interest in determining whether Equation 1 applied to all gases and in
discovering the range of conditions of state over which Equation 1 was
valid.

A third motivation was the accumulation of indirect evidence for
the existence of intermolecular forces in matter. Again, Dalton had reached
very clear ideas on this subject, as indicated by his conclusion (10) that

The constitution of a liquid, as water, must then be con-
ceived to be that of an aggregate of particles, exercising in a
most powerful manner the forces of attraction and repulsion,
but nearly in an equal degree.

Early Work to 1850. The experimental challenge in research on
fluids in the nineteenth century was to liquefy all substances that were
known to be gaseous near ambient temperature and atmospheric pres-
sure. It is not known who first discovered that gases could be liquefied
by a combination of cooling and compression, but the Dutch chemist
van Marum was probably the first to knowingly liquefy a substance—it
happened to be ammonia—liquefied in the latter part of the eighteenth
century (11, 12). By 1800, several gases had been liquefied; Michael
Faraday has given a historical review of much of that early work up until
1823 (13).

In the years 182223 Charles Cagniard de la Tour reported (14-16)
his observations of what we now call the gas-liquid critical point. Ca-
gniard de la Tour was not attempting to liquefy gases; rather, he was
approaching the problem from the opposite direction by vaporizing lig-
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uids in a sealed tube. He found that above a certain temperature, a liquid
could be completely vaporized in an enclosed container. Although largely
neglected, this discovery was of crucial importance to both the practical
problem of gas liquefaction and the more abstract problem of developing
a molecular theory of fluids.

In 1823 Sir Humphrey Davy and Faraday reported the temperatures
and pressures at which several gases could be liquefied (17). Their studies
included chlorine, ammonia, hydrogen sulfide, hydrochloric acid, and a
number of other substances. Subsequently, Faraday undertook his well-
known work on electricity and electrolyte solutions, but in the early
1840s he sought relief from that intense labor by returning to the problem
of gas liquefaction. He reported successful liquefaction of a number of
gases (18), reaching temperatures of about —90 °C and pressures of 50
atm. However, he was unable to liquefy hydrogen, oxygen, nitrogen,
carbon monoxide, methane, and nitric oxide. These became known as
“permanent” gases and, over the next decade or so, many researchers
made serious, though unsuccessful, attempts to liquefy them. Prominent
among those attempts was the work of Natterer, who, it is reported (19—
22), applied pressures of as much as 3000 atm., but at room temperature.

Faraday himself did no further work on the problem, but he was
familiar with Cagniard de la Tour’s discovery and understood its impli-
cations. Thus, in 1845 we find Faraday writing (18):

Again, that beautiful condition which Cagniard de la Tour
has made known, and which comes on with liquids at a certain
heat, may have its point of temperature for some of the bodies
to be experimented with, as oxygen, hydrogen, nitrogen, etc.,
below that belonging to the bath of carbonic acid and ether:;
and in that case, no pressure which any apparatus could bear
would be able to bring them into the liquid or solid state.

Faraday’s published papers on gas liquefaction have been assembled into
a little volume by the Alembic Club of Edinburgh (23).

In 1850 Pierre Eugene Marcelin Berthelot performed an experiment
that demonstrated the presence of cohesive forces in liquids. The ex-
periment involved sealing a liquid in a glass tube and heating the system
until the liquid expanded, filling the tube. The tube was then cooled,
producing tensions of as much as 50 atm. before the liquid collapsed.
Two decades later, van der Waals incorporated the idea of cohesive forces
into his equation of state.

Heidelberg, 1851-61. During the 1850s, while fruitless efforts were
being made to liquefy the “permanent” gases, a collaboration between
Robert Bunsen and Gustav Kirchhoff at Heidelberg culminated in 1859
with the development of spectroscopy—an analytical technique that was
to have far-reaching impact on much of science, including the study of
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fluids. Almost immediately, Kirchhoff turned the spectroscope towards
the sun and identified a number of elements in the solar spectrum. In
the mid-1860s Janssen (24) and Lockyer (25) performed spectral analyses
of the solar atmosphere and identified a new element that Lockyer named
helium. A popularized account of the Bunsen—Kirchhoff discoveries has
been given by Gingerich (26).

During the period 1859-60 the Russian chemist Dmitri Ivanovich
Mendeleev was visiting Bunsen and Kirchhoff at Heidelberg. Mendeleev
established a small laboratory of his own there and studied capillary
phenomena of fluids, deviations from ideal gas behavior, and thermal
expansion of liquids (27-30). In 1860, Mendeleev was studying surface
tensions of liquids when he rediscovered the gas-liquid critical point—
which he called the “absolute boiling point” (31). This discovery con-
firmed the earlier work of Cagniard de la Tour and was repeated a year
later by Andrews. While in residence at Heidelberg, Mendeleev at-
tended a conference in Karlsruhe that directed his thinking along the
path to the periodic table.

The Era of Andrews and van der Waals, 1861-73

Thomas Andrews was trained as a medical doctor and had practiced
medicine before assuming a position as professor of chemistry in Belfast.
Andrews had begun his research on fluids by attempting to liquefy the
permanent gases. Failing at this, he turned, in 1861, to carbon dioxide.
He found that at temperatures below 31 °C, carbon dioxide could be
liquefied by applying sufficient pressure. However, above 31 °C lique-
faction would not occur at any pressure. Andrews hypothesized that such
a state existed for all fluids and called it the critical point. His experiments
were first made public in the 1863 edition of W. A. Miller’s textbook
(32). In 1869 Andrews gave the Royal Society’s Bakerian lecture, which
he entitled “On the continuity of the gaseous and liquid states of matter”
(33-35).

During the years 1862-72 a young Dutchman, Johannes Diderik
van der Waals, was engaged in his doctoral work at Leiden. His research
on fluids was a theoretical study based on Maxwell’s kinetic theory of
gases and Laplace’s studies of capillary phenomena. On learning of An-
drews’s identification of the critical point, van der Waals resolved that
his theory should account for the behavior of fluids both above and below
the critical point. By accepting the molecular hypothesis, including the
ideas that molecules are of finite size and exert forces on one another,
van der Waals arrived at his celebrated equation of state (36)

P = RT/(V=Db) — a/V? 2)

Here, a and b are parameters characteristic of a particular fluid. Param-
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eter a measures the attractive forces among the molecules, and parameter
b measures the molecular volume. This equation of state unified the
experimental knowledge of 1875, for it not only accounted for deviations
from the ideal gas law, Equation 1, but also predicted gas-liquid equi-
librium and the existence of a critical point. Further, van der Waals
concluded that critical phenomena result from a balance of contributions
from short-range repulsive forces and long-range attractive forces acting
between molecules. This conclusion is perfectly valid today, and we now
know that the a/V? term in Equation 2 is the rigorous consequence of
assuming weak attractive forces acting at long range (37, 38).

Surprisingly enough, the qualitative accuracy of Equation 2 extends
far beyond the experimental knowledge of the 1870s, for by extending
it to mixtures, van der Waals and others (39, 40) have predicted a wealth
of phase equilibrium behavior. For example, van der Waals used Equa-
tion 2 to predict the possibility of phase separations in binary mixtures
above the critical point. This is gas—gas equilibrium, so-called, and its
existence was experimentally verified in 1940 (41). Gas—gas equilibrium
is discussed in the chapter by Deiters in this book. A general classification
scheme for fluid phase equilibria, originally based on solutions of Equa-
tion 2 for mixtures, is discussed in the chapter by Shing and Gubbins.
Though qualitatively correct, the van der Waals equation is quantitatively
inaccurate in the high density regions of the phase diagram. In industrial
situations, it has been supplanted by more reliable, albeit more com-
plicated, equations of state.

In addition to the equation of state, Equation 2, van der Waals
developed the principle of corresponding states. This principle hypoth-
esizes that the functional relations among pressure, temperature, and
volume are the same for all fluids, and hence the phase diagrams for all
fluids can be made to coincide by a proper scaling of P, T, and V.
Physically, the critical point is the “corresponding” state among all fluids,
so the scaling can be accomplished by using the critical values P,, T,,
and V_. A graphic interpretation of the idea of corresponding states is
presented in Figure 3.

The thesis of J. D. van der Waals “On the Continuity of the Liquid
and Gaseous States,” was published in 1873. In 1910 he was awarded
the Nobel prize for his work on fluids. In his Nobel lecture, van der
Waals referred to the importance of a molecular approach to fluids in
the following way (42):

It will be perfectly clear that in all my studies I was quite
convinced of the real existence of molecules, that I never re-
garded them as a figment of my imagination, nor even as mere
centres of force effects. 1 considered them to be the actual
bodies . . . . When I began my studies I had the feeling that
I was almost alone in holding that view. And when, as occurred
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(a) (b)

1 r¥

(c) (d)

P p¥

Figure 3. Corresponding states. Top, parts (a) and (b) show the micro-
scopic explanation of corresponding states. Bottom, parts (c) and (d) show
use of this concept.

In (a), the intermolecular potential energy functions of two pure substances a and
B have the same functional form but different values of the parameters € and o. Thus,
these two potential curves may be made to coincide by plotting in reduced quantities,
U* = Ule and r* = r/o, as is done in (b). The utility of the corresponding states idea
is illustrated in (c) and (d). In (c), the phase diagrams of substances o and B occupy
different regions of pressure-density space. However, the diagrams can be made to
coincide by plotting in reduced quantities, as in (d). The reduction may be done either

in terms of potential parameters, as shown here, or in terms of critical properties.

already in my 1873 treatise, 1 determined their number in one
gram-mol, their size and the nature of their action, 1 was
strengthened in my opinion, yet still there often arose within
me the question whether in the final analysis a molecule is a
figment of the imagination, and the entire molecular theory
too. And now I do not think it any exaggeration to state that
the real existence of molecules is universally assumed by phys-
icists. Many of those who opposed it most have ultimately been
won over, and my theory may have been a contributory factor.
And precisely this, 1 feel, is a step forward.
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The Era After van der Waals

Molecular Theories. BackGROUND WORK, 1873-1905. Even
though the van der Waals equation of state, Equation 2, does not tell us
much about microscopic structure in dense fluids, it represents the first
successful interpretation of macroscopic fluid properties in terms of mo-
lecular quantities. Thus, by 1873 a reasonably accurate theoretical de-
scription of fluids was available before the practical requirements of sci-
ence and engineering demanded it. During the remaining years of the
nineteenth century, two gifted theorists—Boltzmann and Gibbs—estab-
lished the foundations of statistical mechanics, the bridge that connects
molecular behavior with macroscopic fluid properties.

Ludwig Boltzmann set out to obtain a molecular interpretation of
the second law of thermodynamics. That work culminated in a demon-
stration that the second law has a statistical character (personified as
Maxwell’s demon). During the course of his work, Boltzmann accom-
plished a number of other objectives. These included a rigorous proof
of Clerk Maxwell’s kinetic theory of gases; development of many of the
fundamental concepts of statistical mechanics, such as phase space, er-
godic systems, and the H-theorem; and a derivation of the Boltzmann
transport equation. His work on fluids is summarized in Vorlesungen
tiber Gastheorie, for which there is an English translation by Brush (43).

Boltzmann was as much interested in the philosophy of science,
metaphysics, as he was in ordinary physics, which he called orthophysics.
Thus, he was involved in arguments raging at the time as to whether
molecules actually exist or are merely models of nature. By 1895, Boltz-
mann was satisfied that the kinetic theory of gases verifies the atomic
theory (44):

But this theory (the kinetic theory) agrees in so many
respects with the facts, that we can hardly doubt that in gases
certain entities, the number and size of which can roughly be
determined, fly about pell-mell.

J. Willard Gibbs was the preeminent American scientist of the nine-
teenth century, though this fact was not immediately recognized. Gibbs
earned a Ph.D. in 1863 from the Sheffield Scientific School of Yale
University for his thesis, “On the Form of the Teeth of Wheels in Spur
Gearing,” a decidedly practical problem. He also invented and patented
a railway car brake and invented a governor for steam engines (45). It is
interesting that two of the theoreticians with the most fertile minds of
the last hundred years—Gibbs and Einstein—should both have served
apprenticeships in such practical, mechanical environments as provided
by gears, brakes, and patent offices. From 1866 to 1869 Gibbs traveled
in Europe, absorbing the leading scientific ideas of the time. During
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1868-69 he visited Heidelberg, where he was influenced by Helmholtz
and Kirchhoff.

From 1871 until his death in 1903 Gibbs served as professor of
mathematical physics at Yale. From 1876 to 1878 he published his mag-
num opus, “On the Equilibrium of Heterogeneous Substances,” which
appeared in the obscure journal, Transactions of the Connecticut Acad-
emy (46, 47). With this one work, Gibbs single-handedly established the
field of fluid phase equilibrium and solved many of its important prob-
lems. Among other things, the work included the criteria for phase equi-
librium, the Gibbs adsorption equation for concentration in fluid inter-
faces, and the celebrated phase rule. The work is a monumental
achievement in classical thermodynamics; all its results are deduced solely
from the first and second laws of thermodynamics. Following publication
of that work, Gibbs turned to a study of the molecular explanations
underlying his classical thermodynamic results. The product of this fur-
ther study was the first textbook in statistical mechanics, published in
1902 (48).

By the turn of the century, several empirical and semiempirical
equations of state, in addition to Equations 1 and 2, were in use. Prom-
inent among them were various forms of the virial equation of state. The
virial equation is a Taylor’s expansion of the compressibility factor Z =
PV/RT in density, p, about that for an ideal gas (Z = 1),

Z=1+Bp+ Cp2+Dp®+ ... 3)

where B, C, etc., are the virial coeflicients, e.g.,

0z
B = [%] "

Kamerlingh Onnes (49, 50) in 1901 was one of the first to write down a
form of Equation 3, and it was Onnes who suggested the name virial
coefficients. A summary of the historical development of the virial equa-
tion has been given by Spurling and Mason (51).

MODERN APPROACHES. For a number of years, the virial equation
of state was treated as an empirical expression; values of the coefficients
were estimated by fitting to experimental data. In the 1930s, Joseph
Mayer (52, 53) showed that the virial equation has a rigorous derivation
in statistical mechanics and, further, that the coefficients are related to
intermolecular forces in an appealing way. Thus, the second virial coef-
ficient, B, is related only to two-body interactions, the third, C, only to
two-body and three-body interactions, and so forth. The virial equation
has, therefore, assumed importance as both a practical tool and an en-
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lightening statement on the theory of macroscopic and microscopic prop-
erty relations. Consequently, the problems of, at least, thermodynamic
properties of imperfect gases can be considered to be solved.

Unfortunately, the virial equation fails to converge at liquid den-
sities, so new attacks have had to be formulated for a statistical mechanical
description of the liquid state. A survey of this work is given in Reference
152. In the brief summary here, we divide these approaches into (1)
interpretive techniques, (2) predictive techniques, and (3) perturbation
and variational techniques.

Interpretive Approaches. Interpretive approaches to the molec-
ular theory of fluids begin with an approximate description of microscopic
structure in fluids, as shown in Figure 4. These approaches are called
lattice theories because the liquid structure is customarily assumed to
resemble the regular lattice structure of crystalline solids (54, 55). As-
sumptions regarding structure must be guided both by physical reality
and by the ability to calculate thermodynamic properties of the substance
under consideration. For crystalline solids, these requirements are har-
monious because solids are known to have regular structures that are
disturbed only slightly by thermal motion. Such regular and more or
less static structures lead to a statistical mechanical partition function
that can be used for calculations of thermodynamic properties. Liquids,
however, offer a serious challenge to the viability of interpretive ap-
proaches because liquid structure is continually changing and can be
visualized only on an instantaneous basis. To account for this physical
reality in liquids, a static average over the instantaneous structure may
be used. Such an approach may lead to a satisfactory lattice theory for
liquids. Advanced lattice theories of the liquid state require complicated
combinatorial mathematics to achieve realistic models of liquid structure
(55).

Predictive Approaches. Predictive statistical mechanical tech-
niques place initial emphasis on the process by which the intermolecular
forces determine the structure, in the hope that a correct mathematical
description of this process will lead to equations whose solutions describe
the actual liquid structure (37, 38, 56-58). Theories of this class are often
called distribution function theories, because the resulting equations
involve molecular distribution functions that specify the probability of
finding sets of molecules in particular statistical mechanical configura-
tions. The measurement of local structure in fluids via molecular distri-
bution functions was introduced by John Kirkwood in the mid-1930s (59).
The definition of such functions was motivated by the discovery in the
1920s that X-ray diffraction could be used to obtain the radial distribution
function g(r) in atomic fluids. The function g(r) is a measure of the prob-
ability of finding two atomic centers separated by a distance r. One of
the earlier and best experimental papers that describes the measurement
of g(r) is an extensive one on argon (60).
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Figure 4. Local structure in matter.

Local structure may be characterized by a pair distribution function g(r) that is
related to the probability of finding pairs o mofecules separated by distances r. The
limiting values of g(r) witZ istance and density are illustrated here. At short range, g(r)
vanishes because of excluded volume effects; at long range, g(r) goes to unity because
g(r) is normalized by the bulk density. At low densities there is essentially no local
structure in the fluid and g(r) quickly assumes its long range limit. In crystalline solids,
structure persists to larger r, and g(x) is a series of Gaussian functions, corresponding
to molecular vibrations about lattice sites. At liquid densities, the fluid exhibits short
range structure similar to the solid and l}img range disorder characteristic of the gas

phase.

Three distribution function theories, the Yvon—Bogoliubov—-Born—
Green—Kirkwood (YBBGK), Percus—Yevick (PY), and hypernetted chain
(HNC) theories, are the basis for the various theories now available in
the predictive class. These three theories have rather different origins,
and each requires specific initial assumptions to produce tractable results.
It is generally conceded that the PY theory is capable of predicting
thermodynamic properties of liquids and vapors more accurately than
the other two theories. The YBBGK theory does, however, possess unique
features, such as the ability to predict qualitatively a freezing transition.
Overall, these theories are deemed sufficient for predicting properties
of atomic fluids such as argon.

For molecular liquids, mathematical solution of the distribution



Published on June 1, 1983 on http://pubs.acs.org | doi: 10.1021/ba-1983-0204.ch001

14 MOLECULAR-BASED STUDY OF FLUIDS

function theories is more complicated than for atomic fluids. In the HNC
theory for molecular fluids, simplifications can be obtained by expanding
a logarithmic term; this leads to the linearized (LHNC) and the quadratic
(QHNC) versions of the theory (61, 62). The LHNC theory turns out to
be equivalent to another theory of molecular fluids called the generalized
mean field theory (63). In general, LHNC and QHNC are capable of
predicting properties of dipolar and quadrupolar fluids. Such develop-
ments in the predictive approach have produced analytic results that are
of both scientific and industrial importance (58, 64).

Perturbation and Variational Approaches. These theories arise from
expansions of the free energy, or partition function, of a substance about
a relatively simple reference substance for which analytic molecular ther-
modynamic relations are in hand (58, 65-71). The reference system could
be a fluid whose molecules interact with a simple potential function and
whose properties have been obtained from interpretive or prediction
theories or from computer simulation. This is precisely the motivation
for the work on hard convex bodies presented by Boublik later in this
book.

The basis of perturbation and variational theories is an idea that can
be traced back to the van der Waals equation of state, Equation 2.
According to this idea, repulsive intermolecular forces are the dominant
effect in determining the structure in dense fluids, while attractive forces
play only a minor role in determining structure. Attractive forces are
largely responsible for maintaining the stability of liquids at high den-
sities.

The successful perturbation and variational theories usually expand
about reference fluids whose intermolecular forces are repulsive only.
However, there are several exceptions to this general observation. One
is the case of associating molecular fluids (those with hydrogen bonding)
for which attractive forces among the molecules are so large that they
compete with repulsive forces in determining structure (72). Another
exception is the case of fused salts. In fused salts the attractive charge—
charge interactions produce a local structure known as charge layering
(73).

If we consider Equation 2, the van der Waals equation of state, as
the first perturbation theory for fluids, then the next advance occurred
in the early 1950s when Zwanzig (74) introduced a perturbation theory
for atomic fluids and Pople (75) made an analogous development for
molecular fluids. Further progress was not made until the 1960s, when
computer simulation data became available for simple model fluids that
could serve as references in the theoretical expansions. Perturbation and
variational theories have been quite successful in predicting thermody-
namic properties of gases, liquids, and solids, and there remain broad
prospects for extending these approaches to various kinds of fluid sys-
tems.
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In this book, the chapter by Henderson summarizes the develop-
ment of perturbation theories for atomic fluids. In the chapters by Kohler
and Quirke and by Smith and Nezbeda perturbation theories are applied
to problems posed by molecular fluids. In the chapter by Singh and
Shukla these ideas are extended to mixtures of molecular fluids.

Variational theories offer at least one unique feature among molec-
ular theories for fluids. This feature is the prediction of the melting
transition or melting curve (65, 66). Applications of the variational ap-
proach are discussed in detail in the chapter by Kerley.

FLUID INTERFACIAL PHENOMENA. The interfacial regions between
bulk phases of matter (e.g., liquid-vapor, solid-liquid, and liquid-liquid
regions) have posed fascinating and challenging problems for both the-
orists and experimentalists. A meaningful description of such interfaces
is much more difficult to attain than description of bulk phases because
of the nonhomogeneous, anisotropic nature of the interfacial region. Study
of interfacial phenomena is of practical importance, for example, in at-
tempting to promote mass and energy transfer across phase boundaries,
in catalysis, in lubrication, and in fuel cell technologies. The primary
problems to be solved include (1) descriptions of relations between in-
terfacial properties, such as surface tension, and molecular distribution
functions; and (2) prediction of species adsorption in the interfacial region.

The historical development of theories for interfacial properties largely
parallels that for bulk fluids. Thus, as mentioned earlier, Laplace worked
on a theory of capillary phenomena in the early 1800s (8). J. D. van der
Waals developed a theory of fluid interfaces that was published in 1893
but that has only recently been translated into English, by Rowlinson
(76). Gibbs also studied interfacial phenomena; he developed much of
the classical thermodynamics of interfaces and showed how the interfacial
tension is affected by adsorption of species in the interface (46, 47).

Modern theories for describing fluid interfaces include an updating
of the van der Waals theory (77), distribution function theories initiated
by Kirkwood and Buff (78, 79), and perturbation theories for atomic (80)
and molecular (81-83) fluids. Recently, ellipsometry has been used to
measure experimentally the microscopic adsorption of material in a lig-
uid-liquid interface (84). Extensive reviews of work on interfacial prob-
lems are available (85-88) and a new work on fluid interfaces (153) is a
valuable addition to the literature. The chapter by Fischer in this book
deals with vapor-liquid interfaces while the chapter by Henderson ad-
dresses the wall-ionic fluid problem. Figure 5 provides an example of
the application of computer simulation to problems of interfacial phe-
nomena.

Experimental Techniques. In the 19th Century, conjectural re-
lations between microscopic and macroscopic phenomena in fluids were
largely based on inferences from measurements of macroscopic proper-
ties. With the development of sophisticated experimental methods has
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Figure 5. Nonuniform fluids.

This figure shows one configuration from a molecular dynamics simulation of a
liquid droplet, in vacuo, initially formed from 138 spherical molecules. The intermo-
lecular interactions in this simulation were modeled by a Lennard—Jones 6-12 potential

function. The temperature of the droplet, in reduced units, was kT/e = 0.71 (150).

come the ability to probe more directly the molecular-scale nature of
matter. In this superficial review, we discuss available experimental
methods in the following three categories:

1. Thermodynamic property measurements, such as pres-
sure~volume—temperature (PVT) experiments, calorimet-
ric methods, and phase equilibrium studies

2. Radiation scattering experiments, including Raman and
Rayleigh light scattering, X-ray diffraction, and neutron
scattering

3. Molecular relaxation processes, such as transport, dielec-
tric relaxation, ionic diffusion, and migration

Through the van der Waals era, measurement of bulk fluid ther-
modynamic properties (particularly PVT experiments, calorimetry, and
phase equilibrium studies) was the primary means of gleaning information
on the molecular nature of fluids. The prominent experimentalists of the
last hundred years include Dewar, who invented the vacuum insulated
bottle and first liquefied air and hydrogen in large quantities (89); Ramsay,
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who, in collaboration with Lord Rayleigh, discovered argon and went on
to discover the other noble gases—krypton, neon, and xenon (90-92);
and Kamerlingh Onnes, who first liquefied helium and explored the
behavior of matter at temperatures near absolute zero (93-96). The tra-
dition of high quality experimental work at Leiden under Kamerlingh
Onnes was continued by Michels. Giauque performed a number of ac-
curate experiments to test the validity of the third law of thermodynamics
(97). In the first half of the 20th Century several prominent experimen-
talists resided in the U.S.; these include: Beattie at Massachusetts In-
stitute of Technology, Bridgman (98) at Harvard, Dodge at Yale, Kurata
at Kansas State, and Sage and Lacey at California Institute of Technology.
For an abbreviated historical summary, see Reference 99.

Today, the study of thermodynamic properties and phase diagrams
under conditions of extreme pressures and temperatures remains of im-
portance both for satisfying industrial needs and for investigating inter-
molecular forces (100, 101). In this book, the chapter by Deiters reports
on recent experimental PVT and phase equilibrium results and illustrates
how such data help support theoretical developments. Often the infi-
nitely dilute region of mixture phase diagrams is neglected in the mo-
lecular study of fluids; in this volume, Jonah assesses the importance of
infinitely dilute solutions.

Traditional exploration of intermolecular forces in terms of ther-
mophysical properties was carried out only indirectly; that is, assumed
forms for intermolecular pair potentials were fitted to experimental data
such as second virial coefficients and viscosities. Recently, Smith and co-
workers (3, 102, 103) have devised methods for directly inverting mac-
roscopic property data to obtain the pair potential in atomic fluids. Fur-
ther, recent studies of short-range intermolecular forces have been car-
ried out under extreme pressures by imparting shock waves to the fluid
(104).

Direct experimental study of molecular phenomena in fluids now
primarily relies upon radiation scattering methods, particularly light, X-
ray, and neutron diffraction. The basic theoretical analysis of light scat-
tered from a sample was first performed by Lord Rayleigh in 1871 (105).
Since the wavelength of visible light is two to three orders of magnitude
larger than the intermolecular spacing at liquid densities, light scattering
is unable to provide details of local structure in liquids (106). However,
in the region of the critical point of both pure fluids and mixtures, spatial
correlations become long range, and therefore light scattering is widely
used in the study of critical phenomena (106). Further, methods are
under development for using depolarized light scattering to probe local
orientational structure in fluids (107-109).

From the time of Roentgen in the 1890s (110), there was interest
in developing a method for using X-ray diffraction to analyze the mo-
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lecular structure of matter. By 1915 Debye (111) and Ehrenfest (112)
were aware of how this could be done, and in the 1930s Menke and
Debye (113) introduced X-ray diffraction as a viable quantitative tech-
nique for measuring local structure in fluids. The method may also be
used to deduce forms for the intermolecular pair potential in simple
fluids (114). Today, X-ray diffraction is widely used to study atomic and
molecular fluids, fluid mixtures, and liquid metals (115, 116). A simplified
description of the method is given in Figure 6. For a recent discussion
of local structure in fluids, see Reference 151.

Neutron scattering is a more recent method, which probes both the
static and the dynamic structure in fluids. It is, therefore, a more powerful
experiment than X-ray diffraction, which is limited to determination of
static structure. Results from neutron scattering experiments are more
expensive to obtain and more difficult to analyze than are X-ray diffraction
results. The classic book on the neutron diffraction method is that by
Bacon (117); several more up-to-date reviews on the methods (118-120)

a

Figure 6. Measurement of local structure.

A simplified schematic diagram is shown of an X-ray or neutron diffraction exper-
iment for measuring local structure in 2fluids. An X-ray or neutron source, (a) provides
an incident beam ojg radiation that is collimated and made monochromatic (b). The beam
is then directed onto the fluid sample (c). One measures the intensity of the scattered
radiation (d) with detectors (e) as a function of the diffraction angle 8. The measured
intensity 1(0) is normalized with respect to an appropriate reference and corrected for
a variety of secondary effects, such as background radiation, absorption, multiple scat-
tering, and inelastic scattering. The normaﬁzed, corrected intensity produces the static
structure factor S(q), where q = (4m/\) sin (8/2), and \ is the wavelength of the incident

beam. The Fourier transform of S(q) yields the pair distribution function g(r) (151).
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and applications (121, 122) are available. Egelstaff and coworkers have
recently constructed a sensitive neutron diffractometer and used it in
studies of structure and intermolecular potentials in gases (123-125).

The general method in molecular relaxation studies is to apply a
stress to the fluid and measure the time required for the fluid to come
into equilibrium with the stress. Alternatively, the stress is applied and
then removed, and the time needed for the fluid to relax back to equi-
librium is measured. In dielectric relaxation studies, the stress is an
applied electric field; in measurements of diffusion coefficients, it is a
gradient in concentration; for viscosity, it is a shear stress, and so forth.
Such relaxation studies have not proven as fruitful as the static property
measurements mentioned above. It seems likely that further advances
in the fundamental theory of nonequilibrium processes will be necessary
before a more detailed description of molecular motions can be extracted
from experiment.

Computer Simulation. IMPORTANCE. In some ways, molecular
theory attains its highest degree of conceptualization in the simulation
of matter on digital computers. These simulations use individual particles
as the basic entity under study, and a collection of several hundred or
a few thousand particles comprises the system to be simulated. To define
the system properly, one must specify four items:

1. The structure of the individual particles

2. The state of the system; e.g., the number of particles per
unit volume of system, the number of particles present of
a particular species, the average kinetic energy of the par-
ticles

The nature of forces acting among the particles

4. The nature of the interaction of the system with its sur-
roundings

w

The simulation then determines how the system behaves under
these four basic constraints. Typically, the system behavior is measured
by monitoring the particle positions and various properties that depend
on those positions. In some simulations, various time derivatives of the
positions and related quantities are also evaluated. Depending on the
particular nature of the particles and their relation with the environment,
as embodied in the four attributes cited above, the simulation may evoke
an interpretation as any of a variety of physical situations. Examples
include such interpretations as molecules in a beaker of water, atoms on
a polyethylene molecule, molecules on a two-dimensional surface, ions
in a high energy plasma, or stellar material forming a galaxy. The book
by Hockney and Eastwood gives an overview of many of these applica-
tions of computer simulation (126).

Much of the importance of computer simulation stems from its in-
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teraction with and stimulation of theoretical and experimental work. In
comparisons of theoretical and simulation results, simulation plays the
role of experiment with the object of ascertaining the adequacy of a
proposed theory under conditions that can be met in both the theory
and the simulation. In this way certain ambiguities that may arise in
comparisons of theory and experiment can be avoided. An example is
the study of bulk fluids, in which the same intermolecular force law can
be adopted in both theory and experiment, removing the force law as
an unknown in testing the theory. Much work has been performed using
simulation in this way and one often sees simulation referred to as a
computer experiment (127-131).

An alternative use of simulation is the comparison of experiment
and simulation in which one attempts to mimic nature as closely as
possible. Using bulk fluid studies again as an example, consider the
problem of determining the form of an intermolecular potential function
for a particular fluid. A form for the potential is chosen, the simulation
is performed, and properties obtained from the simulation are compared
with laboratory results for the real fluid. At this point, a trial-and-error
approach is adopted in which one alternately modifies the potential func-
tion and performs further simulation. In this case, the simulation becomes
an extension of theoretical modeling and probably should not be inter-
preted as an experiment (72). Because of the importance of water, ex-
tensive efforts have been made to mimic water accurately by computer
simulation. In this volume, the chapters by Rossky and Hirata and by
Beveridge et al. report on recent advances in the study of water via
simulation—experiment comparisons.

This modeling aspect of simulation assumes a larger role than merely
an attempt to approximate nature. As in most modeling studies, simu-
lations in this vein enable one to probe how changes in particular aspects
of the model affect the overall system behavior. For example, studies
may be performed to discover the effects of modifying interparticle and
intraparticle forces; system temperature, pressure, or composition; or
the strength or character of the system’s interaction with its surroundings.
The chapter by Szczepanski and Maitland in this book is an illustration
of this type of work. Such studies have suggested fruitful lines of inquiry
for further work by both theorists and experimentalists.

METHODS AND APPLICATIONS. The application of computer simu-
lation to the study of fluids has its origins in the mid-1950s at certain
U.S. national laboratories. The first simulation method to be applied to
fluids was the Monte Carlo technique, which appeared in 1953 (132),
followed by the molecular dynamics technique in 1959 (133). Monte Carlo
embraces the ensemble averaging concepts of Gibbs (48) and is an ad-
aptation of the standard Monte Carlo method for evaluating multidi-
mensional integrals. The basis of the method is the realization of ensem-



Published on June 1, 1983 on http://pubs.acs.org | doi: 10.1021/ba-1983-0204.ch001

1. MANSOORI AND HAILE  Historical Survey 21

ble averages for properties of interest from a Markov chain of particle
positions generated for a single system. Wood has given a description of
the basic Monte Carlo method (134); a more recent collection of appli-
cations of the method is also available (135).

The molecular dynamics method is based on the kinetic theory of
Maxwell (136) and Boltzmann (43) and involves the determination of
particle positions by numerically solving the coupled equations of motion
given by Newton’s laws. The paper by Hoover et al. in this book sum-
marizes the historical development and current applications of molecular
dynamics. More detailed descriptions of the method are also available
(127, 131, 137-139).

Since the early 1960s, Monte Carlo and molecular dynamics have
been applied to systems of increasing complexity. From fluids composed
of hard spheres, methods have evolved to deal with soft spheres, rigid
linear molecules, rigid nonlinear polyatomics, and flexible polyatomic
molecules.

In addition to the ability to simulate complicated molecules, meth-
ods have been devised to simulate various system boundary conditions.
Examples include gas-liquid and solid—fluid interfaces, as well as moving
boundaries that give rise to shear or compression of the fluid. The growing
number of problems that can be attacked with simulation has been ac-
companied by increasing availability of inexpensive, powerful computers.
The result is that a large number of researchers are engaged in a variety
of very different simulation studies. A catalog of applications of simulation
to 1976 has been given by Wood and Erpenbeck (140).

In addition to the evolution of methods for simulating particular
physical systems, efforts have been made to improve the computing
efficiency of the methods. The results of such efforts usually involve some
hybrid of Monte Carlo and molecular dynamics that is particularly useful
for a specific class of problems. These hybrid methods encompass a
spectrum from the purely random motion occurring in Monte Carlo to
the purely deterministic motion in molecular dynamics. Such a spectrum
is depicted in Figure 7 (141). There is not space here to discuss all of
these variations on the computer simulation theme; however, the Brown-
ian dynamics method should be mentioned as of growing importance in
the study of large molecules. In this book, the chapter by Evans gives
a description of the method, and in the chapter by Weber et al. the
method of Brownian dynamics is applied to polyethylene.

Review papers are available describing the application of computer
simulation to the following problems: fluids composed of hard-core mol-
ecules (138), dynamic properties of monatomic liquids (142), equilibrium
properties of fluids composed of linear molecules (143), water (72), polar
fluids (144), supercooled liquids and solid-liquid phase transitions (145,
146), dynamics of protein molecules (147), and intermolecular spectros-
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Figure 7. Relative degree of determinism in various simulation methods.

Key: MMC, Metropolis Monte Carlo; FBMC, force-biased Monte Carlo; 1SD, im-
pulsive stochastic dynamics; BD, Brownian dynamics; GLD, general Langevin dynamics;
and MD, molecular dynamics (141%

copy (148). In the present volume, Shing and Gubbins review the com-
puter simulation methods that have been devised for determining the
free energy in pure fluids and mixtures.

Conclusion

The study of liquids and dense gases has a long history; as with most
such endeavors, this history is one of problems recognized, encountered,
and often overcome. Progress in the study of fluids met an impasse in
the first half of the twentieth century when formal theoretical advances
were far ahead of the calculational and experimental methods of the day.
However, the power and availability of the digital computer has rectitied
that situation.

In addition to the important advances made possible by the simu-
lation methods discussed in the previous section, the computer makes
other contributions to fluid research. For example, the computer has
made possible the numerical solution of complicated, nonlinear integro-
differential equations and evaluation of the multidimensional integrals
that seem to be mainstays of molecular theory. Further, the computer
has assumed an important role in controlling experimental devices, as
well as in gathering and analyzing experimental data. There is some
concern that the impasse of the first half of the 1900s may be reversed
in the last quarter of the century, with the amount and detail of data
provided by computer simulation and computer controlled laboratory
experiments far outstripping the immediate ability of theory to organize
and interpret that data.

In any event, the field of fluid state physics is today flowering in
richness and diversity. As the seeds of recent successes spread to related
fields, we expect to see continued growth in the fundamental study of
fluids and in the application of the newly acquired knowledge to problems
of both industrial and academic concern.
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Historical Development and Recent
Applications of Molecular Dynamics
Simulation

WILLIAM G. HOOVER, A. ]J. C. LADD, and V. N. HOOVER
University of California, Davis, CA 95616

The development of molecular dynamics is traced from Ga-
lileo’s day to present day computation. Several applications
are described. These indicate the broad scope of present
day molecular dynamics: location of phase equilibria, char-
acterization of both linear and nonlinear transport prob-
lems, simulation of solid-phase plastic flow, and simulation
of fluid-phase shock waves.

OLECULAR DYNAMICS IS THE STUDY of molecules in motion under

the influence of intermolecular forces. The first studies of molecular
motion were applied mainly to gases, because gases, in which particles
move about freely, were easiest to investigate. Although it was realized
even before 1900 that the same treatment could, in principle, be applied
to liquids and solids, these did not become important subjects of mo-
lecular dynamics until the advent of fast computers. A complete historical
review can be found in Reference 1.

As a separate field, molecular dynamics is barely 100 years old,
dating from Maxwell’s and Boltzmann’s introduction of statistical methods
to study large numbers of particles. But its origins go back to the be-
ginning of true scientific endeavor by Galileo nearly 400 years ago. Galileo
Galilei (1564-1642) was the first to experiment systematically with moving
objects, finding laws for velocity and acceleration. Around the same time,
Johannes Kepler (1571-1630) labored to formulate the laws of planetary
motion. Isaac Newton (1642-1727) combined and generalized the dis-
coveries of Galileo and Kepler to show that the force acting on falling
objects on earth and on celestial objects was the same, that of gravity.
Newton also developed calculus—the mathematical machinery needed
to describe, through his laws of motion, a complete mechanical view of
the universe. His precise treatment of mechanical phenomena has had
an overwhelming impact and a validity unchallenged until quantum me-
chanics and relativity theory arrived in this century.

0065-2393/83/0204-0029$06.00/0
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Eighteenth century scientists generalized and applied Newton’s laws.
Two Swiss colleagues, Leonhard Euler (1707-80) and Daniel Bernoulli
(1700-82), fruitfully combined mathematics with mechanics. Euler con-
ceived the principal formulas of fluid dynamics. He formulated the equa-
tions of motion for simplified macroscopic fluid models. Bernoulli de-
veloped macroscopic models for fluids and solids that included wave
motion.

Near mid-eighteenth century, Euler’s protégé, Joseph Lagrange
(1736-1813), produced a general variational description of Newtonian
mechanics which became known as Lagrangian or analytical mechanics.
A more general formulation of mechanics, which was later seen to un-
derlie quantum mechanics, was embodied in 1834 in Hamilton’s “prin-
ciple of least action.” William Rowan Hamilton (1805-65), child prodigy
in languages as well as mathematics, generalized Newton’s equations into
a form in which particle paths can be represented as minimal paths, and
from which Lagrangian and Newtonian mechanics follow logically. Ham-
ilton’s principle grew out of an analogy with his main research in optics,
which is related to modern wave mechanics.

The dynamical studies that resulted from Newton’s work emphasized
both celestial motion and that of tangible earthly matter. Eighteenth
century experimenters formulated the gas laws to describe their obser-
vations on the relations between pressure and volume, and later tem-
perature, of gases. Extension of the macroscopic laws of motion to the
molecular level came much later, in spite of the fact that particle theories
of matter go back to suggestions by Leucippus, Democritus, and Epicurus
around 400 B.c. (Greek atomos means indivisible). But Aristotle, for
whom metaphysics, not the objective world, was basic reality, rejected
the atomic notion. His prestige caused the particle idea to be suppressed
during long centuries of Aristotelian supremacy. By the seventeenth
century, the idea hesitantly reappeared. Newton cautiously assumed a
corpuscular view of matter, but avoided detailing it; his ideas of inertia,
momentum and gravity did not depend on the ultimate division of matter.

The first to relate experimental gas law results to a dynamical theory
involving motion of gas particles was Daniel Bernoulli. Bernoulli showed
mathematically that gas pressure comes from the impact of minute gas
particles against a surface. At the time, this original kinetic theory had
astonishingly little effect on scientific thought. Bernoulli’s theory was too
advanced for his time and could not be accepted until more was learned
about the nature of heat and the nature of particles themselves.

Heat was a puzzling phenomenon to early scientists. Was it a sub-
stance or was it motion? Orthodox opinion dating from the Greeks held
it to be a distinct material. But Francis Bacon (1561-1626) claimed, “Heat
itself, its essence and quiddity, is Motion and nothing else.” In Newton’s
time, Robert Hooke (1635-1703) concluded that “heat is nothing but a
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brisk agitation of the insensible parts of an object.” But the eighteenth
century, dominated by the concept of heat as a measurable quantity,
rejected the vague idea of heat as motion, even after Bernoulli gave it
mathematical precision in 1738 in his kinetic theory. The continuing
official viewpoint into the nineteenth century regarded heat as a tangible
fluid substance transferred from hot to cold objects, to which the name
caloric was given in 1787 by Antoine Lavoisier (1743-94). Doubts were
cast over the caloric theory by Benjamin Thompson, Count Rumford
(1753-1814), an ingenious American turned European, whose observa-
tions on heat appearing in the process of boring cannons convinced him
by 1804 that heat is vibratory particle motion. His ideas were taken
further by the German physician Julius Mayer (1814-78), who in 1842
suggested the general principle of conservation and equivalence of all
forms of energy. Within a year, Mayer’s radical proposal was verified by
careful experiments on the mechanical equivalent of heat performed by
James Prescott Joule (1818-89) in his Scottish brewery laboratory.

The concept that heat and work were equivalent manifestations of
energy formed the basis for the science of thermodynamics, and is stated
in its first law. The principle underlying the second law appeared in the
1824 memoir of Sadi Carnot describing his work on efficiency of steam
engines. But not until 1852 did William Thomson, later Lord Kelvin
(1824-1907), formally proclaim the “universal tendency in nature to the
dissipation of mechanical energy.” Thomson’s dissipation principle was
given its modern focus in 1865 when Rudolf Clausius (1822-79) devised
the word entropy for describing the irretrievable degradation of all forms
of energy into heat.

The law of increasing entropy, by introducing a one-way direction
to the workings of nature, was a major jolt to the mechanistic Newtonian
system, which apparently could run just as well backwards as forwards.
The reversibility of Newton’s equations is only apparent, not real, be-
cause the equations are mathematically unstable for strongly coupled
degrees of freedom. This means that a small change in initial conditions
leads to catastrophic changes in subsequent particle trajectories; the nu-
merical precision required to reverse trajectories grows exponentially
with elapsed time. Any tiny fluctuation, as is always found in real systems,
suffices to introduce mathematically irreversible behavior.

While macroscopic thermodynamics studied heat and energy, mi-
croscopic particle motion was clarified early in the nineteenth century
through chemistry. Direct contact with then-hypothetical particles being
impossible, it was left to chemists to establish atoms by examining chem-
ical combinations of various substances. John Dalton’s studies of com-
bining ratios in compounds resulted in the law of multiple proportions.
Gay-Lussac in France also investigated chemical reactions. Neither made
a distinction between atoms and molecules. It was the task of Amadeo
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Avogadro (1776-1856) to show, in 1811, that the ultimate atoms combine
into divisible molecules (molecule means little masses in Latin). The
discovery in 1827—not then understood—by biologist Robert Brown
(1773-1858) of the continual agitated motion of particles viewed through
a microscope later gave strong support to the atomic—molecular theory,
by explaining Brownian motion as a result of molecular bombardment.
At the end of the nineteenth century, Paul Langevin (1872-1946), in his
work on molecular structure, helped link Brownian motion to kinetic
theory.

The chemical concept of molecular structure joined with the ther-
modynamic notion of heat to advance kinetic theory. Joule went on from
his heat-work measurements to calculate in 1848 the average velocity
that molecules must have to produce an observed pressure by impact
on a container—Bernoulli’s work was being vindicated. About 10 years
later, Clausius described a model of elastic spheres colliding and studied
gas diffusion. Lord Kelvin, early a supporter of Carnot, Joule, and Clau-
sius, used his prestige to establish kinetic theory. James Clerk Maxwell
(1831-79), best known for electromagnetic discoveries, had an equally
great influence on kinetic theory by his idea of average velocity of gas
molecules within a sample, with actual velocities being distributed prob-
abilistically.

If to Maxwell goes the credit for first applying probability to kinetic
theory, the development of Maxwell’s idea and its relation to thermo-
dynamics was the achievement of Ludwig Boltzmann (1844-1906). Boltz-
mann stated the law of increasing entropy in terms of the tendency for
molecular motion to become more random or disordered. Boltzmann
attempted to justify Maxwell’s hypothesis by relating statistics and en-
tropy by means of his H-theorem. His work was the real start of statistical
mechanics, which, by applying probability to molecular motion, avoids
the need to follow the time development of particle trajectories.

In 1873 J. D. van der Waals (1837-1923) in Holland included in
kinetic theory actual sizes of molecules and introduced intermolecular
forces. His work showed that kinetic theory could explain not only prop-
erties of gases, but also the transition between gas and liquid. By the
turn of the century, J. Willard Gibbs (1839-1903) had constructed a
general statistical mechanical method applicable to all three states of
matter. In 1916, solutions to Maxwell’s transfer equations were given by
Sydney Chapman (1888-1970). In the following year, David Enskog (1884—
1947) similarly solved the Boltzmann equation describing the dynamical
evolution of gases. This double solution made it possible to compare
kinetic theory with viscous flow and heat conduction experiments and
also predicted thermal diffusion, later found experimentally.

Just after the turn of the century, Max Planck (1858-1947) introduced
his revolutionary quantum hypothesis, showing that energy levels (in
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electric oscillators) were quantized, or limited to discrete values that are
multiples of a definite quantum of energy. That natural phenomena do
actually proceed by jumps and not continuously as envisioned by New-
ton’s mechanics and its tool, calculus, was a blow even to Planck. His
discontinuity hypothesis was initially viewed with suspicion. Einstein’s
explanation of the photoelectric effect finally helped quantum theory gain
acceptance as an abstract system explaining discrepancies between New-
ton’s laws and observed reality. Although conceptually closer to reality
than classical mechanics, quantum mechanics, through the uncertainty
principle, adds enormous calculational difficulties to treating real ma-
terials. Consequently, in statistical mechanics and in molecular dynamics,
classical Newtonian mechanics remains a functional tool, actively used
to this day.

Equations of Motion and Forces

Kinetic theory, armed with statistical averaging techniques that make
it feasible to treat large numbers of particles, provides the theoretical
basis for the actual calculations of molecular motion undertaken by mo-
lecular dynamics. These molecular dynamics calculations consist of series
of “snapshots” of particle coordinates and momenta that closely satisfy
microscopic equations of motion. For many years such intricate studies
involved too much calculation to permit meaningful results, but nearly
40 years ago computing technology became sufficiently advanced to be
applied fruitfully to many-body systems. At about this time, progress
changed from the sort of individual endeavor of previous centuries to
organized team work, resulting from the changeover to computer aided
scientific activity.

The early molecular dynamics calculations were carried out at the
University of California’s Los Alamos and Livermore laboratories, where
computers became available as a fringe benefit of weapons work. Mod-
elled on celestial mechanics, with molecules represented by mass points
interacting with central forces, these calculations led to rapid advances
in both equilibrium and nonequilibrium systems (2, 3). Computational
teamwork tested the validity of the equilibrium statistical mechanics of
Gibbs, and the kinetic theory of Boltzmann and Maxwell. The computer
results showed that Boltzmann’s equation does correctly describe the
approach to equilibrium and that the equation of state derived from
statistical Monte Carlo averaging agrees with that found by dynamical
time-averaging (4, 5).

The more recent proliferation of molecular dynamics calculations to
dozens of institutions makes it impossible and even undesirable to present
a comprehensive review of developments. The enormous increase pro-
duced some welcome duplications and verifications of results as well as
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less welcome computations of questionable value. The growth of low-
cost computing has so facilitated calculation that it has become simpler
to calculate than to understand the theory underlying the numbers. Even
a very slow machine can readily produce too much output for a competent
investigator to explain. Thus the most relevant advances in software are
those that speed assimilation of computed information. Particularly val-
uable are stereoscopic plotting routines, contour plotters, and automatic
movie-making devices. These features greatly reduce the amount of the
researcher’s time necessary for interpretation.

Definite accomplishments of recent calculations include a complete
description of the equilibrium fluid and solid phases for particles inter-
acting with the argonlike Lennard—Jones interparticle potential (inverse
6th power attraction and inverse 12th power repulsion) (6-8), the de-
velopment of increasingly accurate liquid-phase perturbation theories (9,
10), based on hard-sphere, computer generated properties that closely
reproduce these equilibrium properties, and new methods for measuring
thermodynamic and transport properties as functions of volume and en-
ergy for a wide range of force laws.

The simplest force-law models of Boltzmann and van der Waals
viewed particles as hard spheres or billiard balls with mutual attractions
added to explain gas-liquid coexistence. Empirical “force laws” describe
the mutual interaction of molecules as a function of their relative ori-
entation and separation. Solid-phase calculations emphasize force-law
derivatives and were instrumental in developing the many analytic “po-
tentials” (integrated forces) used in the last 30 years.

Two distinct kinds of extensions have been made from the early
mass-point calculations (11-14). First, bigger polyatomic molecules have
been treated, although such calculations take one or two orders of mag-
nitude longer than atomic ones. Second, the microscopic effects of mac-
roscopic thermodynamic heat and work have been included by incor-
porating temperature and strain-rate constraints in the equations of motion
(15, 16).

The most straightforward approach to polyatomic problems, treating
each molecule as an aggregate of mass points interacting with its neigh-
bors through central forces, is not physically realistic. Intramolecular
angle-dependent and multipolar forces are required to study even rel-
atively simple dynamical problems. Evans simulated the dynamics of
benzene molecule collisions (17), while Helfand and Weber (I8, 19)
studied the torsional motions of long aliphatic carbon chains (see Figures
1 and 2). The successful treatment of polyatomic molecules such as ben-
zene as rigid bodies by Evans resurrected interest in Hamilton’s qua-
ternions, angular analogs of vectors which are dynamically better behaved
than Euler’s angles.

Following the motion of large molecules made up of dozens of atoms
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Figure 1. Stereo views of a 200-atom aliphatic carbon chain. (Repro-
duced with permission from Ref. 18. Copyright 1980, American Institute
of Physics.)

\7

taxes even large computers and has led to the use of approximate sta-
tistical models, based on Langevin’s ideas, for simulating the interaction
of such molecules with the surrounding medium. Langevin originally
used statistical interactions to explain Brown’s observations on moving
pollen grains. The postulated and largely unknown random forces can
be assigned in many ways—producing either the velocities or the ac-
celerations characteristic of a certain temperature, for instance. Because
the choice influences final nonequilibrium results, complete calculations
are essential to validate these ad hoc models.

Validation is becoming more difficult. Polyatomic simulations are
today moving rapidly toward increased realism (see Figure 3) at the cost
of complexity and kinematic indeterminacy. The latter loss, inherent in
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Figure 2. Conformation of a lipid monolayer. (Reproduced with per-
mission from Ref. 14. Copyright 1980, Nature.)

random forces, complicates numerical verification because reversibility
of the equations of motion and conservation of energy and momentum
can no longer be used to test solutions.

The complexity introduced into polyatomic deterministic simulation
by the wide range of time scales between slow conformational degrees
of freedom and fast bond oscillations may be reduced if a new method
suggested by Pechukas proves feasible. Because details of the bond os-
cillations are ordinarily of little interest, Pechukas has treated these as
sources and sinks of energy to be added to a rigid-bond Hamiltonian.
This added energy varies with molecular conformation to conserve the
action of the oscillating modes. Including the extra energy leads to exact
equations of motion for the conformational degrees of freedom in the
adiabatic (high-frequency) limit. The obstacle to practical use of this
method has so far been the difficulty of separating the conformational
and vibrational degrees of freedom.

On a microscopic scale, molecular dynamics measures temperature
by averaging kinetic energy. Gradual temperature changes can be im-
posed by continuously scaling the momenta of the particles during dy-
namical calculations, thereby adding or subtracting heat energy from the
simulation. Gradual adiabatic changes can similarly vary the energy by
performing pressure-volume work in a way consistent with the first law
of thermodynamics. Both momentum scaling and adiabatic coordinate
scaling have been successfully incorporated in microscopic equations of
motion.
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Figure 3. Time exposure of a solid—fluid interface. (Reproduced with
permission from Ref. 22. Copyright 1980, American Institute of Physics.)

Application to Phase Equilibrium

The rough corresponding states similarity among phase diagrams of
widely varying substances suggests that even very simple interparticle-
force models can explain the qualitative properties of real matter. The
classical calculations of Alder, Wainwright, and Wood, based on hard-
sphere, square-well, and Lennard-Jones force laws, justified this expec-
tation by reproducing, qualitatively, the solid—fluid melting line and gas—
liquid-solid triple-point equilibria found in real systems (20).

A few phase diagrams that include quantum corrections have been
calculated. Hansen'’s plasma calculations in France (21) and the ongoing
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calculations of Ceperley and Alder at Livermore on the absolute zero
phase diagrams of boson and fermion systems represent the present limit
of numerical quantum statistical mechanics. These equilibrium quantum
calculations are much more time consuming and intricate than the cor-
responding classical ones. They can be carried out only at low temper-
ature, where the ground state is important, or at temperatures high
enough for perturbation theory to be applied to the classical theory.
Rigorous quantum calculations cannot yet deal with the complications
involved in intermediate-temperature or time-dependent systems.

Some early Lennard-Jones and square-well calculations encoun-
tered two-phase liquid-vapor states. These states were qualitatively in-
teresting to see, but were quantitatively difficult to analyze, simply be-
cause interfacial boundaries are relatively thick on an atomic scale. Cape,
Ladd, and Woodcock (22, 23) have used simulations of equilibrating
phases, both at the triple point and along the melting line, as primary
means of locating equilibrium pressures and temperatures and deter-
mining interfacial properties. Such calculations require many particles
(as many as 7680 were used) and care in choosing initial conditions. Now,
approximate equilibria are first obtained using smaller systems. Several
similar small systems are then grouped to make a large compound system
for further examination. The “time exposure” of a solid—fluid interface
shown in Figure 3 indicates the detail obtainable in surface morphology.

The coexisting-phase properties obtained by these direct equilibra-
tions are consistent with earlier triple-point thermodynamic predictions
based on single-phase free-energy simulations with far fewer particles.
This is only one of many examples in which self-consistency between
two or more approaches has confirmed the accuracy of computer gen-
erated data in regions where rigorous theory gives little a priori guidance.
Nonequilibrium effects are important to the direct simulation of coex-
isting phases because the equilibration of large phases is controlled by
heat diffusion. The computational difficulty due to heat diffusion can be
sidestepped by carrying out the molecular dynamics isothermally (15,
24). If Newton’s equation of motion, p = F, has added to the right side
a momentum dependent force — {p, then the constant-temperature
constraint d/dt3p? = 0 can be identically satisfied by choosing { = ZF
- p/Z p - p. The resulting trajectories conserve kinetic energy and provide
an example of what we call nonequilibrium molecular dynamics, in which
the equations of motion are modified to satisfy desirable constraints, at
the expense of energy conservation.

Application to Fluid Transport

The conceptually simplest nonequilibrium situations involve linear
flows of mass, momentum, and energy proportional to the corresponding



Published on June 1, 1983 on http://pubs.acs.org | doi: 10.1021/ba-1983-0204.ch002

2. HOOVERETAL.  Molecular Dynamics Simulation 39

gradients of chemical potential, velocity, and temperature. These simple
prototype flows form a convenient bridge between the well understood
statistical mechanics, which can describe linear transport by dynamical
perturbation theory, and the largely undeveloped theory of nonequilib-
rium nonlinear flows.

Viscosity, principally shear viscosity (the response of stress to changes
in shape), dominates nonequilibrium flows, determining whether these
are turbulent or laminar. Three different molecular dynamics methods
have been used to compute the coefficient of shear viscosity. To dem-
onstrate the simplest type of shear deformation, suppose that the fluid’s
x velocity component is proportional to the y coordinate, ¢ = du,/dy.
Such a deformation can be described using Hamiltonian mechanics. The
so-called “Doll’s Tensor” Hamiltonian,

H = H, + ¢2yp,

was inferred from the corresponding equations of motion (25),
g=@m +q-Vu and p=F — Vu-p

which reproduced exactly the desired macroscopic flow field and also led
to the macroscopic energy conservation relation between P,, and the
strain rate é. The shear viscosity m can also be obtained by applying
Green—Kubo linear response theory to the nonequilibrium Hamiltonian
in the limit of vanishing strain rate ¢, with the result that P,, = —mngé
where 1) is the shear viscosity

P = —&(VIKD)| (P OP., (0Dt

Thus, the time-averaged decay of equilibrium pressure fluctuations can
be used to give estimates of transport coefficients (26). Holian has recently
shown (27) that for finite systems the two viscosities just described can
differ. Computer simulations suggest that the number dependence is
reduced by using the Doll’s Tensor approach.

The linear-response approach has been followed more literally and
less formally by Jacucci and coworkers (28) who actually applied a finite
but still very small perturbation. Then the difference between the two
slightly different dynamical many-body trajectories—one perturbed and
the other unperturbed—was followed in time, and the resulting stress
differences used to estimate the viscosity coefficient. The nonlinear re-
sponse to the same form of perturbation has been studied too, through
the steady state that develops with a large and continual isothermal rate
of shear (29).
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These three methods for determining viscosity agree fairly well with
each other and with real viscosity measurements. They agree also in
predicting a shear-thinning decrease in viscosity with increasing fre-
quency or strain rate (30). The viscosity decrease is not well understood,
exceeding, by orders of magnitude, predictions based on the correspond-
ing mode-uncoupling theories.

Analogous calculations for bulk viscosity (the irreversible response
of stress to changes in volume) require the periodic adiabatic dilation
and compression of space simultaneously with the molecular dynamics
calculations. These calculations reveal a variation of viscosity with dilation
frequency stronger than theoretical predictions and evidently quite un-
related to the experimental frequency dependence (31, 32)—which ap-
parently diverges as » ~*2 at low frequency. The computer results have
pointed out the need to revise the 1926 Chapman—Enskog bulk viscosity
theory, which overpredicts bulk viscosity by nearly an order of magnitude
under some conditions and which also fails to explain either of the low-
frequency bulk viscosities observed in laboratory or computer experi-
ments. Ultrasonic data suggest a very strong frequency dependence of
the moderate-density bulk viscosity, but Hickman and Hoover, applying
nonequilibrium molecular dynamics to that problem, found considerably
smaller values for frequencies large enough and system sizes small enough
for computer simulation.

Most computer flow simulations are necessarily nonlinear, so that
the pressure-tensor perturbations caused by the deformations can be
distinguished from background thermal fluctuations. The nonlinearity
has interesting consequences. A system undergoing adiabatic compres-
sion, for instance, deviates in its pressure by a bulk viscous term pro-
portional to the strain rate. The virial theorem has been used (16) to
show that along with this pressure shift there is a corresponding tem-
perature shift, so that the strain-rate-caused deviations of P(T, V) and
P(E, V) from the equilibrium pressure are not the same.

Nonlinear effects are sometimes controversial. The coupling of heat
flow with rotation is an example. According to Boltzmann’s low-density
kinetic theory, Coriolis’s accelerations in rotating systems can prevent
heat flow from paralleling the temperature gradient. On the other hand,
certain formal approaches to macroscopic continuum mechanics rule out
such violations of Fourier’s law (33). The direction of the heat flow was
studied using nonequilibrium molecular dynamics (34). A dense, two-
dimensional fluid, constrained to rotate at constant angular velocity in
the presence of a temperature gradient, developed a heat flux in good
agreement with the predictions of Boltzmann’s kinetic theory.

The same adiabatic perturbation to the Hamiltonian used to shear
fluids is being used to study dislocation motion in solids (see Figure 4).
Imperfect solids are plastically strained at relatively high amplitudes and
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Results of such calculations can be

compared with corresponding continuum mechanics calculations and used

>

).
in macroscopic plasticity and fracture simulations. In these material fail-

increase of shear stress with density and strain rate

temperature and system size (30

ure simulations, dislocations act as point particles obeying equations of
motion deduced from atomistic simulations. This work will eventually

lead to improved constitutive descriptions of plastic flow in solids. The
Doll’s Tensor (3gp) Hamiltonian has been applied to crystal structure
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stability studies too, by treating the pressure tensor as the independent
variable, which governs the time-varying strain-rate tensor (36).

Today there is a need for critical evaluation of different possible
definitions of nonequilibrium nonlinear coefficients. Work now in prog-
ress, both on the theory of nonlinear flows and on their simulation, will
lead to major advances in understanding rheological problems.

Application to Fluid Shock Wave Structure

Slow heating and deformation could be described by equilibrium
molecular dynamics, but in a case involving extremely rapid heating and
deformation, such as a shock or detonation wave (37), when large changes
occur in the time of only one atomic vibration, equilibrium simulations
are inappropriate. Macroscopic heating usually occurs by conduction or
convection from the boundary, whereas microscopic systems can easily
be “heated” homogeneously throughout. Likewise, the homogeneous
microscopic deformations associated with the Doll’s Tensor Hamiltonian
H = H_, + 2qp:Vu are more naturally replaced by shock deformation
on a macroscopic scale.

Fast shock wave compression can be simulated by inhomogeneously
shrinking one space dimension in a microscopic molecular dynamics sim-
ulation (see Figure 5). Laboratory shockwave studies have been under-
taken in liquids, solids, and gases for years. These experiments, plus
additional recent work on the structure of gas-phase shockwaves, have
been particularly valuable in obtaining equation of state information under
extreme conditions at pressures up to tens of megabars. The structure
of weak—and therefore broad—shockwaves in solids has also been stud-
ied experimentally and used to refine constitutive flow models. Through
computer simulations, fluid shock waves are fairly well understood, and
some progress has been made in simulating the much more complex
solid phase shock waves.

The computer shock wave, in which cold material is suddenly com-
pressed adiabatically and in the absence of nearby boundaries to high
pressure, is an ideal nonequilibrium problem because the walls that
complicate both simulation and analysis are absent. Theoretical treatment
of even the low-density Boltzmann limit is incomplete, so that computer
simulations of dense fluid shock waves very far from equilibrium are
challenging tests for macroscopic theories.

A 4800-particle molecular dynamics simulation was used to generate
shock wave profiles corresponding to shock compression of liquid argon
to nearly twice its normal density (37). The resulting stress and tem-
perature profiles, shown in Figure 6, agreed surprisingly well with Na-
vier—Stokes continuum theory, a linear theory in which the transport
coefficients are assumed to be independent of the velocity or temperature
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duced with permission from Ref. 37. Copyright 1980, American Institute
of Physics.)
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gradients. This good agreement suggests that shockwave experiments
could be used to define slowly varying nonlinear transport coefficients.

By appending chemical reactions to simulations including viscosity
and conduction, the related problem of detonation wave structure can
be studied. It is difficult for molecular dynamics to deliver the realism
required in applications, because most real detonations are dominated
by the effects of impurities. Nevertheless, models of simple liquid-phase
detonations should be useful for exploring the region where chemistry
is coupled with thermal and viscous effects. Except in the cases of rare-
gas excitation reactions, simulations including chemistry require the de-
velopment of potential surfaces for polyatomic molecules.

The natural high-pressure periodic boundary conditions have seldom
been used in potential-surface calculations, but there is presently a tre-
mendous effort devoted to representing zero-pressure polyatomic po-
tential surfaces and incorporating these surfaces into molecular calcula-
tions. The success of these efforts should lead to an understanding of
polyatomic systems on a par with today’s quantitative understanding of
simple fluids and solids.
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Perturbation Theory, Ionic Fluids, and
the Electric Double Layer

DOUGLAS HENDERSON
IBM Research Laboratory, San Jose, CA 95193

The properties of many fluids can be regarded as those of
a simpler fluid (usually a hard-sphere fluid) plus some cor-
rections. Perturbation theory, which is based on this idea,
is reviewed briefly. Many earlier approaches, such as the
virial series and the van der Waals theory, can be regarded
as special cases of perturbation theory. Perturbation theory
is applied to ionic fluids and is found to be useful provided
that the coulomb potential is resummed. It is useful to re-
structure the perturbation expansion so that the mean
spherical approximation is the leading term in the series.
Finally, perturbation theory is applied to electrified inter-
faces, where results similar to those of the mean spherical
approximation are obtained using simple arguments.

P ERTURBATION THEORY HAS BEEN, at the very least, one of the most
significant developments in the theory of liquids during the past two
decades. Perturbation theory combines accurate results for the ther-
modynamic properties with a pleasing physical picture and relatively
straightforward numerical calculations. In particular, perturbation theory
avoids the often frustrating convergence problems characteristic of the
iterative procedures used in the numerical solution of integral equations
arising from, for example, the hypernetted chain equation.

Although it is only recently that the power of perturbation theory
has been fully appreciated, perturbation theories have a venerable his-
tory. The van der Waals theory of dense gases and liquids is an early
form of perturbation theory. The van der Waals theory is not surveyed
here because the connection between it and perturbation has been pointed
out previously (I). The virial expansion of a dense gas is another early
form of perturbation theory.

In this chapter, perturbation theory is briefly reviewed with an
emphasis on pointing out its generality. Its application to electrolytes is
considered. The chapter concludes with an application of perturbation
theory to an interfacial prﬂmem the electric double layer.
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Perturbation Theory

Our starting point is the free energy,

A= —kTlh f exp {—B®}dr, . . . dry
+ terms independent of the density (1)

where B = 1/kT, T is the temperature, and ®(r, . . . ry) is the potential
energy of the N molecules whose centers of mass are at r; . . . ry.
For simplicity, assume that the potential energy is pairwise additive

@ = ulry) @

i<j

where ry; = |r, — 1.
Hence, the free energy becomes

A= —kT | elrydr ... dry+ ... 3)

i<j
where
e(ry) = exp {— Bu(ry} 4
Further, assume that e(r,) depends upon a parameter v, i.e.,
e(r) = e(y.7) )

which is small enough so that the free energy can be expanded as a series

in vy
0A 1 9%A
A=A+ vy|l— +—y2[—] + ... (6)
° ‘y<a'Y>’y=0 2 a‘Y2 vy=0

where A, is the known free energy of the system when y = 0 (the

unperturbed or reference system).
Thus,

A 1
po = —3° | €02 e,02) dna, )
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and
%A 1
B = —3 0| €02 612 drir
- p® J g(123) e.(12) e.(12) dr,dr,dr,

~ ot | 101239 — g12) g39)e,12) e, 39
X dr,drydrydr, 8)
where p = N/V (V is the volume)
e, = e deldy 9)
and
ey, = e~ ! 9%/oy? (10)

The functions g(1 . . . h) are the h-body distribution functions. In the
limit y = 0, they are the distribution functions of the reference fluid.

Equation 8 is valid only in the canonical ensemble. An extra term
must be added to obtain results that are valid for an infinite system.
However, this correction term is not relevant for our discussion here.
We refer to the review of Barker and Henderson (2) for details.

Equation 8 is often difficult to use. An approximation, due to Barker
and Henderson (2), which is often useful, is

3?A 1
Poy = 79% f g(12) e,,(12) dridr,

p® f g(12) g(23) e,(12) e,(23) h(13) dr,dr,dr,

L f 2(12) g(34) e,(12) e,(34)

[2h(13)h(24) + 4h(13)h(14)h(24)
h(13)h(14)h(23)h(24)] dr,dr,dr, (11)

+ X

where h(12) = g(12) — 1. Although approximate, Equation 11 is applicable
to an infinite system.
The higher order terms involve many integrals. For some applica-
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tions the ring diagrams are the most important. If only the ring diagrams
for the third- and fourth-order terms are displayed,

B Z%: = —p° f e,(12) e,(13) e,(23) g(123) drydrydry + ... (12)
and
B 34_;3 = - f e,(12) e,(13) e,(24) e,(34) g(1234)

X drdrydrdr, + ... (13)

In general, there are three functional dependences of e(y;r) on vy
that have been considered. For references see Barker and Henderson
(2). The first is

e(y;r) = exp {—Bluo(r) + yu,(nl} (14)
where uy(r) is the pair potential of the reference system. Hence
e,(r) = —Buy(r) (15
and
ex(r) = [Bu(n]? (16)
This case is useful when the perturbation energy, u,(r) = u(r) — uy(r),
is small.
In some applications, u,(r) is large and positive. For such applications

e.(r), given by Equation 15, is not small. Then it may be more appropriate
to use

e(y;r) = eo(r) + veo(rfy(r) 17)
where
eo(r) = exp {—Buo(r)} (18)
and

filr) = exp {=Bu,(r)} —1 (19)
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In Equations 18 and 19, u(r) is the reference pair potential and u,(r) =
u(r) — uy(r). For this case

e,(r) = fi(r) (20)
and

e () =0 (21)

Even if u,(r) is large and positive, e,(r) is bounded. In principle, this
approach could be used with large and negative perturbations. However,
for this situation e (r) would then be very large and this approach would
be of limited value.

A third procedure, also applicable to potentials that are large and
positive, is based upon

e(y;r) = exp {—Bu(d + L ; d)} (22)

An expansion based upon Equation 22 is an expansion in an inverse
steepness parameter about a hard-sphere reference fluid, where d is the
hard-sphere diameter. Expansions based upon Equation 22 are useful
when u(r) is large, negative, and steep. For this case,

e,(r) = Bu’(d + - d)e('y;r) — d (23)
Y Y

A perturbation theory for a given system is developed by making
choices as to what is an appropriate reference fluid and which of the
above three procedures is to be used. Other choices besides the three
above are possible. These are just the ones that have been used.

Virial Expansion

The simplest reference fluid is the perfect gas, where g(1. . . h) =
1. If we use the perfect gas as a reference fluid, then the perturbation
is the entire potential. Obviously, the u-expansion of Equations 14-16
is inappropriate. It is better to use the f-expansion of Equations 19-21.
The first-order term is easily evaluated. For a perfect-gas reference fluid,
Equation 11 is free of approximation. The first term in Equation 11
vanishes because e...(r) = 0. The other two terms vanish because, in the
limit y = 0, h(r) = 0. For similar reasons only the ring diagrams con-
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tribute to the third- and fourth-order terms. Hence,

A-A 1
TTO) = _EpffIZdr2
1
- 692 fﬂzflsfzs drydr,
1
- gpa ff12f13f24f34 drydrydr, + . . . (24)

where fi, = f(r,) = exp {— Bu(rlﬁ}_ L

If the terms in Equation 24 are grouped by the power of p rather
than by the number of f-functions, Equation 24 is the virial expansion
of A. We will not use Equation 24. Our purpose is to point out that the
virial expansion can be regarded as the simplest form of a perturbation
theory. Another reason for writing down Equation 24 is that it bears a
striking similarity to the perturbation expansions which we will use for
ionic solutions.

Lattice Gas

Another simple application of perturbation theory is gained by con-
sidering the lattice gas in which the N molecules are restricted to L lattice
sites. For this system

(o] r = 0
u(r) = § —¢ r = nnd (25)
0 otherwise

where nnd means nearest neighbor distance.

The unperturbed system is a lattice gas of noninteracting molecules,
subject only to the restriction that only one molecule can occupy a lattice
site. Thus

1 —«x

AJ/NKT = Inx + In(1 — x) (26)

where x = N/L plays the role of the density.

Because the perturbation potential is small and negative, the u-
expansion of Equations 14-16 can be used. The g(1 . . . h) terms of the
unperturbed system are equal to unity when all the molecules occupy
different sites, and are zero otherwise. For such a reference fluid, Equa-
tion 11 is valid.
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To evaluate the terms in the perturbation expansion we note that,
in the limit y = Be = 0, h(12) is zero unless molecules 1 and 2 are on
the same site and u,(12) g(12) is zero unless molecules 1 and 2 are nearest
neighbors. If z is the number of nearest neighbors of the lattice

(A/NKT) 1
CCLEY) 27
0B |poo 2 @
and
LPANKD)| 1
2 a@ef BE:O— 4x(1 x)% (28)

In contrast to many of the other examples we will consider here,
diagrams in addition to the ring diagram given in Equation 12 contribute
to the third-order term. Nonetheless, it is of interest to display the result.
Itis

1 (A/NKT)
6 d(Be)

—Tlé X1 — 221 — 20% — éxza — 2P (29)

Be=0

where £ is the total number of triangles of nearest neighbors that can be
formed on the lattice, divided by N.

The first-order term is the result of the van der Waals theory. To
this order, the perturbation contribution changes the energy of the lattice
gas without changes in entropy or structure. The higher order terms give
the effects on the free energy of changes in structure resulting from the
perturbation.

These higher order terms become small at high densities where L
~ N. This is because the lattice is nearly fully occupied, and rearrange-
ments in structure are difficult since only one molecule can occupy a
lattice site. This means that at high densities the perturbation expansion
will converge rapidly even if Be is not small. This is a very important
observation. It is true for many other systems and is one of the main
reasons why perturbation theory is so useful.

At lower densities, the perturbation expansion converges slowly.
Thus, if the expansion is to be used in the neighborhood of the critical
point, many terms are needed. For the lattice gas, these terms can be
obtained fairly easily. For other systems this is not true, and so it is only
for the lattice gas that critical point properties can be examined. This is
one reason why the lattice gas is of such great interest.
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Simple Liquids

For a simple liquid consisting of spherical molecules with a steep
repulsion curve, an appropriate reference potential is the positive part
of the potential. Thus, using the u-expansion

oc

= 2mwRp f u(r) go(r) rédr + . .. (30)

o

A — A,

where A, and g(r) are the free energy and radial distribution function
of the reference fluid, and o is the value of r for which u(r) = 0.

The integral in Equation 30 is very nearly independent of density
and temperature. Thus, to a good approximation, the first-order term
has the lattice gas form given in Equation 27. The second-order term is
also similar to the lattice gas result, Equation 28; in particular, it is small
at high densities.

Because the reference potential is steep, the higher order terms will
be small at high densities, just as was the case for the lattice gas. Even
with just the first-order term, the perturbation series gives good results
at high densities. With two terms, excellent results are obtained at high
densities. Even at lower densities the results are quite good.

Despite these results, the perturbation theory outlined above is not
very practical because, in the above form, A,, g,(r), and the higher order
distribution functions must be determined by computer simulations for
every state that is considered. One might as well perform the computer
simulations directly for the actual system.

The step that makes perturbation theory practical for simple liquids
is the replacement of A, and g.(r) by the hard-sphere Ays and gy;5(7).
Using Equation 23 for 0 < r < o, Barker and Henderson (3) showed
that

Ay = Ays (31)
and
golr) = gus(r) (32)

if the hard sphere diameter (d) is chosen by
d= [0 - exp {~pusalds 33

Since the thermodynamic properties and distribution functions of hard
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spheres are well known, perturbation theory becomes a simple and ac-
curate theory of liquids.

Perturbation theory also leads to a simple picture of a liquid. At
high densities, where the molecules are packed close together, the liquid
molecules behave much as gas molecules at the same density. The main
contribution of the perturbation is to provide the potential well in which
the molecules move.

Results for a fluid whose potential is given by the Lennard—Jones

interaction
ulr) = 4e|:<g>12 - <3>6] (34)
r r

have been given earlier (I, 2). Perturbation theory results for mixtures
of liquids are also available (2).

Charged Hard Spheres
A system of charged hard spheres, where

uy(r) = { ” rse (35)

zz; eXler r>c

is a useful model ionic fluid. In Equation 35, z¢ is the charge of an ion
of species i, ¢ is the dielectric constant of the solvent, which is taken to
be a dielectric continuum, and o is the diameter of the hard spheres.

Let us apply perturbation theory to this system. Using the u-ex-
pansion with a hard-sphere reference fluid

A-A 1
LG E} x| uy(12) go(12) dry + . .. (36)

where A, and g,(r) are the free energy and radial distribution function
for hard spheres of diameter a. Because of charge neutrality

2ax =0 (37)

where x, = N,/N (N, is the number of hard spheres with charge z,), the
first-order term in Equation 36 vanishes.

To the second-order term, only the first term in Equation 8 con-
tributes. The other terms vanish because of charge neutrality. Likewise,
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in the third-order term only the ring diagram is nonzero. Thus

A — A,
NkT

1
= - B2p % XX f u3(12) go(12) dr,

+ éBsp2 > XXXy f 15(12) ux(13) uy(23) X go(123) drodrs + . . .
P
(38)

We see that the cancellation that leads to small values of the higher order
perturbation terms at high densities is not present for this system. The
perturbation series will converge more slowly.

Let us restrict our attention to the case of a two-component system

where z = |z)| = |z,|. Equation 38 becomes
A-A_ __« ng(lz)dr
NkT 64mp ) rz, 7
K° f g0(123)
drydry + ... (39
38473 J riorisres 7ol (39)

where k is the Debye screening length and is defined by

_ 4mBzPe?p
€

K2

(40)

Equation 39 is our starting point. A quick inspection shows that each
integral is divergent because of the long range of the coulomb potential.
To get anything useful we must sum the divergent terms.

It is convenient to rewrite Equation 39 as

A- Ay K4f 1« dry }@
NkT  64m%p Jrwse |ry, 6T o rigres ) T
4 -1
— ____K 5 J g0(12)2—— dr2
64 p Jriz>o 12
K® f g4(123) — 1
4+ —_— o drdrs + ... 41
384mp Jry>o  riorigTes e )

Each of the terms in the first integral is divergent. All integrations are
outside the cores (i.e., r; > ). However, to evaluate the first integral,
let us extend the range of the integrations to include all r,; > 0. No error
is introduced since we have merely added and subtracted the regions 0
< ry < 0. The first integral is called a ring or chain sum since the terms
are simple ring diagrams consisting of repeated convolutions of 1/r.
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In principle, we could sum the integrand of the first term in Equation
41. However, the sum is complex. It is much easier to rewrite this term
as

f k4 K6 drs dr,
s + —
rg=0 | T O Jry>0 151y, o
9 k't k'8 dr. dr,
3 2
= _,2 f - - ha— + e e — (1'(,2
0 0K rne>0 | Ty O Jry>0 ry5res g
K 2 14
K K dr, dr,
2[ f —_ - — + ... —|dk'? (42)
0 rn2>0 | Ty 4T Jry>0 15703 Tio

Thus, defining €é(r) as

K2 k? dr
(g(rlz) = 2

T2 41 Jry>0 1ry31p,

+ ... (43)

and taking the Fourier transform

_Am [T

k) = T Jo r6(r) sin kr dr (44)
we have
4k k2 Kk 42
W =T {“ﬁ*ﬁ‘ }—k2+Kz “)
Hence
e_Krl2
Q(ry) = K (46)
T2
Therefore,
[ e e o,
ne>0 (1, BWIn>orare, )
= 81'rf K'2 [f e xT dr] dk'?
(4] 0
= 161Tf kK'?2de’ = 16m K3 47
0 3
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Substitution of Equation 47 into 41 gives the Stell-Lebowitz (SL)
series (4)

A - A, K3 k* [
NKT -~ 12mp  Gmp Jo hordr + . .. (48)
Retaining only the first term gives the Debye—Huckel (DH) theory
(5). Of course, Debye and Huckel did not obtain their theory in this
manner. Except for exceedingly small k, the DH theory gives poor re-
sults.
The SL corrections to the DH approximation converge very slowly.
The corrections can only be evaluated using approximate Padé sum-
mation methods. Rather than use their procedure, we shall use a more
powerful scheme. We have derived the SL expansion from perturbation
theory. Stell and Lebowitz did not use this method but obtained their
series in a more direct manner. Although the method given here is less
direct, it indicates how improvements may be made. The integrations
in the SL expansion are over all space (r; > 0). This is natural in their
series. However, in the original perturbation expansion, the integrations
are over r; > o. This suggests that improved results might be obtained
by taking the integrals for the region 0 < r; < ¢ and combining them
with the k® term. Thus

A - AO K3 3 3 7
= - 1 - ko + >k — - K>+ ...
NKT 121Tp[ 4T T T T ]
'S f“‘
- 161Tp - ho(r>dr + PR (49)

At first sight, k3(1 — 3ko/4 + 3k20%4 — Tk%c%/8 + .. .) seems to be
an unpromising combination; it is, in fact, (2I')® (1 + 3I'¢/2) where «
and I are related by

k = 2I'A + T'o) (50)

We note that 2I' < k. Expanding

kK k2o
== - — 4+ ... 51
r 2 4 + (51)
Thus,
A-A, 3 (erP1 + 3l'e/2)

K? f *
- L. B2
NKT 127p Tomp Jo No0dr + (52
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Retaining only the first term gives the mean spherical approximation
(MSA) (6, 7).

As is seen in Figure 1, the first (MSA) term gives fairly good agree-
ment with computer simulations (8—10). In principle, Equation 52 gives
a series of corrections to the MSA. At low concentrations, where k is
small, the corrections are negligible. At higher concentrations the con-
vergence is fairly poor and a Padé summation is required.

Henderson and Blum (11) have suggested changing the expansion
parameter from k to 2I". They obtain

A - A, @Iy + 3Ta/2)  (@I) r
= - - ... (53
NKT 12mp 16mp Jo Molrdr + (53)

The higher order terms in this expansion are given by Henderson and
Blum. Since 2I' < k, this series of corrections to the MSA is better
behaved. In fact, the corrections are negligible at normal ionic concen-

-E/NKT

0 |

] !
0.25 0.50 0.75 1.00

Concentration (m/l)

Figure 1. Internal energy of a 2:2 model ionic solution. Conditions, o =

42A4;¢ = 78358 and T = 298.16 K. Key: 0, computer simulation values

of van Megen and Snook (10); ®, computer simulation values of Valleau
et al. (8,9); and —, MSA results.
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trations. At the densities characteristic of fused salts, the correction terms
would make an appreciable contribution.

At low concentrations, the correction terms, given in Equations 52
and 53, are not the most important corrections to the MSA result. This
is because there is, in the fourth-order term, the contribution

AA
NET - ZS_ ip Z xx; | uf (r)go(r)dr (54)
Expressions analogous to this appear in every even-order perturbation
term.

The above integral converges because r~* goes to zero sufficiently
quickly to prevent a divergence. However, since the series in Equation
53 works well at higher densities, the contribution of this B* term must
disappear at these higher densities due to some cancellation with terms
which are higher order in the density. Hence, even though a resum-
mation is not forced upon us to prevent a divergence, a resummation is
desirable as it approximates this cancellation. The effect of the resum-
mation in Equations 42 to 46 is to replace

) = 2 (55)
er
by
. 2 ,—Kr
u(r) = 228 (56)
€ r

Further, the effect of the combination of the core terms is to replace
e~ *"/r by the appropriate MSA expression. To a good approximation this
is e *=9/r, Thus, we can add the approximate correction term

2n
AA 1 SR S 7
m = — 5 p tzj xixj “~ m I:—E;‘L e ( )] 80(12) dr2 (57)

Equation 57 is correct at low concentrations where k — 0. At higher
concentrations where k is appreciable, this correction term is ad hoc,
but does become small. Correction terms similar to Equation 57 have
been considered by many authors (12).

Perturbation theory provides a reasonably good theory of the model
ionic fluid given by Equation 35. The main deficiency is the primitive
model of the solvent. The solvent appears only through the dielectric
constant €. What is needed is a more realistic treatment of the solvent.
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Dipolar Hard Spheres

A model of a solvent that is an interesting system to which to apply
perturbation theory is the dipolar hard-sphere fluid, for which the pair
potential (which is a function of orientation as well as position) is

r<ao

r>ac (58)

u(rig, 4y, Q) = { = (w¥rix)D(1,2)

where (), and (), are variables specifying the orientation of molecules 1
and 2, w is the dipole moment

D(12) = 3(‘11 : flz) (l-iz : le) — f e, (59)

and f, and #,, are unit vectors.

Before considering this system of hard spheres with embedded point
dipoles, a few general comments about the application of perturbation
theory to molecules with nonspherical pair potentials are in order. Non-
spherical molecules are a more complex system than the simple spherical
systems discussed so far. The dipolar hard spheres considered here are
an especially simple system because the hard core is spherical. The
u-expansion is appropriate and everything proceeds in a reasonably
straightforward manner. For more complex systems, where the core is
nonspherical, the situation can be more complex. If a spherical reference
system is used then some of the perturbation energy may be large and
positive. If so, a u-expansion is inappropriate and an f-expansion is pref-
erable, at least for the regions where the perturbation is large and pos-
itive. However, the penalty we pay is that in the region where u,(r,Q)
is negative, f(r,Q) can be very large, which might result in convergence
problems. Ideally one would like a nonspherical reference fluid. Should
such a reference fluid be available, perturbation theory might be more
widely useful for nonspherical potentials. Expressions for the free energy
of many fluids consisting of nonspherical molecules are available (2).
However, there are no expressions presently available for g(r,2) for such
systems.

Fortunately, such problems need not concern us when considering
dipolar hard spheres. Using the u-expansion

A=A+ E (Bura, (60)

where A, is the free energy of hard spheres of diameter o

A 1
N—le = 5 P J- go(ri2)dr, f uf(12) dQ,dQ, (61)
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and u¥(12) is the pair potential divided by w2. The angular integral in
Equation 61 is zero. Hence A, = 0. After performing the angular in-
tegrations

A,/NKT = — ép f r~8gy(r)dr (62)
and
A,/NKT = 514 o2 f y2o(123) drdrs (63)
where
Uiy = 1 + 3 cos 6, cos 8, cos 0, 64)

(r1aT1aT2a)?

and r; and 6, are the sides and interior angles of a triangle formed by
molecules 1, 2, and 3.

We see that these expressions for dipolar hard spheres are quite
similar to the virial expansion and to the expressions for charged hard
spheres. Only the ring diagram survives in the third-order term. In fact,
if we took only the diagrams that contribute to the virial expansion and
then expanded in powers of B we would obtain Equations 38 and
60-63.

The integral in Equation 62 is easily evaluated. Barker et al. (13)
have calculated the integral in Equation 63. As is seen in Figure 2, the
free energy series obtained from Equation 60 converges very slowly. The
perturbation terms seem to alternate in sign. Rushbrooke et al. (14) have
employed the Padé sum

Ay

A=Ay + Bt — 22—
0 Bp‘ ]. - B}LzAs/Az

(65)

and found it to be in good agreement with computer simulations (15).
This is shown in Figure 2.

There is some indirect evidence (15) from computer simulations that
the terms in the perturbation sum, Equation 60, are negligible for n >
4. Hecht et al. (16) have obtained formal expressions for A, and A;, and
Tani et al. (17) have made some progress towards calculating A,. It will
be interesting to see if a truncated series agrees with the simulation
results.

In the case of the charged hard spheres, it was found helpful to
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(A - Ag)/NKT

Bu2 /a3

Figure 2. Free energy of a dipolar hard-sphere fluid (po® = 0.8344) as

a function of reduced dipole moment. Key: ®, computer simulation values

of Valleau and Patey (15); ———, 2 and 2 + 3, results of Equation 60 when

truncated after 2 and 3 terms, respectively; ---, MSA results; solid curve,
results of Equation 65.

remove the MSA results from the perturbation series and write the series
as a correction to the MSA. This could also be done for the dipolar hard
spheres. If this is done

27y [T _
A/NKT = Aysu/NKT — 5 r=thy(rdr + . .. (66)
Tp Jo

where y = 4mpBp¥9. The similarity to Equation 52 is striking. Terms
important at low densities can be constructed in a manner analogous to
Equation 57. We should not expect this series of correction terms to the
MSA result to converge quickly. A Padé summation may still be required.
It may or may not be preferable to the original series, Equation 60.
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However, in view of the fact that A, is not too bad an approximation
to A, as is seen in Figure 2, using Ays, as a starting point, rather than
A,, does not seem too bad an idea. At low densities, terms analogous to
those in Equation 57 would have to be included in the perturbation
expansion.

Perturbation theory can also be applied to the calculation of the
dielectric constant. The result is

(e — )2 + 1)
¢ B

2t 3cos26;, — 1
y [ 1+ Bg“ p? e r'“‘)a 2,(123)drydrs + . . ] 67)
137 23,

Including only the first term in the above series gives the Onsager result
for € (18).

This series for € can be rewritten by expressing it as a correction to
the MSA for € rather than as a correction to the Onsager result. Hence

(e — D& + 1) _ [(s — )2 + 1)]

9¢ 9¢
9 3cos?0; — 1
+ 3 3 — VY drdr, + ... (68
16'”'2 y (rlsr%)s {g0(123) } dr2 T3 ( )

The integrals in Equations 67 and 68 can be calculated by the same
techniques as those used in the calculation of the integral in Equation
63. However, the numerical problems are more difficult because the
integral is long ranged. Despite this, Tani et al. (I7) have been able to
calculate this integral and thereby obtain €. Their results are promising
but still preliminary and so are not presented here.

The perturbation theory presented here is based upon the u-ex-
pansion. Dipolar hard spheres have been treated by f-expansion tech-
niques also (19). The method has some advantages but is more complex
since the angle averages cannot be performed analytically.

In the past two sections, perturbation theory has been applied to
the ions and the solvent separately. What is needed is a treatment of a
mixture of ions and dipoles. This has not yet been done. The formulation
of perturbation theory for this system would be more difficult as dipoles
as well as ionic terms will have to be resummed to avoid divergences.
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Electric Double Layer

Let us consider first ions near a charged electrode. As before, we
consider the ions to be charged hard spheres of diameter o. The electrode
is approximated as a uniform, hard, charged wall. First let us consider
the case where the solvent is a uniform dielectric medium.

If the electrode is charged, there will be an accumulation near the
electrode of ions whose charge is opposite to that of the electrode. We
can then speak of a double layer of charge. To apply perturbation theory
to the system, we consider the electrode to be a large ion whose diameter
is R >> ¢ and whose charge is Q. Eventually, we will take the limit
R — o,

Since the concentration of this large ion is 1/N

N Be“p f gor
2

iJ

A=A, —
36292" > xz f ... (69)

where the sums are over the bulk charged hard spheres and g¥(r) is the
radial distribution between the large hard sphere and the bulk hard
spheres.

Hence, the excess free energy due to the presence of this large ion
is

% f T e
A= 2¢ J@m+oy2 gO(r) dr
202 x 202 x
- - [ - S e+ (70)
2e Jo 2e Jo

Replacing the divergent integral in Equation 70 by the ring sum of which
it is the first member gives

202 (= 202 (R+0a)/2
AA = _ X0 f e""dr+KQ f dr
2¢ Jo 2e Jo

K2Q? fx .
%6 Jasone he(rdr + . . .

=—"—Qz+@<3+°>+... (71)

2¢ 2¢ 2
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The last integral has been neglected since h§(r) = 0 for normal ionic
concentrations.
Introducing I', defined by Equation 50, gives

2
AA=—%F(1—FR)+.H

__ e T (72)
e 1+ TR

For large R, Equation 72 becomes

*, (73)

= - < 4
A4 eR e'R?

The first term in Equation 73 is the free energy of a sphere. The second
term is the free energy of the double layer,

2
My = o (74)

The potential difference across the double layer is

_ 9AAp)
V=55

_ 20
~ ¢[R? 75)

If the surface charge density is E/4w then Q = ER?%4. Thus,

E
V= an (76)

which is the MSA result (20).

The MSA potential is linear in the charge density on the electrode.
However, as is seen from Figure 3, where Equation 76 is compared with
computer simulation (21), this is true only for a small charge density.
For larger charge densities additional perturbation terms must be in-
cluded in Equation 69. Something more sophisticated than a generali-
zation of Equation 57 seems to be needed, since in such an approximation
all of the higher order terms in Q (or E) have the same sign as the linear
term in Equation 76. As is seen from Figure 3, the simulation results
lie below the linear term. This means some of the higher-order terms
in Q must be negative.
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Figure 3. Potential difference as a function of electrode charge density

for an electrified interface. Key: ®, computer simulation of Torrie and

Valleau (21) for a 1:1 electrolyte (¢ = 4.25 A, ¢ = 78.5, T = 298 K);
—, MSA result for this system.

A qualitatively correct expression for the dipolar hard-sphere sol-
vent’s contribution to the double layer potential can also be obtained
from perturbation theory. The contribution to the surface free energy is

A4 = - 1 8o, [ 1, (rQgdrd0 )

The first-order contribution vanishes because the integral of u,, (r,(})
over orientation is zero. Now

r <o,
r>a0

s

(. Y) = {% bor

(78)
Hence

oc

aa=-Tppoue | e (79

R+05)/2
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1
since (cos? 0) = 3 To evaluate this contribution, the integral in Equation

79 must be evaluated. However, a qualitative expression can be obtained
by assuming that g#*(r) = 1. To this approximation

3yQ?
AA = — —— 80
R + o, (80)
where y = 4wpBu/9.
The surface part of Equation 80 is
3yQ?o,
My, = 2T 1)
so that the solvent contribution to the potential difference is
6yQo,
V = R2
Eco
=3 s 82
Y= (82)

Equation 82 can be made more similar to the MSA result by recalling
that for small y, 3y = € — 1 (cf. Equation 67). At large values of y we
could write 3y = (¢ — 1)/Ae where \ is some unspecified parameter
reflecting the relation between y and € and the fact that g§*(r) is not
identically unity. Substituting for 3y

e — 1 (Eo,
V= X <¥> (83)

Equation 83 is the same as the MSA result (22, 23). However, the per-
turbation theory value for \ will differ from the MSA result. In the MSA,
\ is a weak function of € sinceife = 1, A = landife = 78, A = 2.76.
Presumably, this is true in perturbation theory also. If so, the MSA and
perturbation theory values of A will be similar.

Hence, including both the ionic and solvent contributions

_E + (e — 1)Eo,
g2l 2e\

\% (84)
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which becomes, in the limit of small k,

_E  Eo (- Vo, (85)
€K 2¢ 2eN

Equation 85 is the same as the MSA result (22, 23).

Summary

Perturbation theory is a powerful tool in the theory of fluids. In this
chapter we have briefly reviewed the general formalisms of perturbation
theory and its application to simple fluids. Much of this is well known.
However, the observation that the virial series is a form of perturbation
theory may not be well known.

For ionic fluids, we have shown that perturbation theory gives some
interesting results. In particular, it can be reformulated so that the zeroth-
order approximation is the mean spherical approximation. This is fairly
promising since the MSA often gives a fairly reasonable approximation
to the free energy. Presumably, a perturbation theory for the corrections
to the mean-spherical-approximation free energy will be better behaved
than one for the corrections to the hard-fluid free energy. However, this
conjecture will have to be tested. The work of Tani et al. (17) is of
interest in this regard.

Finally, perturbation theory has been applied to the electric double
layer. With little effort, the MSA results for the double layer are re-
covered. Unfortunately, the double layer problem is highly nonlinear.
Hence, approximations which are more sophisticated than those pres-
ently available will have to be developed before perturbation theory can
be applied at high charge densities on the electrode. Nonetheless, per-
turbation theory as a theory of the double layer is promising because of
its simplicity.

Glossary of Symbols

A Helmholtz free energy

A, Helmbholtz free energy of the unperturbed fluid

Ays hard-sphere free energy

A, nth order perturbation term in the expansion of the free energy
%(r) ring or chain sum

@(k) Fourier transform of chain sum

D(12) angular part of dipolar interaction

d hard sphere diameter

Continued on next page
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Glossary of Symbols—Continued
E electric field near a charged electrode; also 4w times the charge
density on the electrode
e magnitude of the electronic charge
e,(r) e 'deldy
e, (r) e 19%/0y?
() exp{—Bu(r)} - 1
f(D exp {—Buy(r} — 1
g(r) radial distribution function
go(r) radial distribution function of the unperturbed fluid
g4 (r) radial distribution function of an unperturbed fluid molecule near
large ion
gus(r) hard-sphere radial distribution function
g(1...h) h-body distribution function
h(r) g(r) — 1
k Boltzmann constant
total number of molecules and ions
total charge on electrode
diameter of large ion before wall limit is taken
position vector of ith molecule or ion
temperature
r) intermolecular pair potential
o(r) reference fluid pair potential
() u(r) — uo(r)
*(r) reduced pair potential
volume
density of a lattice gas
concentration of molecules or ions of species i
4mpR /9
number of nearest neighbors in a lattice
valence of ion of species i

SN2 DO Z

e

<@ Rr R <

N ow

Greek Letters
kT

renormalized screening parameter in MSA

expansion parameter in perturbation series

parameter describing strength of attractive part of pair potential; also
dielectric constant

(4mBz2e2p/e )2

dipole moment

number of triangles of nearest neighbors that can be formed on a
lattice, divided by N

p NIV

m 22 =W

mE R
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p, solvent density, N,/V

o hard-sphere diameter, or the value of r for which u(r) = 0
®(r, . . . ry) potential energy of a collection of N molecules
Q variable specifying the orientation of a molecule

Abbreviations

DH Debye-Huckel
HS hard sphere

MSA mean spherical approximation
nnd nearest neighbor distance
SL  Stell-Lebowitz
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A Review of Methods for Predicting
Fluid Phase Equilibria:
Theory and Computer Simulation

KATHERINE S. SHING!? and KEITH E. GUBBINS
Cornell University, School of Chemical Engineering, Ithaca, NY 14853

This chapter first reviews computer simulation methods for
calculating the free energy or chemical potential in a mix-
ture. Particular attention is given to methods suitable for
dense gas or liquid mixtures, including umbrella sampling
and test particle methods. This is followed by a review of
mixture theories based in statistical mechanics. We focus
on theories developed since 1967, and include perturbation
theory for spherical and nonspherical molecules as well as
the fluctuation formulas of Kirkwood and Buff.

A MONG THE MOST SIGNIFICANT ADVANCES for future work on phase
equilibria has been the development of perturbation theories and
computer simulation methods. Computer simulation studies provide data
on precisely defined model fluids that can be used to test theoretical
approximations. Such tests are of great value in discriminating among
theories and are a desirable prelude to comparisons with experimental
data on real fluids. For applications to phase equilibria it is particularly
useful to calculate the chemical potentials of the mixture components by
simulation. Such calculations require specialized techniques, and it is
these techniques that we review in the first section of this chapter. We
place special emphasis on those methods (umbrella sampling and test
particle methods) that have been developed recently and that are useful
at liquid densities.

We next review some of the most useful statistical mechanical the-
ories that have been developed since 1967. These include perturbation
theories for both spherical and nonspherical molecules, and theories
based on the fluctuation formulas of Kirkwood and Buff. For spherical
molecules, the theoretical situation is relatively satisfactory, except for
mixtures where the molecules differ greatly in size (e.g., dilute solutions,

1 Current address: University of Southern California, Department of Chemical En-
gineering, Los Angeles, CA 90007
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supercritical extraction systems). For nonspherical molecules, there have
been substantial improvements in methods in the last six years, and
calculations based on perturbation theory are now quite accurate for
mixtures in which the liquids are completely miscible. However, these
methods are still rather poor for highly nonideal mixtures (e.g., those
where hydrogen bonding is important), mainly because the intermolec-
ular potential functions are poorly known.

The calculations carried out so far usually assume rigid molecules
and neglect effects due to quantum corrections or multibody forces.
Quantum corrections are important for mixtures containing hydrogen or
helium, but are usually small otherwise. Some calculations have been
made that include three-body dispersion and induction forces. The rigid
molecule approximation precludes the use of the theoretical methods
reviewed here for long-chain molecules.

Free Energy and Chemical Potential by Computer Simulation

The usual Monte Carlo and molecular dynamics techniques used to
simulate fluids can yield the internal energy and pressure with reasonable
accuracy, but do not give good results for the Helmholtz free energy,
A, or chemical potential, w. The conventional Monte Carlo and molecular
dynamics methods are reviewed elsewhere (I, 2). (For a more detailed
discussion of the older methods used to calculate A or ., see References
3-5.)

For pure fluids, a knowledge of A is equivalent to knowing p, but
this is not the case for mixtures. The first few methods described below
give the free energy rather than the chemical potential. The grand ca-
nonical Monte Carlo and test particle methods then described give the
chemical potential directly; this is to be preferred where mixture phase
equilibria are to be studied.

Methods for Calculating Helmholtz Free Energy. THERMODYNAMIC
INTEGRATION. In thermodynamic integration, the difference in the free
energy between two states is calculated by numerically integrating over
states between the initial and final state, using some thermodynamic
relationship. For example

P P
A(py, T) = A(po, T) + NJ; "')E dp 1

or

= +

A(P’ Tl) _ A(p7 TO) Yh Ud l
T, T, UT, T
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where p = N/V is the number density, P is pressure, and U is internal
energy. Values for P or U from computer simulations for 10 or so points
along an isotherm or isochore are usually fitted to polynomials and then
integrated according to Equation 1 or 2. The free energy for the initial
state is usually known (usually one takes the high-temperature or low-
density limit).

The integration variable is not restricted to thermodynamic varia-
bles. The initial and final states could represent two systems at the same
thermodynamic state, but having different intermolecular forces. Thus

we can write
a0 - ang = [ (BY g ®

where, for example, the state X may represent a quadrupolar Lennard—
Jones fluid, whereas \, represents a Lennard—Jones fluid. Here U is the
intermolecular potential energy. In this particular example, then (6U(N)/
ON), is given by (WU,), where UN) = U, + NU,. Therefore the inte-
gration variable \ is a measure of the quadrupole strength.

The thermodynamic integration method has been used by various
authors to study model fluids, including hard spheres (6), soft repulsive
spheres (7, 8), Lennard—Jones atoms (9-13), the dipolar—quadrupolar
Lennard-Jones fluid (14), one-component plasma (15), and hard dumb-
bells (16). Thermodynamic integration is tedious and poses problems
when phase transitions occur along the path of integration. In the two-
phase region, simulation gives large uncertainties in P and U used in
Equations 1 and 2, so that the resulting values of A are rather unreliable.
To overcome these problems, artificial constraints have to be imposed
on the system to reduce the fluctuations. In the case of the melting
transition, Hoover and Ree (17) used a single occupancy model where
the center of each particle is confined to a cell centered at the lattice
site. In the case of the vapor-liquid transition, Hansen and Verlet (18)
divided the Monte Carlo box into subcells and restricted the density
fluctuations in the box by imposing upper and lower limits on the density
of each subcell. When such artificial constraints are imposed, one is
essentially performing a series of simulations on artificial systems, the
sole purpose of which is to allow integration to obtain A and which is
otherwise of no particular interest or utility.

METHOD OF MCDONALD AND SINGER. Several more direct meth-
ods of finding A have been proposed. McDonald and Singer (19-21) write
the free energy for the two states T, and T, as

_{\;Ll) _ A;To) = —kIn :fro@u) exp[‘ %G - i)] o
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Again, the two states need not be restricted to thermodynamic states
and (with obvious changes to the integrand) could equally well represent
two systems having different intermolecular forces at the same ther-
modynamic state. A(T;) — A(T,) is easily obtained from Equation 4. In
this method, a Monte Carlo simulation at the state T, is used to obtain
the distribution f7(U) which is then integrated according to Equation 4
to obtain AA = A(T,) — A(T,). Typically, fr(U) is a rather narrow Boltz-
mann distribution and covers only the range of U important to the state
T,. Therefore, fr(U) obtained from the simulation at T, will allow cal-
culation of A(T,) only if state T, is close to state T,; that is, when the
range of U important to T, overlaps sufficiently the range important to
T,. For Lennard-Jones fluids, McDonald and Singer (19, 21) found that
this method works if the states T, and T, differ in temperature by less
than 15%.

MULTISTAGE SAMPLING. As described in the last subsection, the
free energy difference between two systems 1 and 0 having intermolec-
ular potential energies U, and AU, can be written as

AA = A, — Ay = —kTIn f_ £,01,) exp(—U,/KT) dw, ()

where f,(U,) is the probability density for observing the difference U,
=, — U, in the reference (0) system, where U, and U, are the potential
energies that would be observed in the 1 and the 0 systems for the
molecular configuration in question. Valleau and coworkers (22 23) noted
that when the systems 1 and 0 are rather different, f,(U,) as obtained
from a smgle simulation at the state 0 will not overlap the distribution
foWU,) exp(—U,/kT), which is the integrand in Equation 5. The integral
in Equatlon 5 will then be underestimated. They suggested the use of
brldglng distributions that bridge the gap between f,(U,) and
foU,) exp(—U,/kT), and used Boltzmann distributions corresponding
to physwally realistic states between 0 and 1 as the bridging functions.
Unless states 0 and 1 are quite close together, several distributions (or
stages) are needed to bridge the gap—hence the name multistage sam-
pling. This method has been used to study Coulombic hard spheres (22),
dipolar hard spheres (23), and diatomic Lennard-Jones molecules using
hard diatomics as reference (23, 24). The method is superior to ther-
modynamic integration, since a knowledge of f,(U,) over the range of
A, relevant to states 0 and 1 allows accurate interpolation for the con-
tinuous spectrum of states between 0 and 1. (Jacucci and Quirke (24, 25)
introduced a method called marquee sampling, in which an analytic form
for the potential function of the intermediate ensemble is given.)

For many systems, multistage sampling requires fewer simulations
than thermodynamic integration. Exceptions occur at low temperature
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and for large systems, since for those cases the Boltzmann bridging dis-
tributions become very narrow, and overlap is usually poor. These short-
comings prompted Valleau and Torrie to seek other more optimum choices
for bridging functions. This resulted in the development of the method
of umbrella sampling, described later in this chapter.

BENNETT'S METHOD. Bennett (26) derived expressions for the op-
timal estimation of the free energy difference between two systems with
temperature scaled potentials U; = U,/kT, and U, = U/kT, using data
from simulations of finite length.

AAest

S {f0u - u; + O) N
IR R 1“(‘) ©

L)

For a run of sufficient length the first In term on the right-hand side of
Equation 6 will converge to zero, and we have

AA,, =C - In <ﬁ> (7)

L

Here AA,,, is the estimated free energy difference, n, and n, are the
number of configurations generated in systems 1 and 0, respectively, C
is a shift constant, and f(x) = 1/[1 + exp(x)] is the Fermi function.
Two separate simulations, one for the 0 system and one for the 1
system, are made, and histograms of the energy distribution functions
hoU,, = WU; — Ug) and h,(U,) are constructed. Equal computer time
should be devoted to each simulation, and this determines the optimal
ratio n)/n,. Using the distributions hy(U,) and k,(U,), AA is calculated
by making guesses for C and iterating using Equations 6 and 7 until
convergence is achieved. The success of this method depends on the
overlap between the distributions h,(U,) and hy(U,). When these do not
overlap, AA cannot be estimated reliably. A comparison of Bennett’s
method and multistage sampling has been made by Quirke and Jacucci
(24, 25) in a study of Lennard—Jones diatomics. They also suggested a
new method for correcting the results of short Monte Carlo simulations.
UMBRELLA SAMPLING. Umbrella sampling (27, 28) allows calcula-
tion of the difference AA = A, — A, of two states that are not necessarily
close to each other, using only one (or at most a few) simulations. It is
convenient to write Equations 4 and 5 in a more general form

<%)1 - @)0 B _klnflfo(A) exp [~ U, (4)] dA (8)
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where AU, = (WkT), — (U/kT), and A is an appropriate variable. For
example, A equals U in Equation 4 and U, in Equation 5.

In umbrella sampling (27, 28) f(A) in Equation 8 is not determined
from Monte Carlo simulation at the reference state 0 alone (as was the
case in the work of McDonald and Singer), nor is it determined from a
range of physically realistic states in between and including the states 0
and 1 [as was the case in the multistage sampling work of Valleau, Card,
and Patey (14, 22), as well as in Bennett’s method (26)]. Instead, f, is
determined from one or a few simulations for artificial systems that give
rise to configurations typical of many states between 0 and 1. An artificial
system is generated by replacing the Boltzmann distribution exp (—BU)
with a new distribution W(A) exp (— B9U), where W(A) is a suitable weight-
ing function, and A is a suitable integration variable. With a judicious
choice of W(A) the simulation for this artificial system gives a weighted
distribution f,(A) that is much broader than the Boltzmann distribution
fo (see Figure 1). The original Boltzmann distribution f,(A) can be re-
covered from f,(A) by reweighting according to

_ L) S L
Jo&) = W(A)/ (%@ )- ®

where ( ), indicates an ensemble average over the weighted chain of
configurations. In this way f, is obtained over a much wider range of A.

Umbrella sampling has been used by various authors to study several
model fluids, including pure Lennard—Jones fluids (28), Lennard—Jones
mixtures (29), dipolar hard spheres (30), and quadrupolar Lennard—Jones

Figure 1. Probability density distribution functions for a typical liquid
condition for the unbiased system (f,) and the weighted system (£,). For
small A values, f, and the desired curve f, exp (—9)) are calculated from

f,, using Equation 9.
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fluids (31). It has also been used to study the surface tension of water
(32).

Umbrella sampling has several advantages. It has been shown that
AA is less dependent on system size than A itself, and good results for
free energies have been obtained using only 32 atoms (27, 30; see also
24, 25). Since umbrella sampling simulations are carried out for artificial
systems representing states between the system of interest (1) and the
reference state (0), in cases where the system of interest phase-separates,
the umbrella sampling simulation may show no phase transition and thus
allow more accurate results to be obtained. Disadvantages of this method
are that the reference free energy must be known; also, the weighted
sampling makes it uneconomical to obtain some of the properties other
than A, such as correlation functions. The distribution functions f, and
f. narrow as the size of the system increases or when temperature de-
creases; therefore the number of stages or separate simulations required
to cover a specified range in A also increases. The selection of a suitable
weighting function requires some trial and error. Finally, the method is
restricted to Monte Carlo calculations and cannot be used in molecular
dynamics.

Methods for Calculating Chemical Potential. GRAND CANONICAL
MONTE CARLO. The partition function for the grand canonical ensemble
is given by

2 Ni Jexp [—UxNYVET] dxV (10)

where dxV = dx,dx,. . .dxy and x, represents the coordinates that specify
the configuration of molecule i (e.g., x; = r, for spherical molecules, x;
= r,, for nonspherical rigid molecules), and A = (q,,/A?A,) exp (WkT);
here q,,, A, and A, are the usual quantal, translational, and rotational
partition functions, respectively, for a single molecule.

In this ensemble, w, T and V are fixed and the density fluctuates.
The mean density and (N) are found as ensemble averages at the end of
the simulation. This simulation method has been implemented in some-
what different ways by Norman and Filinov (33), Adams (34-37), and
Rowley, Nicholson, and Parsonage (38). The method involves essentially
two steps. The first step is the displacement of the particles in the system
and is identical to the procedure used in the canonical ensemble simu-
lation. The second step involves adding or removing particles according
to the requirements of the grand canonical ensemble weighting function,
so that the number density in the system fluctuates. In their studies of
the Lennard—Jones fluid, both Norman and Filinov, and Adams observed
abrupt changes in density at a particular value of w corresponding to the
vapor-liquid transition; however, such jumps were very infrequent.
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Adams also used this simulation method to locate the coexistence
curve of the Lennard-Jones fluid. He observed that close to the phase
transition, if the simulation was started from the wrong phase for the
prescribed ., the system would ultimately converge to the correct phase.
No flipping back and forth between the two phases was observed, how-
ever. Grand canonical Monte Carlo works best at high temperatures and
low densities, since the addition of molecules is then allowed with suf-
ficient frequency for adequate sampling of the density fluctuations rel-
evant to this ensemble. Recently, Mezei (39) has modified the sampling
procedure so that states of higher densities can be studied. In his cavity
biased (WTV) Monte Carlo method, a network of uniformly distributed
test points was generated in the fluid and the fraction of these points in
a suitable cavity was found. Insertion of a new particle was attempted
at this cavity instead of at randomly selected points. The fraction of test
points in the chosen cavity also allows the proper normalization of the
ensemble averages. For the Lennard-Jones fluid, Mezei found that the
efficiency of the insertion process was increased by a factor of 8 while
the required central processing unit (CPU) increased by a factor of 2.5.

Grand canonical Monte Carlo has the advantage of giving the chem-
ical potential directly. Since the number of particles in the system is
allowed to fluctuate, the ensemble permits density fluctuations and also
permits concentration fluctuations in the case of mixtures. Therefore,
this ensemble should be more suitable for studying systems close to phase
transitions and for systems close to the critical region. Grand canonical
Monte Carlo simulations are more complex and more time consuming
than canonical ensemble Monte Carlo simulations. Adams noted that the
results are sensitive to errors in the random-number generators used.
At low temperatures and high densities, it is very difficult and time
consuming to sample the density fluctuations adequately, even with Mez-
ei’s improved cavity biased version. This problem will become more
severe if a more complex, angle-dependent potential is used, because
the success of the insertion attempts will then also be angle dependent.
Furthermore, since it is p that is specified, the density (and also the
composition in the case of mixtures) is not known until the end of the
simulation; this is inconvenient in practice. This method is restricted to
Monte Carlo calculations, and does not appear to be useful for molecular
dynamics.

TEST PARTICLE METHOD. This method is based on an expression
for the chemical potential derived by Widom (40)

Kor = — kT ln <exp < - Ou'ta/kT))N—l

K[ funi@) exp (~UAT) L, (1D
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where w,, = p, — pidis the residual chemical potential for the species
a in a fluid composed of N —1 real molecules of which N, are molecules
of species A, Ny are molecules of species B, and so forth, in a volume
V at temperature T; U,, is the potential energy felt by an invisible test
particle (molecule 1 of species a); and (. . .)y_, denotes an ensemble
average in a system of N—1 real molecules. It should be emphasized
that in Equation 11 the test particle has no influence on the N—1 real
molecules.

Adams (34) used this method to calculate the free energy of hard
spheres in order to test the scaled particle theory. Romano and Singer
(41) later implemented this method in both Monte Carlo and molecular
dynamics simulations to calculate the chemical potential of bromine and
chlorine using a two-center Lennard—Jones model. The sampling pro-
cedure used by Romano and Singer was as follows: after every molecular
dynamics time step or after every few hundred Monte Carlo configu-
rations, the value of U,, for three mutually perpendicular test particles
at each of a few hundred uniformly distributed lattice sites was calculated.
The ensemble average (exp (—U,,/kT))y_, was found by an unweighted
average over all values of U,, obtained over the course of the simulation.
Powles (42) further studied the method and used the results of Romano
and Singer to calculate the vapor-liquid coexistence properties of bro-
mine and chlorine.

The advantages of the test particle method are that it is much simpler
than the grand canonical Monte Carlo algorithm, and requires only the
addition of a simple subroutine to perform the test particle sampling.
Also, Romano and Singer have shown that it can be implemented in both
canonical Monte Carlo and molecular dynamics simulations, although
they found that the convergence was poorer in molecular dynamics. It
is conceivable that this method can also be used in other ensembles, for
example, the isothermal-isobaric ensemble. Since the test particle sam-
pling does not affect the real particle configurations, the internal energy,
pressure, and correlation functions can be obtained in the usual way.
The disadvantage of the method is that it fails at normal liquid densities
because of the predominance of configurations in which the test particle
overlaps one or more of the real molecules, causing the Boltzmann factor
of the test particle to be negligibly small. Such failure is closely related
to the failure of the grand canonical Monte Carlo method at high den-
sities. In mixtures, this difficulty increases whenever one considers a
solute that interacts strongly (through large size or large attractive force)
with the other solvent molecules. There are two sampling problems
associated with the test particle method at liquid densities:

1. Given a fixed configuration of the real particles, how can
one efficiently sample the relevant range of U,, by placing
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the test particle in locations that overlap real particles as
little as possible?

2. How can the sampling be concentrated on those real par-
ticle configurations that exhibit “holes” and thus make a
major contribution to the average in Equation 117

These problems can be overcome by one or more recently developed
techniques which are now briefly described.

Restricted Umbrella Sampling. The first problem mentioned above
can be solved by using a procedure called restricted umbrella sampling
(43), in which a weighting function is used to force the test particle to
move mainly in regions with holes. The weighted distribution is nor-
malized by comparing it to the unweighted distribution over the range
of AU,, where the two overlap. The weighting function acts only on the
motion of the test particle, which is invisible to the real particles. In
other words, through the weighting function the test particle can see the
real particles, but the reverse is not true. For a Lennard-Jones fluid at
a reduced density of p* = pa® = 0.7, restricted umbrella sampling is
able to increase the number of configurations that contribute significantly
to the integral in Equation 11 by a factor of 30.

Combined f-g Sampling. This method is designed to solve the
second problem, i.e., that of adequately sampling real molecule config-
urations that exhibit holes. It is based on a combination of Widom’s
expression, Equation 11, and its inverse (43, 44)

Mar = kT ln <exp (Gu‘ta/kT»N

= KTIn| gy exp (UJKT) U, 12

where (. . .)y is now an ensemble average over the system of N molecules
in which the test particle is one of the N real molecules. Equation 12
has been derived independently by Oliviera (44) and by Shing (43, 45,
46).

From Equations 11 and 12, it can be shown that (43, 46)

gv(Uia) = €xp (Mo, /kT) fr-1(Usa) €xP (= Ua/kT) (13)

This means that when there is a range of U,, over which gy and fy_,
overlap, the chemical potential p,, can be calculated. The functions fy _,
and gy are shown for a typical liquid density in Figure 2. It should be
noted (see Equations 11 and 13) that gy is proportional to the integrand
needed to calculate the chemical potential. This is as expected, since gy
gives the distribution over %U,, for a real molecule and thus samples the
hole region adequately.
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Figure 2. Probability density distribution functions needed in the test

particle method for a typical liquid state condition. The function f_, is

a very broad distribution and extends to very large U, values; the width

of this distribution is compressed here for convenience of plotting. For

small U, values the desired integrand, fy_,; exp (—U,/KT), is obtained by
using gy in Equation 13 to calculate fy_;.

Using restricted umbrella sampling and f-g sampling, Shing and
Gubbins (43) have shown that for the Lennard—Jones fluid, the chemical
potential up to the triple-point density can be found. They also used this
method to calculate the chemical potential of highly nonideal Lennard—
Jones mixtures (43, 46). Results for the Henry constant in Lennard-Jones
mixtures using this technique are shown in Figures 6 and 7.

Test Particle Method with Full Umbrella Sampling. If the density
is very high, or if the test particle interacts strongly (for example, for
large or strongly interacting solutes, in the case of mixtures) the distri-
butions gy and fy _, may no longer overlap. In such cases the spontaneous
generation of holes in the fluid occurs so rarely that it is almost never
sampled in a simulation of normal length. Therefore it is necessary to
bias the sampling artificially in such a way as to emphasize configurations
with suitable holes. This is done by coupling the motion of the test particle
to that of the real particles through a weighting function (47). The test
particle and the real particles are then mutually visible.

The advantage of this procedure is that it works at very high densities
and for very nonideal mixtures. However, since the motion of the test
particle is now felt by the real molecules, the structure of the fluid is
altered and it is no longer practical to calculate some of the usual prop-
erties (for example, the correlation functions). The fact that the weighting
function now affects the motion of both the test particle and the real
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particles also means that this full umbrella sampling test particle method
cannot be used in molecular dynamics simulations.

SUMMARY OF METHODS FOR CALCULATING CHEMICAL POTEN-
TIAL. The methods for calculating the chemical potential will usually
be the most useful for testing theories of mixtures, particularly when the
ability of the theory to predict phase equilibria is important. Of the two
methods described, the test particle method or one of its modifications
works under most conditions and is relatively simple to use. The grand
canonical Monte Carlo method will offer advantages over the test particle
procedure when large density or concentration fluctuations are likely in
the real system, i.e., near phase transitions or critical points. At present,
this method is more complex to program and is restricted to moderate
densities unless special techniques are used. Mezei’s method (39) re-
moves this last restriction to some extent, but does not solve the problem
completely for very dense liquids.

RECENT WORK. Several articles have appeared recently on com-
puter simulation methods for determining the chemical potential. An
interesting application of the grand canonical Monte Carlo method-to
chemical equilibria in mixtures of bromine and chlorine has been de-
scribed (48), and a new method of implementing the grand canonical
Monte Carlo method has been proposed and applied to the Lennard-
Jones fluid (49). The test particle method has been further studied using
molecular dynamics in place of the Monte Carlo technique (50). These
authors study a shifted-force Lennard—Jones fluid using both the direct
Widom method and the combined f-g sampling technique. They find
little to choose between these two variants of the test particle method,
in contrast to the results found in the Monte Carlo studies of the Lennard—
Jones fluid (43). The molecular dynamics runs of Powles et al. (50) are
considerably longer than the Monte Carlo calculations of Shing and Gub-
bins (43), are at different state conditions for a larger system, and are for
a different potential model, so that the calculations cannot be directly
compared. It is possible that the molecular dynamics method samples
phase space more efficiently, so that the direct Widom method is ade-
quate for dense fluids with spherical potentials, at least when they are
pure. Careful tests comparing the Monte Carlo and molecular dynamics
methods for the same potential, state conditions, and length of runs are
needed to clarify these points.

Theory

In this section we concentrate on the more successful theoretical
approaches that have been developed since 1967. The most promising
approach at present is perturbation theory, and various forms of pertur-
bation theory are described below. Most recent work has proceeded by
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evaluating the partition function, but an important alternative approach
is to start from the formulas of Gibbs and Kirkwood and Buff, discussed
below, which relate the mixture thermodynamics to concentration fluc-
tuations. We omit any discussion of many of the older theories (cell and
lattice theories, regular solution theory, random mixture theory, and so
forth) and theories that apply only to specialized states (for example, the
critical region) or particular sorts of mixtures (polymer solutions, aqueous
mixtures, fused salts, and so forth).

It is convenient to classify binary phase behavior on the basis of the
types of critical and three-phase lines present and on the way these
intersect. For fluid phase equilibria, the classification scheme shown in
Figure 3 is convenient, and includes all the known binary types. Class
I systems are often fairly ideal in a thermodynamic sense, and do not
exhibit liquid-liquid immiscibility. The remaining five classes display
liquid-liquid separation of various kinds. The most common types of
behavior are Classes I, II, and III. These classes of phase behavior are
further complicated by the presence of solid phases, and many subclasses
occur. Detailed discussions of these various types of phase behavior are
given elsewhere (51-55).

Mixtures of Hard Molecules. The simplest nonideal mixtures are
those composed of hard particles. Their study provides valuable insight
into the effects of molecular size and shape on the thermodynamic prop-
erties, in the absence of complications from attractive forces. In addition
to integral equation and perturbation theory, it is possible to study such
mixtures using scaled particle theory. In scaled particle theory, one cal-
culates the work required to add a hard molecule to the fluid by first
adding a point molecule and then scaling this molecule up to its full size
(56). The derivation of scaled particle theory is valid only for mixtures
of molecules of the same shape, although the final expression obtained
seems to work quite well even when the molecules have different shapes.
Studies of mixtures of hard bodies have been made by Percus-Yevick
theory (57), scaled particle theory (56), various modified forms of scaled
particle theory (58-61), and computer simulation (62-66). These studies
are in general agreement, and lead to the following three conclusions
concerning the thermodynamics of mixtures of hard molecules:

1. The excess volume, VE, and hence GE, is always negative.
(For such mixtures UE = 0 and GF is simply the integral
of VE over pressure.) There is therefore no fluid—fluid phase
transition in such mixtures, though it is possible that iso-
tropic-nematic phase transitions may occur for very elon-
gated molecules.

2. Molecular shape has virtually no effect on the shape of the
VE curve, and only a minor effect on its magnitude.
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3. The size ratio of the two molecules and the pressure both
have a large effect on the shape and magnitude of the VE
curves.

The small influence of molecular shape on the compressibility factor is
shown in Figure 4 for a mixture of hard spheres and spherocylinders of
equal volumes. It is seen that the values of P/pkT for such a mixture are
similar to those for pure hard spheres and pure spherocylinders, provided
these molecules all have the same volume. The values of VE for this
mixture are very small, because the nonideality arises entirely from the
difference in shape of the two species, their volumes being the same.
Perturbation Theory for Spherical Molecules. Until 1971, work
on the theory of liquid mixtures focused almost exclusively on simple,
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Figure 4. The compressibility factor for pure hard spheres (---), an equi-

molar mixture of spheres and spherocylinders of equal volumes (O), and

pure spherocylinders (J). Here vy = pX, X, V4, where p = N/V is number

density, x, is mole fraction, and v, is molecular volume of component .

(Reproduced with permission from Ref. 66. Copyright 1980, Taylor and
Francis, Ltd.)
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spherical molecules. Perturbation and conformal solution theories, which
relate the free energy of the real mixture to a hard-sphere mixture and
to an ideal mixture, respectively, are successful for spherical molecules
(neon, argon, krypton, xenon) and are quite good even for weakly non-
spherical molecules (e.g., nitrogen, methane). These theories give a good
account of systems with phase diagrams of Classes I and III of Figure 3,
provided that the molecules are spherical and not too different in size.
They can predict qualitative behavior of Classes II, IV and V, but this
generally requires the use of potential parameters that are physically
unrealistic. They cannot predict behavior of Class VI. We give only a
brief account of these theories here; for details, reviews are available
(67-71).

CONFORMAL SOLUTION THEORY. In this approach it is assumed (1)
that the molecules are conformal; i.e., they obey the same intermolecular
force law, differing only in the values of the potential parameters €, and
0.s, and (2) the values of €,5 and o, for the various molecular pairs are
not too different from each other. Because of the second assumption, it
is possible to expand (72) the Helmholtz free energy A about that of an
ideal solution of molecules, all of which have the same parameters €, and
o,, and to terminate the series at the first-order term. The most successful
of these theories is the van der Waals 1 fluid (vdW1) theory. The ex-
pansion parameters in vdW1 theory are the combinations €o® and o3,
which appear to give more rapid convergence than other choices that
have been tried (6769, 72, 73). This leads to

A = Ax + Rezzxaxﬂ(saﬁogﬁ - 8x02>
o B

+ Ry Dxaxg(03 — 03) + -+ (14)
a B

Here R, and R, are pure fluid integrals for the reference fluid, the precise
form of which need not concern us here; A, is the free energy of the
reference mixture; and o, and &, are the size and energy parameters for
the reference fluid. If €, and o, are now chosen according to the vdW1
mixing rules,

® W

€, 0

x

= ZZxa‘xB eaBGgB (15)
« B
o = szuxa Top (16)
« B
then the first order term in Equation 14 vanishes, and Equation 14

reduces to the simple result A = A,. This is the basis of corresponding
states treatments for mixtures, and for the shape factor methods.
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Clearly Equations 14-16 can be expected to apply only for mixtures
in which the molecules are not too different, i.e., in which o,,/055 and
€44/€5p are not too different from unity for binary A—B mixtures. If the
series in Equation 14 is extended to second order, it is found that these
terms involve triple summations over the mole fractions (74, 75). Thus
for mixtures of components of very different critical volumes or critical
temperatures, Equations 15 and 16 are likely to be unsatisfactory.

A test of this theory is shown in Figure 5 for argon—krypton mixtures,
and in Figures 6 and 7 for infinitely dilute solutions of A in B, where A
and B are spherical Lennard-Jones molecules. The points in these last
two figures are exact computer simulation results for such mixtures (43,
46), obtained by the modified test particle method described earlier,
while the dashed lines give the results for the theory. The usual Lorentz—
Berthelot rules

€ap = (€4a€pp)"”?

l/z(O'AA + Ogs) 17)

OaB

are used in these calculations. It is seen from these figures that the vdW1
treatment gives quite a good description of the chemical potential for ¥4
< g 4/epp < 4 (corresponding to critical temperatures that vary by as
much as a factor of four) when the molecular sizes are the same; these
limits correspond to Y2 < g,5/e5; < 2. However, the theory does not
describe well the effect of molecular size differences (Figure 7), partic-
ularly when the solute is much larger than the solvent molecules.

The vdW1 theory has been extended in two ways. In the first (74,
75), the expansion of Equation 14 is extended to second order. The
second-order terms must be calculated explicitly and involve three-body
integrals, so that the simplicity of the first-order theory is lost. Detailed
numerical calculations do not seem to have been reported, except for
hard-sphere mixtures (72, 75). For that case, the second-order theory
seems to give quite good results even for ratios oz5/0 .4 as large as three,
where perturbation theory based on a pure hard sphere reference system
fails (See Figure 8). The second extension is the so-called two-fluid the-
ory, or vdW2 theory (67-70, 76), in which the properties of the real
mixture are equated to those of an ideal mixture of two pure pseudo-
components; i.e., components A and B (in the case of binary mixtures)
are referred to different pure reference fluids. The vdW1 mixing rules
of Equations 15 and 16 are now replaced by

Sxao-ia = ; xBeuBO'ZB (18)

0 = E xBO'ZB (19)
B
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Figure 5. Test of vdW1 theory (lines) against Monte Carlo data (points)
(67-70, 77) for Lennard—Jones mixtures at 115.8 K. The Lennard—Jones
parameters are chosen to simulate argon—krypton mixtures.

where a = A,B, and so forth. The vdW2 theory has been tested against
simulation data for Lennard-Jones mixtures in which the molecules are
of nearly the same size, and is poorer than the vdW1 theory. It does not
seem to have been tested for highly nonideal Lennard—Jones mixtures,
where the size or energy parameters of the two molecular species are
very different.
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Figure 6. Variation of the Henry constant K, with the ratio €,p/€gg for
Lennard-Jones mixtures at kT/egg = 1.2, poyg = 0.7. The molecules are
of the same size, 0,5, = Ogg. In this case, the results of the vdW1 theory
are the same as those for a perturbation expansion (46) about the pure
solvent (PTS). Key: -+ , result of the Mansoori-Leland approximation;
, result of Monte Carlo technique; and ---, result of vdW1I theory.
(Reproduced with permission from Ref. 46. Copyright 1982, Institute for
Physical Science and Technology.)

PERTURBATION ABOUT A HARD-SPHERE FLUID. In this approach
the intermolecular potential energy AU is usually written in the form

A, = Uy + AU, (20)

where 9, is the reference system potential energy, U, is the perturbing
energy, and \ is a perturbation parameter. Choosing A = 0 gives the
reference potential, while A = 1 gives the potential for the full system.
If we expand the Helmholtz free energy A in powers of N and subse-
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quently set A\ = 1 we obtain the perturbation expansion
A=Ay +A +A, + A+ ... 21)

where A, is the free energy for the reference fluid, A, is the first-order
perturbation term, etc. The reference fluid is chosen to be one in which
the molecules interact with a purely repulsive potential, so that the
attractive forces are included in U,,. The reference system properties are
subsequently related to those of a fluid of hard spheres through a second
expansion, usually in some form of inverse steepness parameter (the hard-
sphere potential being infinitely steep). The expansion can be carried
out either about a pure hard-sphere fluid, or about a hard-sphere mixture.
The latter gives the better results, particularly if the molecules are much
different in size (Figure 8 shows results of using a pure hard-sphere
reference fluid).

Three variations on this approach have been proposed—due to
Leonard et al. (79, 80), Lee and Levesque (81), and Mansoori and Leland
(82, 83). The theories of Leonard et al. and Lee and Levesque differ
mainly in the definition of the reference potential, the former using the
part of the potential for r < o, and the latter that part for r < r,,, where
7, is the separation corresponding to the potential minimum. The Man-
soori-Leland theory is an extension of the variational approach to mix-
tures. These three theories give similar results (67-70).

These theories have been extensively reviewed (67-71), so that we
do not dwell on them here. They are more complicated to use than vdW1
theory and its extensions, since the evaluation of A, and higher order
terms requires the evaluation of integrals over the hard-sphere corre-
lation functions. They give better results for highly nonideal mixtures,
however, particularly if the molecules are much different in size, and
are not restricted to conformal mixtures. They can be used as a starting
point for the derivation of empirical equations of state, such as the van
der Waals and Redlich—-Kwong equations (67-71, 84). Such an approach
makes clear the approximations in such equations, and can be used to
suggest new equations.

THE MANSOORI-LELAND APPROXIMATION. In the Mansoori-Leland
approximation (85), the true mixture radial distribution function, g.q(r),
is replaced by the corresponding function for a pure fluid evaluated at a
reduced temperature kT/e,g, a reduced distance 1/0,4, and a reduced
density po?, with o2 given by Equation 16. Results for the Mansoori-
Leland approximation are included in Figures 6 and 7. It gives quite a
good account of the effects of varying €,,/e5 (and hence T.,/T, 5, where
T, is critical temperature) when the molecules are similar in size, but
does not work well when the molecules are much different in size.
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Figure 8. The compressibility factor for an equimolar mixture of hard
spheres with oggl/o,, = 3. The points are molecular dynamics results of
Alder (62-66) and the curves are theoretical results. Key: -+, Percus—
Yevick (compressibility) equation; ----- ,vdW1; , second-order vdW1
theory; and —-— - — , Henderson—Barker perturbation expansion about a
pure hard sphere fluid (79). Here d* = (x,6%, + xgo3p)p. (Reproduced
with permission from Ref. 75. Copyright 1971, Taylor and Francis, Ltd.)

Perturbation Theory for Nonspherical Molecules. For nonspher-
ical molecules perturbation theory calculations have been made using
reference fluids of both spherical and nonspherical molecules. The most
extensive comparisons with experiment have been made for spherical
reference molecules using the Padé approximation of the Pople expansion
(86) suggested by Stell et al. (87).

A = Ay + Al — Ay/A)! (22)

The term A, vanishes in this series. In this expansion the reference fluid
pair potential u%4(r) is defined by

“gﬁ(r) = <uua(7'(°1(°2»m,w2 (23)
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where o and B are mixture components and (. . .) indicates an un-
weighted average over molecular orientations. Usually some simple model,
such as the Lennard-Jones 6-12 or 6-n is chosen for «°. For the 6-12
model both the equation of state and the pair correlation function are
known from computer simulation studies (88), and it is a simple matter
to relate the properties of the 6-n fluid to those for the 6-12 case (89).
General expressions have been given (90) for A, and A,; they involve
two- and three-body integrals over the correlation functions for the ref-
erence system. These integrals have been evaluated for a variety of
potential forms and fitted to simple functions of temperature and density
(88). Equation 22 is found to agree well with computer simulation results
for fluids in which the molecules have spherical or near-spherical cores,
even when strong electrostatic forces are present. It is less satisfactory
for molecules with highly nonspherical shapes (90).

In calculations based on Equation 22, the pair potential is written
as a sum of terms

u(12) = ug(r) + Ueed12) + u0a(12) + uai(12) + u,(12)  (24)

where ., Uina, Uais, and u,, are the electrostatic, induction, anisotropic
dispersion, and anisotropic overlap terms, respectively. The anisotropic
dispersion term is usually approximated by the London expression, and
the remaining anisotropic potential contributions are represented by the
first few terms in an expansion in generalized spherical harmonics. Ex-
plicit expressions for the terms in Equation 24 are given in Reference
91. Equation 22 has been used to explore the relationship between in-
termolecular forces and the resulting phase diagram (90-93). Thus, if one
or both of the components interacts with a Lennard—Jones plus a dipole—
dipole term, it is possible to obtain any of Classes I to V of Figure 3 by
suitable adjustment of the parameters in the potential (see Figure 9).
Similar results are obtained if a quadrupole—quadrupole term is used in
place of the dipole—dipole one. If, instead, the anisotropic part of the
potential consists only of an overlap term designed to simulate the shape
of a linear molecule, then only Classes I and III are obtained (90). The
anisotropic overlap and dispersion parts of the potential seem to have a
relatively small effect on the phase diagram, whereas the effect of elec-
trostatic forces is large. A detailed study of the effect of various potential
terms on systems showing gas—gas immiscibility has been made by Gibbs
(93). Jonah et al. (84) have recently carried out a study of the influence
of various types of intermolecular potential terms on the dissolving power
of solvents used in supercritical extraction of liquids and solids. They
found that quadrupolar forces are particularly effective in increasing the
dissolving power.
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Comparisons of Equation 22 with experiment have been carried out
for liquid mixtures involving inorganic fluids (nitrogen, oxygen, carbon
monoxide, carbon dioxide, carbon tetrafluoride, nitrous oxide, hydrogen
chloride, and hydrogen bromide), hydrocarbons (acetylene, ethylene,
and n-alkanes up to Cg), and the first four primary alcohols. Work up to
1978 has been reviewed (89). More recent studies include those by Shukla
et al. (94, 93) for simple inorganics (nitrogen, oxygen, carbon monoxide,
and carbon dioxide) and methane; by Clancy et al. (96-99) on mixtures
involving hydrogen chloride, hydrogen bromide, ethylene carbon tetra-
fluoride, hydrogen, methane, and xenon; by Machado et al. (101, 102)
on the mixtures carbon dioxide—ethane, ethane—ethylene, xenon—nitrous
oxide, and nitrous oxide—ethylene; by Gibbs (93) on mixtures involving
the n-alkanes up to Cq and the first four primary alcohols; and by Moser
et al. (102) for mixtures carbon monoxide—methane, xenon-hydrogen
bromide and xenon-hydrogen chloride.

For mixtures having Class I phase behavior (no liquid-liquid equi-
libria) agreement between Equation 22 and experiment is usually good.
Results for the system carbon dioxide—ethane are shown in Figure 10.
In the theoretical calculations the pair potential model is that of Equation
24, with u, being the 6-n model, and the electrostatic potential being
represented by a quadrupole—quadrupole term. The three 6-n parame-
ters (n, €, o) were adjusted to best fit the vapor pressure and saturated
liquid density of the pure components, and &,, was adjusted to best fit
the data at 263.15 K. Equation 22 gives an excellent fit to the data over
the temperature range of 60 K. The dashed lines are the best fit obtainable
using the van der Waals 1 theory, using the same fitting procedure and
number of parameters, but with the 6-n potential alone. The vdW1 theory
gives good results at the temperature where €,, is fitted, but fails to
reproduce the variations of Pxy with temperature. This conclusion is
borne out by calculations for other mixtures (100, 101). Equation 22
usually gives good results for mixtures in which the molecules are ap-
preciably different in size and for polar mixtures (102), provided the
mixture is still of Class I.

As we pass from the Class I systems to systems having greater
nonideality (Classes II, III, and so forth) the agreement between theory
and experiment becomes poorer. Of particular importance is the recent
work of Gibbs (93), who has studied the systems methanol-methane and
methanol-ethane, both of which are Class III in the classification scheme
of Figure 3. Gibbs uses a potential model of the type given in Equation
24 with the electrostatic potential approximated by dipolar and quad-
rupolar terms. The nonaxial quadrupole of methanol is approximated by
an effective axial quadrupole. Good results are obtained for the phase
equilibria and three-phase (I,,L,G) line at low temperatures for these
methanol systems (Figure 11), and the theory predicts the correct qual-
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Figure 10. Theory versus experiment for carbon dioxide—ethane. Solid
lines are from Equation 22, dashed lines are vd W1 theory, and points are
experimental data.

itative Class III behavior. However, the quantitative agreement is poor
at higher temperatures (Figure 12). This is principally because the meth-
anol model predicts a critical temperature and a critical pressure that
are too high. Thus the critical locus is of the correct shape, but lies at
pressures that are too high. When the quadrupolar terms are omitted
from the methanol potential model, the results are much worse, and the
theory predicts Class I behavior.

Machado et al. (100, 101, 103) have recently carried out calculations
for nonaxial molecules, with particular attention being paid to nonaxial
quadrupole effects. Such nonaxial effects are important in general. The



Published on June 1, 1983 on http://pubs.acs.org | doi: 10.1021/ba-1983-0204.ch004

4.

SHING AND GUBBINS  Theory and Computer Simulation 99
T= 298K
GOJ 601 P
LLG (expt)
po—— = ——m--a _
40 .‘_ 40
p o
S
n -
~
- 20
20 —— Theory i
hd Expt |
0 1 1 1 1 T
T o33 == F
XMeoH XMeoH
Figure 11. Theory versus experiment for methanol-ethane. Solid lines

are from Equation 22, dashed lines and points are experimental data.
(Reproduced with permission from Ref. 93.)
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simplest example of a nonaxial molecule is ethylene (D,;, point group).
An approximate calculation of the excess enthalpy for a nitrous oxide—
ethylene equimolar mixture at 183.2 K and zero pressure gives 357 J/
mol by the correct nonaxial treatment, and 84 J/mol by the effective axial
method (103). The experimental value is 271 J/mol. Molecules such as
water and methanol are more nonaxial than ethylene (103), and the errors
in using an effective axial treatment would probably be substantially
greater.

The neglect of quantum effects usually leads to small errors unless
the system contains hydrogen as one of the constituents. Clancy and
Gubbins (98) have studied hydrogen and hydrogen—xenon mixtures using
Equation 22, but accounting for quantum corrections using the first
correction to the partition function of order #2. It is found that the simple
0(#?) treatment gives good results for hydrogen for temperatures down
to about 100 K, the precise temperature depending on the density (quan-
tum effects being more important at higher densities). Below this tem-
perature a full quantal treatment becomes necessary. Figure 13 shows a
comparison of theory and experiment at 100 K for the hydrogen—methane
system. In this case the anisotropic intermolecular forces make only a
small contribution, but the quantum effects are substantial. While the
theory gives quite good results, the empirical equations of state fail to
converge over much of the range of composition, presumably because
of the neglect of quantum corrections.

The effect of three-body dispersion forces on thermodynamic prop-
erties have been studied recently by Shukla et al. (94, 95) and by Clancy
(98-99) and were found to be significant. Preliminary calculations (104—
107) also suggest that multibody induction forces are important, but there
do not seem to have been any comparisons with experiment so far.

Mixture calculations based on perturbation theory using a non-
spherical molecule reference system have been made by Boublik (108-
112). A Kihara potential is used, and the properties of this fluid are
expanded about those for a fluid of hard convex molecules. Calculations
have been reported for the excess properties of argon—nitrogen, argon—
oxygen, nitrogen—oxygen, nitrogen—methane and carbon disulfide—cy-
clopentane, and are in moderately good agreement with experiment.
This approach accounts in a more realistic fashion for the effects of mo-
lecular shape than does the Padé approximant of Equation 22, but omits
the effects from electrostatic forces. Enciso and Lombardero (113) have
used nonspherical reference perturbation theory to calculate excess prop-
erties for argon—nitrogen and argon—oxygen mixtures using a two-center
Lennard-Jones model. Agreement with experiment is poor. Several other
authors have proposed perturbation theories based on a nonspherical
reference potential, but have not compared them with experiment.



Published on June 1, 1983 on http://pubs.acs.org | doi: 10.1021/ba-1983-0204.ch004

4. SHING AND GUBBINS Theory and Computer Simulation 101

1000~
P/bar

800

600

400

200

Figure 13. Vapor-liquid equilibrium data for hydrogen-methane from

experiment (O), from theory including quantum correction ( ), and

from the Redlich—-Kwong equation of state (— - — ), at 100 K. Parameters

in the equation of state were fitted to the data at 130 K in each case.

(Reproduced with permission from Ref. 98. Copyright 1981, Taylor and
Francis, Ltd.)

Finally we mention the work of Starling et al. (114) who have de-
veloped a form of conformal solution theory based on the Pople pertur-
bation theory. This involves a third parameter in the expansion that
accounts for anisotropy of the intermolecular forces, and gives good re-
sults in mixtures that are not too nonideal. It has been applied to hy-
drocarbon mixtures.

Kirkwood-Buff Theory. It is possible to relate mixture thermo-
dynamic properties to composition fluctuations in a particularly direct
and simple way. Such equations were first derived by Gibbs (115), but
were put in a convenient form much later by Kirkwood and Buff (116),
who showed that the composition fluctuations can be written in terms
of integrals over the pair correlation functions g,4(r) between molecular
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centers. The resulting equations are quite general, and make no as-
sumption concerning the type of molecule (spherical or nonspherical,
rigid or nonrigid), or additivity of the intermolecular potentials.

The Kirkwood-Buff theory gives expressions for the composition
derivatives of the chemical potentials, the partial molecular volumes, V,
= (dV/ON,)rpn'> and the isothermal compressibility, x = — V=1 9V/9P).
For a binary mixture of A and B, some of these relations are (116-117)

<aﬁa> _ kTI:l + p(2H,p — Hyy — Hgp) ] 25)

0x, Xa 1 — ppxa(2H,up — Hyy — Hgp)
VA =[1+ pB(HBB - HAA)]/"I (26)
VB = [1 + pa(Haa — Hup)lim 27)

X = [1 + psHus + pgHpg + papp(HasHps — HZ)/kTn (28

=~

where

i fo () — 1rtdr (29)

Pa + Ps t Paps(Has + Hgg — 2H,p) (30)

HO‘B

n

Expressions similar to Equation 25 can be derived for the other com-
position derivatives of w, and pg (116, 117). It is seen from Equations
25-30 that all of the mixture thermodynamic properties can be obtained
if it is possible to calculate the integrals H,g. Also, from Equation 25 we
see that if

1
H,p = E(HAA + HBB) (31)

the last term on the right-hand side of Equation 25 vanishes, and we
have the ideal solution (Lewis rule) form for w,; i.e., du, = kTd Inx,.
Equation 31 provides the molecular definition of such an ideal solution.

The corresponding expressions for a multicomponent mixture have
been given by Kirkwood and Buff (116) and in somewhat more general
form by O’Connell (118). O’Connell has also shown that the Kirkwood-
Buff theory expressions can be rewritten in terms of integrals C,g in
place of H,g, by using the relation (in matrix form)

H = C + pCHX (32)
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where H and C have elements H,g and C,g, and X is a diagonal matrix
whose nonzero elements are x,, x5, . . . . Here C,g is given by

oc

Cop = 4m f Cop(n)r? dr (33)

0

where ¢,5(r) = (Cop(rw,0,)),,.., is the centers direct correlation function.
The advantage of the C-form of Kirkwood-Buff theory is that c,g(r) is a
simpler and more short-ranged function than g,g(r), so that it should be
possible to develop simpler approximations to the C integrals.

O’Connell and coworkers (119-123) have used the C-form of Kirk-
wood—Buff theory to make numerical calculations for highly nonideal
mixtures containing supercritical components. It is found that the C
integrals, when put in reduced form, are rather insensitive to the type
of intermolecular forces involved, so that simple corresponding states
correlations can be developed.

Conclusion. For mixtures of spherical or near-spherical molecules
the existing forms of perturbation theory give good results unless the
molecules are very different in size. For small, nonspherical molecules,
including strongly polar or quadrupolar molecules, the Padé theory of
Equation 22 gives good results and is a significant improvement over
vdW1 theory or empirical equations of state, particularly for nonpolar—
polar mixtures. Further improvements in perturbation theory calcula-
tions will come with the development of perturbation theory methods
based on a nonspherical reference system. The Kirkwood—Buff theory
provides an alternative starting point because of its simplicity and gen-
erality, and seems to have been relatively little used by engineers.
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Using Hard-Sphere Perturbation Theory and the
Zero-Kelvin Isotherm of the Solid
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The CRIS model of fluids is reviewed and calculations using
the theory are compared with experimental data. The equa-
tion of state is computed from an expansion about a hard-
sphere reference system, in which the optimum hard-sphere
diameter is chosen by a variational principle. All infor-
mation about the intermolecular forces is obtained from the
zero-Kelvin isotherm of the solid. Calculations for the rare
gases, for the hydrogen isotopes and other polyatomic mol-
ecules, and for liquid iron are shown to agree well with
experiment. Liberman’s model for the electronic structure
of a compressed atom is used to calculate contributions from
thermal electronic excitation to the equation of state. These
terms are shown to be important in explaining shock-wave
data for xenon.

S EVERAL EXCELLENT THEORIES recently have been developed for cal-
culating the thermodynamic properties of fluids from specified pair
potentials (I-10). Barker and Henderson (1) showed that hard-sphere
perturbation methods are very accurate, even at low temperatures, when
the hard-sphere diameter is defined in an optimum fashion. Subse-
quently, Mansoori and Canfield (2) and Rasaiah and Stell (3) developed
the variational principle for choosing the hard-sphere diameter. Anderson
et al. (4) showed that perturbation theories succeed because repulsive
forces, or.effects of excluded volume, play the principal role in deter-
mining the equilibrium structure of dense fluids (for spherically sym-
metric molecules). Approaching the problem from a different point of
view, Rosenfeld and Ashcroft (5) developed an accurate integral equation
method that relies on the universality of the short-range structure in
dense fluids. Other important developments include applications of fluid
theory to nonspherical molecules (I, 6, 7) and to liquid metals (8-10).
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Unfortunately, applications of these accurate theories to problems
of practical interest are often hampered by lack of knowledge about
intermolecular forces. For this reason, we have developed the CRIS
model (11, 12), a perturbation theory of fluids in which explicit knowledge
of the interaction potentials is not required. Our model retains the key
concepts of fluid structure that are essential to the success of the other
perturbation theories. However, the energy of a fluid molecule in the
cage formed by its neighbors is estimated from the zero-Kelvin isotherm
of the solid. This cold curve is usually easier to compute or measure than
is an effective pair potential.

In this chapter we discuss the theoretical model and review the
results of several calculations. First, the theory for the case of spherical
molecules in the ground state is considered. The model is shown to agree
with computer simulation studies on systems where the pair potentials
are known (13). We then show how other degrees of freedom can be
included in calculating equations of state. In particular, an electronic
structure model due to Liberman (14) is useful for computing contri-
butions from thermal electronic excitation. Rotational ordering and other
perturbations of intramolecular motions are not considered in this paper.
Additional theoretical problems, including treatment of vaporization,
melting, and shock waves, are then discussed. The rest of the chapter
compares calculations using the model with experimental data for rare
gases, molecular fluids, and liquid metals.

Because of space limitations, only an outline of the main theoretical
ideas is presented here. Detailed and rigorous discussions are given in
the literature cited. We also note that Rosenfeld (15) has derived the
first-order CRIS model by a method different from ours.

Outline of the CRIS Model

Consider a system of N spherical molecules, having no internal
degrees of freedom, in a volume V at temperature T. The thermodynamic
properties of the system are determined by the potential energy function
® (1). Although ® is a function of the positions of all N molecules, only
the short range structure is important for perturbation theories. To see
this fact, define coordinates {g;} that specify the positions of all molecules
relative to an origin fixed at the center of mass of molecule k. We write

@ = kzl d(gx) @)

where &(q,), the potential energy of molecule k in the field of its neigh-
bors, includes all pair, triplet, and higher-order interactions (11). This



Published on June 1, 1983 on http://pubs.acs.org | doi: 10.1021/ba-1983-0204.ch005

5. KERLEY  Calculation of Thermodynamic Properties 109

function depends only on the local structure of the fluid, i.e., the co-
ordinates q of nearby molecules relative to the one under consideration.

For spherical molecules, the structure of dense fluids is determined
primarily by the effects of excluded volume, and it is useful to express
the Helmholtz free energy as a perturbation expansion about a model
system, the hard-sphere fluid (11).

A¢<V’T’N) = AO(‘/’T)N;O) + <®>0 + AA¢ (2)

Here A, is the free energy for hard spheres having diameter o; (®),, the
first order correction, is an average of ® taken in the hard-sphere system.
By definition, AA, contains all remaining contributions to A,; these
corrections are caused by differences between the structure of the real
fluid and that of the hard-sphere system. The term AA, can be made
quite small by making an optimum choice for o.

It can be shown that the first-order approximation gives an upper
bound to the true free energy of the system (2, 3).

Ay, = A, + (D), = A, (3)

Our procedure is to minimize A, with respect to o; in that way, we find
the hard-sphere system whose structure is closest to that of the real fluid.
When o is defined in this optimum fashion, first-order perturbation
theory gives realistic predictions for the properties of fluids (2, 3). How-
ever, the correction term AA, must be included if quantitative results
are desired (I). In the CRIS model, for AA, we use an approximate
expression derived from macroscopic fluctuation arguments. We believe
it to be accurate if o is chosen by the variational principle. Detailed
discussion of this term is given elsewhere (11, 12).

The first-order correction to A, can be written as an average of ¢(q)
over all configurations of neighboring molecules.

(@, = Nb)o = | 6lq) 7la) day da. . . @

where 71y(q) is a hard-sphere distribution function. It specifies the prob-
ability density that a molecule in the fluid will have neighbors located
within differential elements dq,, dq,, . . . , at positions q,, q,, . . . (11).
Because ¢(q) depends upon the short range structure of the fluid, the
position of the first shell of neighbors is the most important quantity
specifying the local configuration. In the CRIS model, the nearest neigh-
bors are assumed to lie on a spherical shell, of radius R, that varies from
molecule to molecule (12). We further assume that the coordination
number v varies with R so that the volume per molecule is fixed at the
macroscopic value V/N. If there are 12 nearest neighbors in a close-
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packed configuration, it can be shown that
v = 6V2 NRYV ®)

In this approximation, only one variable, R, is required to specify the
local arrangement of neighbors about a particular molecule. Equation 4
becomes

(@ = | &(B,v) 7®) 4 dr ©

Furthermore, the distribution function 7y(R) is given by
(VIN)T(R) = (N/V) go(R) ()

where g,(R) is the contribution from the nearest neighbor shell to the
radial distribution function for the hard-sphere fluid. A satisfactory work-
ing definition of this quantity can be obtained from the first peak in the
radial distribution function (12).

The potential energy function &(R,v) can be estimated from the
zero-Kelvin isotherm of the solid in the following way. Let E (V) be the
electronic contribution to the energy per molecule for the close-packed
solid at volume V, and zero temperature. (Note that this definition does
not include any contribution from the zero-point lattice vibrations, which
are not part of the intermolecular forces.) In the solid, there are 12 nearest
neighbors on a sphere of radius R, given by

V, = NR¥\2 8)

In the fluid, a molecule has the same potential energy as it would have
in the solid phase at the same nearest neighbor distance, except that the
coordination number is reduced from 12 to v. Hence

&(R,v) = (V12)E(V,) = (V,/V)ELV,) )

This result is approximate because it assumes the forces between mol-
ecules to be pairwise additive. The assumption is not correct for liquid
metals; however, the theory is found to give good results in practice.
Further discussion of this point is given later in this chapter.

Once the free energy has been defined by the above equations, the
internal energy E, and pressure P, can be computed from standard
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thermodynamic formulas,

E,
P,

Ay — T(0A,/0T)y x (10)

In order to test the CRIS model, we have compared our calculations
to Monte Carlo and molecular dynamics data for fluids having inverse-
power and 6-12 potentials (13). The cold curve is obtained by summing
the pair potential U,(R) over all molecules in the lattice (16).

E(V,) = (112) 2 n, Uy(R) (12)

where n; and R, are the number of molecules and the radius for the i-th
shell of neighbors, respectively. For the 6-12 potential, we have

U,R) = 4e[(d/R)** — (d/R)] (13)
E(V)) = (e/2)[Ciop" — 2C;p°] (14)

where p = Nd3/V,, C,, = 12.12188, and C; = 14.45392.

In Figures 1 and 2, we compare our equation of state for the 6-12
fluid with Monte Carlo calculations (17) on three isotherms that range
from the triple point to above the critical point. Agreement for both the
pressure and the internal energy is very good. In fact, the CRIS model
was shown to agree well with all of the available computer simulation
data for thermodynamic properties, radial distribution functions, and the
vapor-liquid coexistence curve (13).

The calculations for these model fluids involve no parameters that
can be adjusted to give agreement with experiment. The success of the
CRIS model in these tests shows that it retains the essential features of
a good fluid theory while eliminating the need to know the intermolecular
potentials explicitly.

Internal Degrees of Freedom

The model discussed above describes the translational degrees of
freedom of the molecules, which interact through forces determined by
the ground electronic state of the system. Internal degrees of freedom
can also contribute to the equation of state. For example, the free energy
is

A=A, + A + A, (15)
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Figure 1. Equation of state for the 6-12 fluid. The solid line was calcu-

lated using the CRIS model; the discrete points are Monte Carlo results

(17). Key: O, T = 2.74; O, T = 1.15; and A, T = 0.75. (Reproduced

with permission from Ref. 13. Copyright 1980, American Institute of
Physics.)
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Figure 2. Excess internal energy for the 6-12 fluid. Symbols have the
same meaning as in Figure 1. (Reproduced with permission from Ref. 13.
Copyright 1980, American Institute of Physics.)
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where A, is given by Equation 2, Ay includes contributions from in-
tramolecular vibration and rotation, and A, includes contributions from
thermal electronic excitation and ionization. In our model, Ay and A,
are calculated in a “static” approximation; that is, the translational motion
of the molecules is not coupled to the internal degrees of freedom.

In most applications, we have computed Ay from the rigid-rotator,
harmonic-oscillator approximation (18). To some extent, effects due to
hindered rotation and vibration can be included in the definition of the
cold curve for the CRIS model (19). This approach is most reasonable at
temperatures high enough to allow free molecular rotation. Perturbations
to the vibrational motion were included in our calculations of the equation
of state of deuterium (20). These effects were found to be fairly small
when compared with uncertainties in the zero-Kelvin isotherm.

Several models exist for calculating the temperature dependence of
electronic structure and the corresponding contributions to the equation
of state. Statistical atom theories, such as the Thomas—Fermi-Dirac (TFD)
model (21), are often used for this purpose. A well-known problem with
these theories is that they do not reproduce the electronic shell structure
that is characteristic both of free atoms and of condensed matter. How-
ever, the TFD model is a good approximation at high densities, where
the shell structure has been crushed by pressure ionization.

At low densities, electronic contributions to the equation of state
can be computed from the theory of ionization equilibrium (22), using
energy levels and ionization potentials of the isolated atoms and ions.
However, the standard approximations made in such calculations break
down at high densities where the energy levels are strongly perturbed
and pressure-ionized by the forces of surrounding ions (23).

For intermediate densities, ranging from about 0.05 to 200 times
normal solid density, we have found the INFERNO model of Liberman
(14) to be very useful. Liberman considers an average atom, with a point
nucleus at the center of a spherical cell, surrounded by an electron gas
and a uniform positive charge. The charge distribution outside the sphere
simulates the environment of neighboring atoms in the real system, and
the sphere radius r, is defined by the average volume per atom,

4w/3)Nr3 =V (16)

Liberman solves the Dirac equation to obtain wave functions and energies
for both the discrete bound states and the continuum free levels. The
average electron charge density is computed from the wave functions by
populating the energy levels according to Fermi-Dirac statistics. The
screened potential and the charge distribution, which depend upon den-
sity and temperature, are required to be self-consistent. The electronic
entropy is also calculated by Fermi statistics. We calculate the pressure,
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energy, and free energy numerically, using standard thermodynamic
formulas (24).

Although the INFERNO model contains many approximations, it
treats most of the electronic structure problems well enough to calculate
the equation of state. At low densities, the atomic structure agrees well
with that of the isolated atom; all of the electrons are in bound levels,
and there is an insulating gap between the highest occupied state and
the continuum. As the density increases, this gap narrows, and the bound
levels cross into the continuum. A notable feature of the model is that
the way a bound level changes into a free “resonance” is handled in a
continuous fashion. The theory predicts a transition from an insulating
to a metallic state and is in reasonable agreement with band theoretical
calculations (25) for solids.

In Figure 3 we compare the INFERNO and TFD results for the
electronic entropy versus temperature for aluminum at several densities.
At low densities, the INFERNO calculations exhibit steps that corre-
spond to different stages of ionization. At higher densities this structure
disappears because the discrete atomic levels pass into the continuum
and become broad resonances. The INFERNO and TFD models are in
good agreement at high densities and at high temperatures.
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Figure 3. Electronic entropy for aluminum as a function of temperature
at several densities. Solid lines were calculated using the INFERNO model;
dashed lines, using the TFD model. (Reproduced from Ref. 65.)
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Other Theoretical Considerations

Zero-Kelvin Isotherms. In the CRIS model, all information about
the intermolecular interactions is obtained from the cold curve of the
solid. Therefore, construction of this curve is the principal problem in
applying the theory to a specific material. In most cases we use both
experimental and theoretical results to accomplish this task.

Experimental information about the zero-Kelvin isotherm can be
obtained from both static and shock wave measurements. Accurate static
measurements of pressure versus volume up to 2-4 GPa have been
available for some time, and recent diamond cell techniques have ex-
tended the range of static data to much higher pressures. We used such
measurements on iron (26), extending to 95 GPa, in our calculations for
liquid iron, discussed below. Methods for reducing shock-wave data to
the cold curve can be very useful (24, 27), but they involve some ap-
proximations; we do not report such methods here.

Recently, accurate band theoretical calculations of the zero-Kelvin
isotherm have been made for several materials. These calculations usually
agree well with experimental measurements, although the normal solid
density may be in error by a small amount. As a practical matter, we
correct this discrepancy by adding a small constant term to the theoretical
pressure curve. The band theoretical results of Ross and McMahan (25)
were used in our computations for liquid xenon.

For the CRIS model, the cold curve must be specified both in
compression and in tension. For the tension region we normally use an
analytic expression of the following type (24, 28)

E(V)) = a, exp(=a,V®) — ay/Vis 17

where the four constants are determined from the solid binding energy,
normal density, and compressibility data. Fortunately, most results using
the CRIS model are not very sensitive to details of the cold curve in
tension. However, the liquid density on the coexistence boundary is one
exception.

At very high densities a reasonable estimate of the zero-Kelvin iso-
therm can be obtained from TFD theory. In many problems we have
used an interpolation formula, based on TFD results, to represent the
cold curve in regions where no better data are available (24, 28).

Vaporization. At low temperatures, isotherms calculated using the
CRIS model display van der Waals loops, indicating the existence of a
vapor-liquid coexistence curve and a critical point. For example, our
theoretical equation of state surface for methane (28) is depicted in Figure
4. For temperatures above the critical point, 200 K, the pressure is a
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Figure 4. Equation of state for fluid methane at low densities. The dashed
line is the equilibrium vapor pressure at T = 185 K.

monotonically decreasing function of volume, and a single fluid phase
exists. Below the critical point, the fluid at equilibrium separates into a
vapor-liquid mixture (29). The vapor pressure and the other properties
of the liquid and vapor are determined by requiring that the two phases
have equal pressures and Gibbs free energies. The equilibrium vapor
pressure for the 185-K isotherm is shown by a dashed line in Figure 4.

The CRIS model was shown to give good agreement with computer
simulation results for the coexistence curve of the 6-12 fluid (13). How-
ever, neither calculation gives the correct result near the critical point,
where long-range density fluctuations are important (30). The CRIS model,
like other mean field theories, overestimates the critical temperature by
5-10%.

Hugoniot Measurements. Shock wave experiments can test an
equation of state model at high densities and at high temperatures that
are not accessible by other methods. The Hugoniot is calculated from
the standard relation (27)

Ey, — Ey, = (1/2)(Py + P)(ps' — pi") (18)

where Ey, Py, and py, are the energy, pressure and density of the shocked
state, and E,, P,, and p, are the initial state conditions. Experiments
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usually measure the particle velocity U, and shock velocity U,

Up = V(Py — Pps ' — pir?) (19)
U, = Up/(1 = polpy) (20)

These relations can be derived from the conservation laws of mass, mo-
mentum, and energy, applied to a single steady, plane shock wave.

A few experiments have been performed in which a shock wave is
reflected back into the material, compressing it for a second time (31).
These double shock experiments do not heat the material as much as a
single shock does, and they can reach higher compressions. Conditions
for the reflected shock state are determined by applying Equations 18—
20 a second time.

Melting. From thermodynamics, the melting line is simply defined
as the pressure-temperature locus at which the solid and liquid phases
have equal Gibbs free energies. In calculations for methane and for
metals, we found that the Debye model (28) gave a good representation
of the thermodynamic properties of the solid. For hydrogen and deu-
terium, in which anharmonic effects on the lattice vibrations are not
described by such a model, we used the free volume theory for the solid
(20).

Because melting depends upon the difference in free energy be-
tween the two phases, small errors in the equation of state can cause
large errors in the predicted melting curve. All our calculations for in-
sulating fluids have given reasonable melting predictions. However, our
calculations for metals show that the CRIS model underestimates the
free energy of the liquid by about 5% of the cohesive energy. We attribute
most of this error to the use of Equation 9, which assumes additive forces
between molecules. A reasonable melting curve can be obtained by
subtracting a constant from the liquid energy in order to match the
observed melting point at zero pressure. This expedient was used in our
calculations for iron. However, further work, leading to an improvement
of Equation 9, is needed.

Fluid Structure and Transport Properties. As noted above, the
hard-sphere diameter o used in the CRIS model is obtained by mini-
mizing the first-order free energy expression, Equation 3. The parameter
o, which depends on both temperature and density, provides a crude
description of the short range structure of the fluid.

To first-order, the radial distribution function of the real fluid is
equal to that of a hard-sphere fluid (with an optimum o). In this ap-
proximation, the structure factor can also be computed from the hard-
sphere formula (17). In the CRIS model, corrections to the radial dis-
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tribution function and structure factor due to the soft core of the inter-
action in the real fluid can be derived from the same arguments used to
obtain the higher order correction AA, to the free energy. The CRIS
model was shown to give good agreement with computer simulation
results for the radial distribution functions of inverse-power and 6-12
potentials (13).

Dymond and Alder (32) have shown that reasonable predictions of
transport properties of fluids can be made using hard-sphere formulas,
if o is determined from the equation of state of the real fluid. Hence the
o obtained from the CRIS model can be used to make rough estimates
of these quantities. For the shear viscosity v, in poise, we use Dymond’s
formula (33).

\/WT 1
(V)31 — 1.8697

v, = 7.61 x 10° 1)

where W is the molecular weight, and q = Nmo®/6V is the packing
fraction.

Corrections to the Basic Model. Quantum corrections to the CRIS
model can be computed by several methods. Our approach (24) has been
to add a quantum correction to the hard-sphere free energy A,, in Equa-
tion 2, using the formula of Singh and Sinha (34). Admittedly, this pro-
cedure is not rigorous, although it is found to give reasonable results for
the hydrogen isotopes, as shown later in this chapter. Alternate methods
have been used by Rosenfeld (35) and by Fiorese (36). Further study of
this problem is desirable.

As noted above, use of Equation 9 is not a fully satisfactory way to
correct the potential energy of a molecule for the change in coordination
number when going from the solid to the fluid. As a practical matter,
Equation 9 must be modified at very high densities where the electrons
are free and E(V,) x V,-23, In calculations for real materials we use an
interpolation formula (24)

¢ = [(1 = NHIV.IV) + f(VIVPIEL(V,) (22)
Here f, the fraction of electrons that are free, is estimated from

f = exp[—(0.23 + 0.6544 Z23)(V,/Z)"3] (23)

where Z is the atomic number. This expression was obtained by making
a rough estimate of the number of free electrons from TFD theory. We
stress that Equation 22 differs very little from Equation 9 in any of the
calculations discussed in this chapter. For example, use of the modified
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formula does not substantially improve the free energy of the fluid near
melting. This feature of our model also requires further study.

Calculations for the Rare Gases

Extensive comparisons have been made between calculations using
the CRIS model and experimental data for the rare gases neon, argon,
krypton, and xenon (37). For these substances, it is known (I) that an
effective pair potential of the Buckingham form (38) gives a good de-
scription of the intermolecular forces up to moderate densities. Hence,
Equation 17, with a, = 2, is a good representation of the cold curve
both in tension and in moderate compression.

At high densities, the zero-Kelvin isotherm for xenon is known both
from static measurements up to 11 GPa (39) and from band theoretical
calculations up to 100 GPa (25). Using these data, together with IN-
FERNO calculations at higher densities, we constructed the cold curve
shown in Figure 5.

For the other rare gases, data extend to only 2 GPa (40), and we
used a TFD interpolation formula for higher pressures (37). Therefore,
we do not know the cold curve as well for these gases as we do for xenon.
However, this uncertainty is only important in the comparisons with
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Figure 5. Zero-Kelvin isotherm for xenon. Key: O, from Ref. 25; ], from
Ref. 39; A, calculated using the INFERNO model; and —, the cold curve
used in this work. (Reproduced from Ref. 65.)
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Figure 6. Equation of state for solid and liquid argon . Data for the solid
at 4.2 and 77 K are from Ref. 40; data for the liquid are from Refs. 41—
44; solid lines are our calculations.

shock wave measurements because the other experimental data were
taken at fairly low pressures.

Equation of state data (40—44) for solid and liquid argon are shown
in Figure 6. The same zero-Kelvin curve was used in both the solid and
liquid models. The CRIS model accurately predicts the liquid compress-
ibility and the expansion that occurs at melting and upon heating of the
liquid. The other rare gases give similar results (37). For example, Figure
7 shows the sound speeds as a function of pressure at 298.15 K (45). The
pressure dependence and the trends among the four rare gases are in
good agreement with the measurements.

Vapor pressure curves for the rare gas liquids (46) are shown in
Figure 8. The model accurately predicts the temperature dependence
of the pressure and the trends among the four elements. The coexistence
curve for krypton (46) is given in Figure 9. Agreement between theory
and experiment is good. As noted above, the theory overestimates the
critical temperature and pressure because it does not include long-range
density fluctuations.

The calculated and measured radial distribution functions for argon
at 85 K (47) are compared in Figure 10. Only the first peak is calculated
by the theory (11, 12). The agreement is good, showing that the model
correctly predicts the short-range liquid structure using no information
except the solid cold curve.
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In Figure 11 we compare measured shear viscosities for liquid argon,
krypton, and xenon (48) with our calculations, using only the hard-sphere
formula, Equation 21. The good agreement with experiments is en-
couraging; if a perturbation expansion can be developed to calculate
corrections to this simple model, better results might be obtained.

35
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20 30 40 5.0 6.0
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Figure 10. Radial distribution function for liquid argon at a density of
1.409 glcm® and a temperature of 85 K. Points are experimental data (47).
The solid line is our calculation of the first peak.
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Hugoniot measurements for the rare gases are of interest because
they generate both high compressions and high temperatures. Very high
pressure data for argon and xenon show interesting behavior that is
associated with thermal excitation of the electrons. Because the cold
curve for xenon is well known, it is possible to make an a priori calculation
and to compare the results with experiment as a test of the theory.

At low densities the rare gases are insulators, with a large energy
gap between the closed-shell ground state configuration and the empty
conduction band. Hence there is very little electronic excitation at low
temperatures. Good agreement with the low-pressure shock data for
argon and xenon was obtained using the CRIS model without including
the electronic term (37).

At high densities, the rare gases are expected to become metallic
(49). For xenon, band calculations (25) predict the energy gap between
the 5p band and the conduction band to close at a density of about 12
g/cm®. At the high temperatures reached in some of the shock wave
experiments, effects of the insulator—metal transition can be observed at
lower densities. As shown by Ross (49), narrowing of the band gap in-
creases the energy absorbed by electronic excitation and also makes a
negative contribution to the pressure; both effects soften the Hugoniot.

The INFERNO calculations give results that are similar to those
predicted by Ross’s model. As shown in Figure 12, the thermal electronic
pressure is negative in the density range 2-10 g/cm?®, for temperatures
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Figure 12. Thermal electronic pressure as a function of density for xenon
at several temperatures. (Reproduced from Ref. 65.)

less than 3 eV. INFERNO predicts closing of the band gap to occur at
about 10 g/cc, in fair agreement with the band calculations.

The Hugoniot for xenon (50, 51) is shown in Figure 13. Calculations
in which no electronic excitation is allowed are in good agreement with
experiment at pressures below 40 GPa but give poor results at the high
pressures. When the TFD model is used to describe the electronic ex-
citations, the results are better but still not satisfactory. Calculations
using the INFERNO model are in excellent agreement with the exper-
imental data. The theory gives similar results when applied to shock
wave data for argon.

Calculations for the Hydrogen Isotopes

Calculations for the equations of state of hydrogen and deuterium
are complicated by the existence of several phases, by the transition from
the molecular form to a metallic form at high pressures, and by the effects
of dissociation and ionization in the fluid phase at high temperatures.
We have developed a detailed theoretical model that accounts for all of
these phenomena (20, 52). Our calculated phase diagram for deuterium
is shown in Figure 14. Separate equations of state were computed for
the molecular solid, the metallic solid, and the fluid phases; the phase
boundaries were determined by matching the pressures and Gibbs free
energies. The fluid phase was treated as a mixture of molecular and
metallic (atomic) species, and the fraction of dissociation was computed
using a chemical equilibrium model. The EOS for both the molecular
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and metallic fluids was calculated with an early version of the CRIS model
(53) that does not include either quantum terms or corrections to first-
order theory.

At present very few experimental data exist for the hydrogen isotopes
in regions where either dissociation or metallization can occur. Our equa-
tion of state is consistent with experiments that report observation of the
metallic transition (54), but those results are preliminary because the
measurements did not provide complete diagnostics. Therefore, we limit
the discussion in this article to calculations for the molecular fluid. For
completeness we have redone the computations using our improved
version of the CRIS model and recent experimental data for the cold
curve. These new results differ only slightly from our earlier work (13,
52).

CRIS model calculations for hydrogen have also been reported by
Rosenfeld (35) and by Fiorese (36). Rosenfeld included quantum cor-
rections but made only a first-order calculation of the equation of state.
Fiorese included the higher-order perturbation corrections as well as
quantum terms. Fiorese also showed that the CRIS model gave good
agreement with his Monte Carlo calculations that treated the rotational
degrees of freedom explicitly, using a dumbbell model for the molecules.

The zero-Kelvin isotherm for hydrogen is shown in Figure 15. For
pressures up to 2 GPa we have used the measurements of Anderson and
Swenson at 4.2 K (55). To obtain that part of the cold curve that is due
to the intermolecular forces, the contribution from zero-point nuclear
motion must be subtracted. We estimated this correction from the dif-
ference between the hydrogen and deuterium data. As in our previous
work (52), the high density portion of the cold curve was taken from the
band theoretical calculations of Liberman (56). Our fit to these two sets
of data is shown by a solid line.

The results of recent high pressure diamond cell experiments on
hydrogen are also shown in Figure 15. Shimizu et al. (57) measured the
pressure dependence of the acoustic velocities for the fluid and solid
phases at 300 K; the volume versus pressure was calculated by integrating
the sound velocity data. Van Straaten et al. (58) measured the volume
at 5 K from observations of the actual dimensions of the cell under
pressure. These two sets of data differ by about 40% in pressure at the
highest density. Our theoretical curve is in better agreement with the
results of Ref. 58.

The equation of state for fluid hydrogen (59) and deuterium (60), at
temperatures up to 300 K and pressures up to 2 GPa, are shown in
Figures 16 and 17, respectively. For comparison, we also show the 4.2-K
solid isotherms (55), with the zero-point pressure term included. The
calculations are in good agreement with experiment, but the results for
deuterium are significantly better than those for hydrogen. This suggests
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Figure 17. Equation of state for deuterium. Key: O, fluid deuterium data
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that our treatment of the quantum corrections to the fluid EOS is not
adequate, because these terms are more important in the case of hy-
drogen.

The Hugoniot for liquid deuterium is shown in Figure 18. Our
calculations are in very good agreement with the measurements (31, 61,
62). The highest shock velocity reached in these experiments corresponds
to a pressure of about 20 GPa, a temperature of about 5000 K, and a
compression of about 3.5 times that of the liquid at the triple point.
Reflected shock Hugoniots for liquid deuterium are shown in Figure 19.
The highest pressure points, at about 90 GPa, correspond to a temper-
ature of about 7500 K and a compression of about six times normal
density. Agreement between theory and experiment (31, 61) is very good.

Calculations for Other Molecular Fluids

The CRIS model has also been used to calculate the thermodynamic
properties of methane (28) and nitrogen, oxygen, and carbon monoxide
(19). The molecules were assumed to rotate freely, so that the “effective
cold curve” used in the CRIS model corresponds to an average over all
orientations of the molecules. The effects of dissociation and ionization
were not included in the theory.

For methane, the zero-Kelvin isotherm up to about 2 GPa was
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constructed from an effective pair potential that was obtained from second
virial coefficient data (38). This potential is of the Buckingham form and
corresponds to an average over all rotational degrees of freedom. As in
the rare gases, the zero-Kelvin isotherm for this potential is given by
Equation 7, with a, = 2. Using this cold curve, our calculations gave
good agreement with experimental data for both the solid and fluid (28).
For pressures above 2 GPa, the TFD interpolation formula was used for
the cold curve. This formula has one adjustable parameter, which was
chosen to fit shock-wave data. Good agreement was obtained for both
the single shock and reflected shock Hugoniots (28).

A portion of the methane equation of state table is pictured in Figure
4. The coexistence curve was determined by matching the pressures and
Gibbs free energies of the liquid and vapor phases, as described earlier.
The calculated vapor pressure curve is compared with experimental data
(63) in Figure 20. Also shown are isochores (64) in the liquid, vapor, and
supercritical regions. Agreement with the measurements is very good in
all cases.

Nitrogen, oxygen, and carbon monoxide molecules do not rotate
freely in the solid phase. Therefore, only a rough estimate of the cold
curve for use in the CRIS model can be obtained from experimental data
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for the solid. In these cases, we used Equation 7, with a, = 2, to
represent the zero-Kelvin isotherm, just as we had done for methane
and the rare gases. The remaining three constants were determined by
fitting the model to experimental data for the liquid (19). These calcu-
lations were not rigorous, because perturbations to the rotational and
vibrational motions were included in the definition of the empirically
determined cold curve. However, it is encouraging that the equation of
state constructed in this fashion is accurate over the entire fluid range.
Furthermore, the parameters obtained in our calculations are in reason-
able agreement with data for the solid. For example, the effective “bind-
ing energies” are slightly less than the experimental ones. This result is
to be expected; the difference corresponds to the energy needed to go
from preferential molecular orientations in the crystal to the disordered
rotational state in the liquid. A more fundamental treatment could make
use of techniques discussed by other workers (1, 6, 7).

Calculations for Liquid Iron

In all of the examples that we have discussed above, it is likely that
nonadditive contributions to the intermolecular forces are fairly small
and that good results can be obtained using theories that employ an
effective pair potential (I). In liquid metals, however, the valence elec-
trons are delocalized, and the intermolecular forces are not even ap-
proximately additive. Successful results for liquid metals can be obtained
using the pseudopotential method (8-10). The cohesive forces can be
approximately separated into a free-electron part, which is independent
of the positions of the ions, and a structure-dependent part, which is
expressed in terms of a density-dependent pair potential. This pair po-
tential is used to calculate the liquid structure.

The CRIS model provides an alternate theory for calculating the
properties of liquid metals. Because it uses only the zero-Kelvin curve
of the solid to represent the intermolecular forces, it eliminates the need
to determine the effective pair potential from a theoretical calculation,
and it is easy to apply in practice. We have chosen recent work on liquid
iron (65) to illustrate the method and the results.

Equation of state calculations for iron are complicated by the exist-
ence of several solid phases (66). The ferromagnetic alpha phase is stable
at room temperature and pressure; it transforms to the hexagonal close-
packed (hep) epsilon phase when compressed and to the face-centered
cubic (fcc) gamma phase when heated. To simplify the problem, we
treated iron as if it had only one solid phase, taken to be the close-packed
phase. Differences in the equations of state of hep and fee structures are
usually small and were ignored. The cold curve for the close-packed solid
was also used in our CRIS model calculations for the fluid. To some



Published on June 1, 1983 on http://pubs.acs.org | doi: 10.1021/ba-1983-0204.ch005

132 MOLECULAR-BASED STUDY OF FLUIDS

extent, this decision is arbitrary, and different results would have been
obtained if the cold curve for the alpha phase had been used instead.
However, computer simulations show that the radial distribution function
of the liquid at the melting point is quite similar to that for the close-
packed solid (12). Furthermore, the liquid phase is not ferromagnetic.
The electronic structure in liquid iron may be different from that in any
of the solid phases, but a close-packed crystal should provide the best
approximation.

The zero-Kelvin isotherm for close-packed iron is pictured in Figure
21. The solid line, which was used in our calculations, is a fit to the
diamond cell measurements of Mao and Bell (26). Band-theoretical cal-
culations (67, 68) are also shown.

Two assumptions in our application of the CRIS model to iron are
that the fluid structure is dominated by short-range forces and that these
forces are similar in the fluid and the solid. In Figure 22 we compare
our calculated structure factor for molten iron with the measurements
of Waseda and Suzuki (69). The agreement is very good, demonstrating
that these key ideas lead to a good description of the short-range liquid
structure. The shear viscosity of molten iron, computed from the hard-
sphere formula, is shown in Figure 23. Agreement with the data of
Cavalier (70) is fairly good.
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Figure 21. Zero-Kelvin isotherm for close-packed iron. Key: O, from Ref.
26; A, from Ref. 67; [, from Ref. 68; <, calculated using the INFERNO
model; and —, cold curve used in this work. (Reproduced from Ref. 65.)
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Our theoretical melting curve for iron is shown in Figure 24. In this
calculation, we forced agreement with the experimental melting point
at zero pressure (71) by subtracting an empirically determined constant
from the free energy of the fluid. The correction was 4.25 kcal/mol, about
4% of the solid binding energy.

Calculated Hugoniots for iron of two initial densities are also shown
in Figure 24. Alpha-phase iron, having a density of 7.85 g/cm?, transforms
to the e-phase at about 13 GPa under shock loading (66). According to
our calculations, melting should begin at about 320 GPa. This result is
in fair agreement with the value of 250 GPa obtained by Brown and
McQueen (72). Porous a-phase iron, with an initial density of 4.8 g/cm?,
is predicted to melt at 45 GPa.

Curves of shock velocity versus particle velocity for iron of various
initial densities (73-75) are shown in Figure 25. Agreement between the
theory and the measurements for normal density iron is very good over
the entire range of the close-packed solid and fluid phases, extending
up to 1000 GPa. The theory also predicts the correct behavior as a
function of porosity. More detail can be seen in Figure 26, which shows
the shock data for an initial density of 4.8 g/cm®. Agreement with ex-
periment is excellent except at the lowest pressures, for which the shocked
state is the a-phase.
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Summary

In this chapter, we have shown how the thermodynamic properties
of a fluid can be computed without explicit knowledge of the interaction
potentials, using only the zero-Kelvin isotherm of the solid phase. The
theory was shown to agree with experimental data for simple monoatomic
fluids such as the rare gases and liquid metals. It also gives good results
for polyatomic molecules such as hydrogen and methane, if the molecules
are freely rotating. The CRIS model can be used together with the
INFERNO model of Liberman to calculate the equation of state at high
temperatures where thermal excitation of the electrons becomes an im-
portant effect.
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Fluids at Interfaces
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Three topics are considered in this chapter: gas adsorption
on solid surfaces, the free liquid surface, and a liquid in
contact with a wall. They are treated theoretically, and
results are compared with experiments and simulations. A
review of virial expansions and of the application of the
first equation of the Born-Green—Yvon hierarchy for in-
homogeneous fluids is given. For the case of gas adsorption,
the structure of a fluid adsorbed on a plane surface at
supercritical and subcritical temperatures is shown, to-
gether with adsorption isotherms. Adsorption in pores is
dealt with in a simple model. From the study of the liquid—
gas interface the coexisting densities, the surface tension,
and the surface thickness are obtained. Finally, the struc-
ture of a liquid close to a wall is discussed.

HE EQUILIBRIUM PROPERTIES OF FLUIDS AT INTERFACES are of practical
T importance in many engineering processes. While molecular theory
will hardly be able to make quantitative predictions for all real situations,
it can help us at least in understanding many of the interface phenomena.
In order to achieve the latter goal we will keep the model of the fluid
molecules and the solid surfaces as simple as possible—we consider only
Lennard-Jones or hard-sphere molecules and unstructured walls with
forces perpendicular to the surface—and concentrate on some physically
interesting situations.

Statistical mechanics of inhomogeneous fluids is now in development
and different theoretical methods are in competition. Here, we will briefly
describe the virial expansion and the use of the first equation of the
Born—Green—Yvon hierarchy, as these will subsequently be used in treat-
ing the model systems. A comparison with the density functional method
closes the first section.

Theory
Consider a fluid of N identical spherical particles which neither form
a free boundary nor are in contact with a smooth solid surface at tem-

0065-2393/83/0204-0139$06.00/0
© 1983 American Chemical Society
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perature T. The potential between two fluid atoms is u(ry) = u, and
the potential that a fluid atom experiences from the solid surface is u*(r;)
= uj. We are mainly interested in the local density n(r), which is the
same as the one-particle distribution function and is given by

n(r,) = (N/Zy) f exp {—B[Z ui + E uik]} dr, ... dry (1)

i<k

where Zy denotes the configurational partition function and B = 1/kT.
For evaluating the local density in the case of a gas in contact with

a wall we can think of a virial expansion. Technically we start from

Equation 1 and use van Kampen’s method (I), which results in (2)

n(r) = ny exp {=Bui}l + vi(r)n, + vo(rgnf + ...1 (@)

where n, is the gas density far away from the solid surface. In that
expansion the coefficient v, describes the interaction of (i+ 1) particles
among themselves and with the wall. Expressions for v, and v, are given
elsewhere (2). If the kinetic energy of the gas molecules is small compared
with the adsorptive potential of the wall, then the molecules tend to sit
in-a layer close to the wall. Thus, even for low bulk gas densities, the
local density in the adsorbed layer may become so high that one has to
consider the simultaneous interaction of many particles. In that case, the
expansion shown in Equation 2 can no longer be used. Concluding, we
can say that a virial expansion is expected to be useful at high temper-
atures and low densities.

Another route for evaluating the local density n(r) is the first equation
of the Born—Green—Yvon hierarchy. In that connection we consider the
probability of finding simultaneously two particles in the volume ele-
ments dr, and dr,. We denote that probability as n(r,) n(r,) g(ry, r,) dr,
dr,. The function g(r,, r,) is called the pair correlation function. Now, by
differentiating Equation 1 with respect to the local coordinate r, and
denoting that differentiation by V,, we obtain, after rearranging

Vilnnlr) = <V, But + | (<Y, B gl nir) drs @)

This is the first equation of the Born—-Green—Yvon hierarchy, (the BGY
equation). The first term on its right-hand side is the force exerted by
the wall on a particle at r,. The integral is the mean force that a particle
feels from the other fluid particles. These forces are balanced by the
density gradient on the left-hand side. In order to calculate the local
density from that equation one has to use an approximation for the pair
correlation function.
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Different approximations for the pair correlation function in con-
nection with the BGY equation are possible. In a previous article (3) the
author and a co-worker had the goal of making a physically reasonable
approximation which, on the other hand, should be simple enough that
numerical solutions were readily attainable. We split the potential u;
between two fluid particles into a short-range repulsive part and an
attractive part. Hence the mean force in Equation 3 splits into a mean
repulsive and a mean attractive force. In the mean attractive force we
neglect any correlations. The mean repulsive force is treated in the hard-
sphere approximation, the pair correlation function being taken as that
of a homogeneous hard-sphere system at a mean density, which is ob-
tained by averaging the local density over the volume of a molecule.
Contrary to the virial expansion, this is not a systematic but an ad hoc
approximation scheme. The BGY method, however, has a much larger
range of applications. Moreover, a recent investigation (4) using a more
sophisticated approximation for the pair correlation function has con-
firmed that the above described method yields at least qualitatively cor-
rect results.

The first approach to fluids at interfaces was originated by van der
Waals and is called, in its modern version, density functional theory.
The basic idea is to write the Helmholtz energy A of the system as a
function of the local density n(r) and the direct correlation function ¢(ry, r,)

A = Fn(r), c(r,1)] 4)

Instead of the direct correlation function the pair correlation function
may also be used. It must be stated that all the functions used are only
approximate expressions. After making suitable approximations for the
correlation function, one gets an equation for the local density by min-
imizing the Helmholtz energy. A review of such approaches can be found
elsewhere (5).

In comparing the BGY with the density functional approach we learn
that in both methods an approximation for the correlation function has
to be made. The starting equation in the BGY approach, however, is
exact, while the expression for the density functional is always an ap-
proximation. On the other hand, our BGY method requires some nu-
merical calculations. This is not necessarily the case in the density func-
tional theory. For slowly varying density profiles, for example, gradient
expansions can be made, which greatly facilitates the evaluation (5).

Gas Adsorption on Plane Solid Surfaces

A simple model for physical adsorption is that of spherical fluid
particles in contact with a plane, structureless wall. In nature corre-
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sponding systems are that of argon or krypton adsorbed on the basal
plane of graphite, for which accurate measurements have been made
6, 8).

We assume the fluid particles to interact through a 6-12 Lennard-
Jones potential and to be in contact with a plane 3-9 wall

W) = 53 e [0, — (0, /2] ®

where the z-axis is perpendicular to the surface.

One quantity that can be calculated from theory and measured in
experiments is the surface excess density I. It tells us how much gas per
unit surface area the system contains in excess of an idealized system,
where the bulk gas density would be maintained up to the wall. Usually
the Gibbs dividing surface between solid and gas is defined as that surface
where the wall gas potential goes through zero, u%(z) = 0. Hence we
have

I = fx n(z) dz + fx [n(z) — n,] dz (6)

0

which, as a function of the bulk gas density n,, is called an adsorption
isotherm.

At low bulk gas densities, the local density is obtained by the first
term in the virial expansion

n(z) = n, exp {—Bu(z)} (7

and insertion into Equation 6 yields the low density value for I'. With
increasing density, higher order correction terms have to be calculated
from Equation 2.

As it has been argued, the virial expansion is most useful at higher
temperatures. There, the repulsive forces between the fluid particles are
the dominating ones. It was for this case that the coefficients describing
the interaction of two or three hard spheres with a 3-9 wall have been
calculated explicitly (2). The main results of that calculation can be sum-
marized as follows:

® At low densities the adsorption isotherm is essentially determined
by the interaction of a single particle with the wall, expressed by
Equation 7. The simultaneous interaction of two and three particles
with the wall leads only to minor corrections in the adsorption
isotherm.

® The experimental results for the system argon—graphite (6) could
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be reproduced with high accuracy if the parameters for the wall-
particle potential were properly chosen (e,/k = 1108 K, a,, =
0.191 nm).

® At high temperatures the coefficient describing the interaction of
two particles with the wall can be determined from an experimental
adsorption isotherm only with great inaccuracy.

® For that special model the virial expansion for I" has the form of a
geometric series. This suggested casting the adsorption isotherm
into the mathematical form

I' = Bnb/(l + q'nb) (8)

even at rather high bulk densities. Generally, if we look for a
representation of the surface excess density as a function of the
pressure p instead of the bulk density, a useful expression is (9)

I' = P(p)(1 + qp) ©
where P(p) denotes a simple polynomial of the pressure.

At higher bulk densities the virial expansion breaks down, at least
in the sense that the higher order virial coefficients become too com-
plicated to be calculated. That breakdown strongly depends on the tem-
perature. At temperatures much higher than the critical temperature of
the gas, virial expansions can still be valid at pressures of several bars,
while at subcritical temperatures, virial expansions may break down at
near-vacuum conditions. For such cases we have solved the BGY equa-
tion. The calculations were done again for the system argon—graphite at
both supercritical and subcritical temperatures. We took the same wall-
particle potential as in the virial expansion and the usual Lennard—Jones
potential for argon (e/k = 119.8 K, ¢ = 0.3405 nm).

Solutions of the BGY equation for the local density were obtained
in the superecritical region at several states in a temperature—density grid
and are shown in Figure 1. These results have also been evaluated to
yield layer coverages, which are compiled in Table I. We learn that at
lower temperatures the first adsorbed layer is quickly filled, while at
higher temperatures this filling occurs much more slowly due to the
higher kinetic energy of the molecules. Moreover, we observe that a
second and third layer are already formed before the first layer is com-
pletely filled. Adsorption isotherms have also been calculated by using
Equation 6. Comparison with experimental results (6) in Figure 2 shows
qualitative agreement. One reason for the discrepancies seen at higher
densities could be the approximation scheme for the pair correlation
function. More probably, an unfortunate choice for the wall-particle po-
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Figure 1. Density profiles of argon adsorbed on graphite at supercritical
temperatures.

tential or changes in the intermolecular potential between the fluid par-
ticles caused by the solid surface can be the sources of the discrepancies.

At subcritical temperatures, one interesting problem is the structure
of the adsorbed film and its behavior in the case where the bulk gas
density approaches the dew line. It is important to mention that for the
argon—graphite system, computer simulations (10) have been made at
two subcritical temperatures with the same model potentials described
above. In solving the BGY equation (3) we first wanted to compare our
results with the simulation results. Another aim was to study the approach
to the dew line. For that purpose we had to know exactly the coexisting
gas density within our model. As will be shown in the next section, we
can obtain that value from an eigensolution of the BGY equation for the
liquid—gas interface. At a temperature of 120 K the dew density was
found to be n,0® = 0.0207, which is somewhat lower than the experi-
mental value. At that temperature, density profiles for the adsorbed gas
were calculated for the bulk gas density, n,o°, equal to 0.0200 and
0.01919. The results are reproduced in Figure 3. The lower density
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Table I. Layer Coverages for Argon Adsorbed on Graphite

Degree of Coverage

Temperature
(K) n,o® = 0.05 n,o® = 0.20 n,o® = 040
323.15 0! = 0.27 0.48 0.59
62 = 0.10 0.31 0.51
6% = 0.07 0.27 0.50
253.15 0! = 0.43 0.58 0.65
02 =0.14 0.37 0.53
6% = 0.08 0.30 0.50
200.00 0! = 0.61 0.68 0.71
0% = 0.23 0.49 0.58
6% = 0.11 0.39 0.53

Note: The layers are defined by the distances 1.1 o, 2.2 o, and 3.3 o. Values given
are the relative degrees of coverage 6' referring to a triangular packing of Lennard-Jones
atoms with nearest neighbor distance 26 ¢. In the absence of any wall-induced structure,
the degree of coverage would be 8 = 1.2 n,a3.

corresponds to the simulation run at kT/e = 1.002 (10) and shows good
qualitative agreement. It is also interesting to learn from Figure 3 that
in approaching the dew point, the first two layers adjacent to the wall
remain unchanged while the transition zone between the third layer and
the bulk gas tends to form a plateau. The onset of bulk condensation
may be explained by considering that the film represented by that tran-
sition zone rapidly increases in density and extends into the gas volume.
It should be mentioned that we were not able to find BGY solutions for
bulk densities higher than 0.0207.

For the system krypton—graphite, experimental values (7) are also
available at 253.15 K, which is a lower reduced temperature (with respect
to the critical temperature) than in the case of argon. Therefore, we also
performed calculations for that system using the 3-12 wall potential sug-
gested elsewhere (11) and a usual 6-12 potential for krypton (e/k =
165.2 K, ¢ = 0.366 nm). It turned out that at high bulk densities the
calculated values for the adsorption isotherms were as much as 40%
higher than the experimental ones, which continues the trend already
observed for argon. Obviously, there is a relation to the previous finding
(11) that with the same wall potential, the experimental results could
only be explained by a weakening of the dispersion forces of the krypton
atoms close to the wall. A more detailed discussion of that question will
be given elsewhere (8).

Gas Adsorption in Pores

If we apply adsorption in technical processes, we are interested in
high surface areas and hence use porous adsorbing materials. The effect
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Figure 3. Density profiles of argon adsorbed on graphite at densities

close to the dew point (n,a® = 0.0207). Temperature, 120 K. Key: —,

n,o® = 0.02000; and ---, n,a® = 0.01919. (Reproduced with permission
from Ref. 3. Copyright 1980, American Institute of Physics.)

of pores, however, is not only that of enlarging the surface area. In pores,
the gas—wall potential may be changed considerably by purely geomet-
rical reasons. In order to study that effect in more detail we investigated
a very simple model (12) corresponding to krypton adsorbed in porous
carbon. We assume the pores to be circular cylinders and the carbon
atoms to be smeared out uniformly over the cylinder surface with a given
surface density. For the interaction of one carbon and one krypton atom
we take a 6-12 potential with the parameters suggested by Steele (13).
Now, we are able to calculate a wall potential. The most significant result
is that the attractive well becomes strongly deeper with decreasing pore
size as a consequence of the pore curvature. An example is shown in
Figure 4. For the limit of low bulk densities, the amount of adsorbed
gas corresponding to Henry’s constant can be calculated from the first
term in the virial expansion, Equation 7. For high bulk densities, it
seems reasonable to assume that the surface of the pore has the same
coverage as a plane surface, which can be calculated by analogy to Table
I. From this limiting value an interpolation for mean bulk densities can
be made by using Equation 8. In order to allow comparison with ex-
periment, we assume that in a real adsorbent all the pores are cylinders
of equal radii. From given experimental values for the surface area and

American Chemical
Society Library
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u(R)/e

Figure 4. The potential in a cylindrical pore for two pores of different

pore size a. Generally the potential has its minimum at a distance ap-

proximately o away from the sites of the solid atoms. Due to the curvature

at small pore sizes, this minimum can become very deep. The model cor-
responds to krypton adsorbed by porous carbon.

the pore volume we calculate the pore size for the model. A comparison
(12) of a calculated with an experimental adsorption isotherm is shown
in Figure 5. In spite of all the simplifications in the model, the predictions
are surprisingly good.

The Free Liquid Surface

Investigations of the liquid—gas interface aim at understanding the
structure and predicting the surface tension. Beyond that, however, one
may speculate whether vapor-liquid phase equilibria should not also
be determined by the situation in the interface. Of course it should not
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200
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Figure 5. Excess amount of adsorbed krypton on porous carbon. The

comparison shows experimental and theoretical values at 298.15 K, given

in milligrams krypton per gram of carbon, for an adsorbent with a surface

of 1100 m?/g and a micropore volume of 0.42 cm®/g. Key: O, experiment;
and —, theory.

be doubted that equal chemical potential is a condition for phase equi-
librium. On the molecular level, however, the molecules in the gas phase
“know” about the situation in the liquid phase only by the mediation of
the molecules in the interface. Subsequent results will give support to
the idea that phase equilibria can also be obtained by considering the
interface without using the chemical potential explicitly.

The model fluid consists again of Lennard-Jones atoms and com-
parison is always made with argon. We are looking now for nontrivial
solutions of the homogeneous BGY equation, as the liquid—-gas interface
will be considered in the absence of any external forces. The most in-
teresting point is that the homogeneous BGY equation turns out to be
an eigenvalue equation, which means that at a given temperature a
solution could be found only for one definite value of the bulk liquid
density. The corresponding eigensolution for n(r) gives the density profile
in the interface and the coexisting gas density.

Bubble- and dew-point densities obtained from the eigensolutions
of the BGY equation (3, 14) are compared in Figure 6 with simulation
results, using the condition of equal chemical potential (15), and with
experimental results for argon (16). In spite of the approximations in the
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BGY equation, the coexisting densities are qualitatively correct. Note
that the chemical potential has not been used explicitly.

The density profiles always show a monotonic decrease from the
bulk liquid to the bulk gas density. From those profiles we have calculated
the surface thickness d (3) and obtained d = 1.41 ¢ for T = 91 K and
d = 3.20 o for T = 135 K. These values are compared in Reference 14
with simulation results (17) and experimental values (I18). Taking into
account the inherent difficulties in both the latter methods, the agree-
ment is reasonable.

Surface tensions y can be obtained (3, 14) from the density profiles
using the same approximation for g(r,,,) as in the BGY equation. The
results can be correlated (14) by

yo¥e = 2.33[1 — T/167.4]*% (10)

TIK] T
140
120
100
|
!
80 L L 1 ! L
0 0.20 0.40 0.60 0.80 1.00
po’
Figure 6. Coexistence curves determined by different methods. Key: ex-
perimental data for argon (16) (—-—-—); Lennard—Jones system with
equal chemical potential from simulations (15) (— — — — ); Lennard—Jones
system with interface mvesttgatwns using the BGY equation (————).

(Reproduced with permission from Ref. 14. Copyright 1981, Berichte der
Bunsengesellschaft fiir Physikalische Chemie )
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Comparison with experimental results (19) shows good agreement at low
temperatures, but with increasing temperature the calculated values are
much too high, which is reflected in a calculated critical temperature of
167.4 K. On the other hand, at all temperatures our results are in rea-
sonable agreement with simulation results (I17). The reason for these
discrepancies is not yet clear.

Liquids in Contact with a Wall

The BGY equation can also be solved for liquids in contact with a
wall (3, 14). In a previous paper (I14) a systematic study was made for a
Lennard—Jones liquid in contact with a 3-9 wall. The parameters of the
wall potential were e,,/k = 265 K and o, = 0.234 nm, so that it is much
more shallow than in the case of gas adsorption. Density profiles were
calculated again in a temperature and density grid. As can be seen in
Reference 14, the bulk density has a considerable influence on the struc-
ture of the liquid close to the wall, while the influence of the temperature
is negligible.

It is interesting to note (3) that with the same wall-particle potential
a hard-sphere fluid is more strongly adsorbed than a Lennard—Jones fluid.
This result agrees with findings of Snook and van Megen (20) and can
be explained by the fact that for Lennard—Jones particles, the attractive
“background” force of the bulk liquid balances the attractive wall force.
This may help us in understanding adsorption from liquid solutions.
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Fluctuations of Local Fluxes in Fluids:
Simulation Versus Langevin Theory

J. KIEFER! and P. B. VISSCHER

University of Alabama, Department of Physics and Astronomy, University,
AL 35486

Numerical simulations of flux fluctuations in a fluid have
been performed. The results for momentum fluxes are in
qualitative disagreement with the standard (Langevin—Lan-
dau-Lifshitz) theory of fluctuating hydrodynamics, which
assumes stochastic flux correlations are local. Since the the-
oretical predictions for number-density fluctuations have
been verified by light-scattering experiments, the difficulty
appears to be related to the part of the momentum flux that
does not couple to the density. We have calculated the
stochastic fluxes explicitly from molecular dynamics data
for soft spheres by using a recently developed discrete for-
mulation of hydrodynamics. A possible explanation of the
nonlocal correlations is described; this involves renormal-
ization—group techniques related to those used in the theory
of critical phenomena.

F LUCTUATIONS IN FLUIDS are calculated in this chapter by using a re-
cently introduced, exactly renormalizable discrete formulation of hy-
drodynamics. Several descriptions of the discrete formulation of hydro-
dynamics have been published previously. Originally introduced as a
discrete analogue of continuum hydrodynamics (1), it can also be thought
of as an adaptation to fluid mechanics of the renormalization—group meth-
ods used in the theory of critical phenomena (2, 3). However, an im-
portant advantage of the discrete formulation is that fluctuations can be
treated more accurately than they can in continuum theories. Therefore,
in the present paper we will approach discrete hydrodynamics as a dis-
crete analogue of the stochastic Langevin equations used in fluctuating
hydrodynamics (4, 5). We will begin by reviewing the usual (Langevin—
Landau-Lifshitz) form of these equations. We then show how the discrete
formulation of hydrodynamics may be regarded as a concretization (for
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application to a real fluid) of the continuum Langevin equation. We show
how this discrete Langevin equation can be directly determined by sim-
ulation. The results for the stochastic fluxes are then used to study the
validity of the assumptions usually made in the Langevin equation.

In particular we find the assumption (due to Landau and Lifshitz)
that there are no correlations between fluxes at different points to be
qualitatively incorrect for the momentum fluxes.

Langevin—Landau—Lifshitz Equations of Fluctuating
Hydrodynamics

The Langevin equation for the stochastic force on a Brownian particle
(6) was first extended to describe fluctuations in fluids by Landau and
Lifshitz (7). For simplicity, we will first discuss a Langevin equation for
a single degree of freedom, say a diffusing density p(r,f). The usual
deterministic equation of motion is

apm__ . am
(a—t)— V-j ey

where the flux vector is

jmr,t) = =DVop(r,?) @)
and D is the diffusivity. The superscript m indicates that Equations 1
and 2 give only the mean values of dp/dt and j {for a given function p(r, t)}.

The Langevin approach involves adding a stochastic term (dp/dt)* de-
scribing deviations from the mean

ORI
ot ot at

It is usually assumed (4), following Landau and Lifshitz (7), that there is

a field j* such that
a_p ) = — « A
( at> = -V 4

with the additional properties

<j>=0 (5)

<Gr', ) jr,)> = A(r' — nd(t' — 1), ©6)
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for some constant A. It is important to understand why the stochastic
flux j° need be introduced; i.e., why (9p/6t)* cannot itself be assumed to
have simple 3-function correlations as in Equation 6. This is because the
requirement that the total number of particles be constant implies a
constraint on the fluctuations

ap ap
S < — (' ) — s> =0 7
fdr at(r,t) at(r,t) @)

This constraint is automatically satisfied by any (9p/dt)* that is obtained
as a divergence; Equation 4 in particular gives

a_p ’ /sa_p s — ' 2 '
< at( Lt o (r,t) > = Ad(t t)V23(r r) (8)

However, without the Laplacian V2, Equation 8 would violate the con-
servation law constraint. We will reconsider this question, with benefit
of hindsight, in the last section of this chapter.

The simplest statement of the Langevin equation for a conserved
density is therefore

ap

L =V-j 9
o J )
Jj=J"+7J (10)

together with Equation 2 for the mean flux j™ and Equations 5 and 6
for the stochastic flux j-.

We may now generalize the above Langevin equations to describe
a fluid. Essentially, there are five conserved densities instead of one;
these are number, energy, and momentum (with three components),
which we will denote by py, pg, and p,. There are therefore three versions
of Equation 9, involving three fluxes jy, jg, and jp, the momentum flux
being a 3 X 3 tensor. These equations were first proposed by Landau
and Lifshitz (7), and were analyzed and extended to allow a bulk viscosity
by Fox and Uhlenbeck (5); we will refer to them as the Langevin-Landau—
Lifshitz equations.

Fox and Uhlenbeck (5) have given explicit expressions for the coef-
ficient A in Equation 6, for each of the hydrodynamic fluxes. Their
expressions for the fluctuations follow from a fluctuation—dissipation theo-
rem if one makes the Landau-Lifshitz assumption (Equation 6) of com-
plete independence of the fluxes at different space and time points. For
the shear momentum flux, for example, they obtain

A = 2kyTn (11)
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where 7 is the shear viscosity, kg is the Boltzman constant, and T is the
absolute temperature. Their result for longitudinal momentum flux is

A = 2k, T{4/3m + O (12)

where { is the bulk viscosity.

Discrete Hydrodynamics

How could one test the applicability of the Langevin—Landau-Lif-
shitz theory of continuum fluctuating hydrodynamics to a real fluid? It
is first necessary to establish what the theory means in a real fluid of
particles having finite size, in terms of quantities one could actually
measure in a simulation (or, for that matter, in a laboratory experiment).
It is by no means obvious how to do this; we present below what appears
to us to be the most straightforward such concretization of the formal
Langevin—-Landau-Lifshitz theory. In a molecular dynamics simulation
one can measure discrete analogues of the densities; that is, the number,
energy, and momentum contents of finite cells, at a finite number of
discrete times, say multiples of some interval 7. Let us divide our system
into cubical cells of width W, each labeled by its center [. Denote the
content of cell [ at time mt by ¢(l,m). In a fluid we need number, energy,
and momentum contents cy, g, cp. As in the previous section, however,
we shall consider a simple diffusive system for simplicity. There is then
only one content, cy, and we may omit the subscript. The discrete an-
alogue of the flux is the transfer, the number of particles (or amount of
momentum, and so forth) crossing a square face separating two cells
during the interval between two of our discrete times, say mt and mt
+ 7. Labeling each face by its midpoint f, and the time interval by its
midpoint (m + 1/2)t, we may denote the corresponding transfer by x(f,m
+ 1/2).

The Langevin-Landau-Lifshitz theory, like any hydrodynamic the-
ory, is supposed (4) to describe a fluid on a scale that is large compared
to molecular sizes. Thus the current j and the density p are limits of the
transfer x and the content ¢ (with suitable factors of W and 1) as W, 1 —
. The meaning of Equations 9 and 10, as applied to a real fluid, is that
if we replace j and dp/dt by x and the content change Ac(l) = ¢(l,m+1)
— ¢(l,m), the resulting dynamic equation is correct in the limit W, T —
o. Although we can only test it for finite W and 7, we can hope to make
inferences about the probable limit.

The above considerations do not tell us, however, what to do with
j™. In the formal continuum theory one simply postulates a form for it
(in terms of p). It is supposed to represent the mean flux for a given
instantaneous density profile. This can be made precise in a discrete



Published on June 1, 1983 on http://pubs.acs.org | doi: 10.1021/ba-1983-0204.ch007

7. KIEFER AND VISSCHER  Simulation Versus Langevin Theory 157

formulation by defining an ensemble of fixed contents c(I,0) at ¢t = 0,
and denoting a mean transfer in this ensemble by [x(f,1/2)]. Then
[x(f,1/2)] is the natural analogue of j™. The analogue of Equation 2 for
Jj™ should express the conditional mean transfer [x(f,1/2)] as a linear
function of the contents ¢(I,0)

[x(£,1/2)] = 2, [x(f,1/2)].4,00(,0) (13)

[}

where the [x(f,1/2)],.0, factors are simply constant coefficients about
which we have not yet made any assumptions. Evidently they contain
information about the diffusivity D. They are uniquely defined if we
regard Equation 13 as the first term in a power-series expansion of the
mean flux.

One can see from Equation 10 that the discrete analogue of the
stochastic flux j* is the difference x(£,1/2) — [x(£,1/2)]. Our analogue of
Equation 6 should describe the moments of this quantity in the equilib-
rium ensemble. However, since the Langevin theory assumes that the
probability distribution of the stochastic flux j*(r,0) is independent of
the density p(r’,0), the moments in the equilibrium ensemble are the
same as those in each ensemble of fixed p(r’, 0). Therefore, our fluctuation
equation could equally well describe the moments in the ensemble of
fixed contents ¢(l,0),

[{(x(f",1/2) = [x(f, VDN {x(£,112) — [x(f12)}]

which we prefer because these are exactly the cumulant moments (8)
and our fluctuation equation takes the form

[x(f',1/2)x(£,1/2)]c = function of f',f (14)

This choice also results in an attractive unification of the two equations,
Equations 13 and 14, which comprise our discrete analogue of the Lan-
gevin equation. They describe the first two cumulant moments of the
probability distribution of the transfers x(f,1/2) in the ensemble of fixed
¢(1,0). From this point we will omit the ¢ superscript; all moments will
be cumulants.

A number of possible generalizations of the basic discrete Langevin
equations (Equations 13 and 14) now present themselves. First, it is
possible that a more accurate prediction of the mean transfer (Equation
13) could be made by taking into account some or all of the previous
transfers x( f, — 1/2), x(f, —3/2), . . . as well as the present contents ¢(l,0).
Let us denote by [ ]! a mean in an ensemble in which the terms x(f, —1/2)
(for all ), as well as ¢(l,0), are fixed. It is therefore a function of the values
chosen for ¢(1,0) and x(f, —1/2). Similarly [ ]? is a mean in an ensemble in
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which ¢(1,0), x(f, —1/2), x(f, —3/2) are fixed; note that specifying c(l, —l)
would be redundant since it is determined by ¢(/,0) and x(f, —1/2).
general [ ]M involves fixing transfers at M different times. The conditional
means discussed previously can now be denoted [ ]° The necessary gen-
eralization of the equation of motion for [x]° (Equation 13) is

[x(f,l/2)] E[x f 1/2)]%, c(to) )
+ > [V, x(fom) (15)

0>m>-M
and Equation 14 becomes
[x(f',1/2)x(£,1/2)] = function of f’, f, M (16)

Our principal interest is in the case M = o, for which all previous
transfers are constrained and the equation of motion, Equation 15, in-
volves all previous times. This is because the theory for that case is
exactly renormalizable (see the section on Numerical Results).

The continuum analogue of the non-Markovian theory represented
by Equation 15 with M = wis referred to as “generalized hydrodynamics”
and has been heavily studied by many authors (9, 10).

The linear theory described by Equations 15 and 16 can easily be
generalized to the nonlinear case. Each equation can be thought of as
the lowest-order nonvanishing term in a power-series expansion of a
conditional cumulant moment in terms of the “history variables™ ¢(l,0),
x(f,—1/2), . . . . In Equation 16 only the constant term is present, and
in Equation 15 the constant term vanishes and the linear term is given.
In the most general formulation of discrete hydrodynamics (1, 8) all orders
are allowed in these power series. The restriction to the first and second
cumulant moment corresponds to assuming Gaussian fluctuations (4); this
restriction also is removed in the general theory. In dealing with a fluid
on a fairly macroscopic scale, the linear Gaussian case is sufficient; this
is acceptable because the important fixed points under a scale-coarsening
(renormalization) transformation (3, 11) are linear and Gaussian. Even
on the rather microscopic scale (four-particle cells) used in our simulation
work, both non-Gaussian and nonlinear terms have been calculated (12)
and found not to be numerically important. Therefore, in this chapter
we consider only the linear, Gaussian parts of the equation of motion;
i.e., Equations 15 and 16.

Before calculating, in the next section, the actual values of the pa-
rameters in the discrete equations of motion (Equations 15 and 16), we
discuss what the continuum Langevin-Landau-Lifshitz theory of fluc-
tuating hydrodynamics (Equations 2 and 6) predicts for them. The pre-
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dictions about the mean transfers (Equation 15) are the same as those of
the ordinary deterministic equations of hydrodynamics, and have been
discussed in detail previously (12-14). Our interest here is in the Lan-
gevin fluctuations (Equation 6) of the stochastic flux component j§ (i =
X, Y, or Z). Regarding j; as being the large-cell limit of the transfer per
unit time per unit area, across a face normal to the i direction, x*/TW?,
we see that the assumption of independence of the j; terms at different
positions translates into an assumption of independence of the x terms.

[x(f', 12)x(f,/2)]M = AW27d. a7)

(The factor W27 provides a normalization equivalent to that of Equation
6.) In a Markovian theory this cumulant is independent of M, since
constraining M previous transfers makes no difference if nothing depends
on them. This predicted independence of M is borne out fairly well by
our numerical results covered in the next section.

Of course we cannot expect to find exact independence of transfers
across different faces for finite W, even if the Langevin theory were
correct. However, the Langevin theory or various generalizations (9, 10)
certainly imply that the correlations should be clearly dominated by a
local part for reasonable W and 7. As we see in the simulation this appears
to be definitely false for the momentum fluxes.

Calculating Discrete Equations of Motion

We would now like to calculate explicitly the parameters defining
the discrete equations of motion; i.e., the coefficients [x(f,1/2)1%, and
[x(f,1/2)]%,. ) of Equation 15 and the constants [x(f’,1/2)x(f,1/2)]. The
former describe the dependence of the expected transfer on the history
of the system, as represented by the “history variables” ¢(1,0) and x(f',m).
We will schematically denote any of these history variables by h, and
suppress all space and some time indices. In previous discrete hydro-
dynamics work (12, 14) we have considered only the most general equa-
tion of motion having M = (i.e., allowing x(1/2) to depend on all previous
transfers). We obtained [x], from equilibrium averages by multiplying
Equation 15 (with M =) by a history variable h’ and averaging over the
equilibrium ensemble

(xh') = 3 [x]5 (hh") (18)

h

This is a set of linear equations from which [x]} can be calculated if the
equilibrium averages (xh), (hh') are known. However, the number of
coupled equations is the number of [x], terms we wish to calculate. This
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was 35 in Reference 14, but would be much larger if high accuracy were
desired. For the present calculations we have used a more efficient
method in which [x]¥ is calculated recursively from [x]¥~!, the equation
of motion in which history variables are constrained at one fewer past
times.

The necessary recursion equations can be obtained by multiplying
Equation 15 by x'(—M + 1/2) and averaging it over the “M —1” ensem-
ble, which is larger than the “M” ensemble because x(—M + 1/2) is not
constrained

[x(1/2)x' (- M + 1/2)]M~!
= > [2V2]_piry X [((—=M + 12)x'(-M + 121 (19)

x(—M+1/2)

This is again a coupled system of linear equations, one for each [x]}, but
now the h terms are all at a single time, so there are many fewer. The
other [x]¥ terms (for h terms at times m, —M + 1/2 < m < 0) are
determined by

[x(1/2)J- = [x(L/2)
+ Y AUy uplx(—M + 12T (20)

x(—M+1/2)

which are not coupled at all; Equation 20 is obtained by averaging Equa-
tion 15 over the larger M — 1 ensemble and picking out terms proportional
to h. For the next stage of the recursion we must know fluctuations in
the M ensemble, which are obtained by multiplying Equation 15 by x(m)
for m = 1/2 or m < —M, and averaging

[x(1/2) x(m)]M =1 = [x(1/2) x(m)]
+ D UM~ M + U2)x(m)t (1)

x(—M+1/2)

This determines the fluctuation moment on the right side of Equation
19, provided one realizes the latter is equivalent, by time reflection in
t = (L—M)2, to [x(L/2)x(L/2)]4-1.

The recursion equations (Equations 19-21) give the lowest-order
power series coefficients for cumulant moments in a smaller ensemble
from those in a larger ensemble. Generalizations of such equations to all
orders are given in Reference 3, but are not needed here.

The lowest M for which the recursion relations in the form of Equa-
tions 19-21 make sense is M = 1. We must initially know the cumulants
for M = 0;i.e., for the ensemble in which only the ¢(0) terms are fixed.
However, these may be calculated from the equilibrium cumulants by
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equations essentially identical to Equations 19 and 21 in which M = 0
and x(—M + 1/2), the variables we are newly constraining, are replaced
by ¢(0). The cumulants for M = —1, of the form [x(1/2)c(0)]~! and
[c(0)c'(0)] 71, are averages in an ensemble in which even c(0) is not fixed;
i.e., the full equilibrium ensemble. Thus the recursion may begin with
molecular dynamics data on fluctuations in the equilibrium ensemble
(M = —1) and all other coefficients (for M = 0, 1, 2, . . .) can be cal-
culated.

We have obtained equation-of-motion coefficients from the equilib-
rium correlations obtained from simulation, by solving Equations 19-21.
In principle, the number of equations is infinite, because the number
of times (m’s) is infinite. Elaborate schemes for choosing an appropriate
truncation of the system of equations have been used previously (12, 14).
In the present work we have used a simplification of the scheme of
Reference 14. Our program starts with a list of tolerances within which
we would like to know the equation-of-motion coefficients [x]} and [x'x]™.
These determine (assuming nearly diagonal matrices in Equation 19) the
tolerances for each equation. Imposing this tolerance on each term in
the sums in Equations 19-21 implies a tolerance for each factor. Each
cumulant that exceeds its tolerance as obtained in any of these ways is
regarded as important, and its “neighbors” (obtained by shifting h or x
by one unit in space or time) are added to the truncation. We begin with
a small “start-up” set of 183 cumulants (14), and repeat this truncation
expansion procedure (with decreasing tolerances) until adequate con-
vergence is obtained. The results given here required about 1000 cu-
mulants.

Molecular Dynamics Simulation

The soft sphere fluid has been studied extensively using Monte Carlo
(15, 16) and nonequilibrium molecular dynamics techniques (17), and
therefore we have chosen this model as an example of the application of
discrete hydrodynamics.

The soft sphere interaction potential is central and has the form

b(r) = e<9) 22)

The separation distance between two particles is r, € defines the energy
scale, and o is the effective hard core radius. It is convenient to define
energy, length, and mass units so that e = ¢ = m = 1 where m is the
particle mass.

The state of the fluid system is specified by the mass density, p, and
the absolute temperature T. However, since the potential function has
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a power law form, we can select kzT = ¢ = 1 and the properties of the
system at any other T can then be obtained via a scale transformation
(16). The mass density (particle density, since m=1) is specified by de-
fining a dimensionless reduced density p, = po¥\/2. Then p, < 0.2
represents the dilute fluid region where kinetic theory is applicable.
Previous discrete hydrodynamics work has addressed the case of p, =
0.6 (12). Here the viscosity, for instance, is about 50% higher than that
predicted by the Enskog theory (17). At p, = 0.6 discrete hydrodynamics
yields a viscosity in apparent agreement with nonequilibrium molecular
dynamics calculation (12, 17). The results discussed in this chapter refer
to a reduced density of 0.8, just less than the freezing density of 0.813.

For the sake of economy we have chosen a system of 32 particles
in a cube with periodic boundary conditions. The cube is divided into
eight small cubical cells of side W, each containing on average four
particles. Since we set p, = 0.8, we must have W = 1.5230. The periodic
system is then a cube of width 2W.

The molecular dynamics simulation is performed by integrating
Newton’s law numerically for each of the 32 particles in the periodic
cube.

The integration algorithm used is that due to Verlet (18), which
involves the particle positions r; and velocities v, as follows:

v, (t + (1/2)At) = v,(t — (1/2)At) + At F(t)/m (23)
and

ri(t + At) = r,(t) + At v,(t + (1/2)A%) (24)

where F,(t) is the force acting on particle i at time ¢, and At is the
integration interval.

The data recorded on magnetic tape consist of small cell (width W)
particle number, total energy, and momentum contents recorded at times
mt, and the net amount of these quantities transported or transferred
from one cell to a neighboring cell during the time interval [(m—1)7, mr].
Here m is an integer. The contents and transfers are calculated as de-
scribed in detail elsewhere (1).

We have computed discrete equations of motion from our molecular
dynamics averages by using two different discrete intervals. We previ-
ously reported (14) results for a time interval = 0.1981. This was chosen
so that a sound wave just crosses the cell in time 7 such that 1 = W/v,,
where the sound velocity v, = 7.69 is obtained from the equation of
state (15, 16) for p, = 0.8. We report here results for 1 = 0.1981 and
also for half that, T = 0.0990.

Computational economy motivates the use of as large an integration
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interval At as possible. The integration interval must be small enough,
however, that numerical errors in computing the particle positions and
velocities are not serious. We have used an interval At, = 0.0099 (1/10
of the smaller 7). This produces adequate total energy conservation (one
part in 1000). The most relevant criterion for our purposes, however, is
the convergence of the microcanonical averages of products of cell var-
iables that are used in Equations 20 and 21 with M = 0. Theoretically,
the errors in these averages should be of order At? in the Verlet algo-
rithm. We have looked at several of them for increasing At (multiples
of At,/2), averaged over 2250 At,. Within the statistical uncertainty, we
detect no significant changes in the averages up to At = 2.5 At,. For
At = 3At,, our molecular dynamics code broke down (particles went
further than W during At). This is strong evidence that our At was
adequately small. The integration is started with the particles in a face-
centered cubic lattice. Initial velocities are randomly specified such that
the initial kinetic energy is about 3.0 [kzT]. After 50 integration steps
at this high temperature, the system is quenched slowly (over 100 At)
until the average kinetic energy is about 1.5; the total energy is then
5.943 as it should be according to the equation of state (15, 16). From
this point, data are taken from a simulation of 18,000 A¢t,. The average
kinetic energy over that period is 1.486 + 0.008.

Although the reduced density p, = 0.8 is less than the infinite fluid
freezing density, the simulated fluid froze three times in the course of
the 18,000 integration steps because of the small size of the system and
periodic boundary conditions. When this occurred, the simulation was
stopped, and at a point preceding the phase change the system was
perturbed by integrating for 400 steps of length (1/2)At,. Then the sim-
ulation was resumed with steps At,.

A cell variable (a content or a transfer) or a product of cell variables
was averaged over rotations and translations consistent with the sym-
metry of the product (19), and over four separate time segments of length
4500 At. The statistical uncertainty of an overall average (over 18,000
At) was obtained by computing the standard deviation of the mean of
the four time segments.

Numerical Results

We have calculated the discrete equation-of-motion coefficients [x]™
and [x'x]™ by using the recursion equations (Equations 19-21). Equation
19 is a matrix equation in which the matrix is the covariance matrix of
the transfers at time —M + 1/2, denoted x(— M + 1/2). Because of time-
reversal symmetry, this is the same as the covariance matrix of x(1/2) in
the same ensemble, in which the contents ¢(0) and (if M>1) M —1 sets
of transfers x(—1/2), . . . x(—M + 3/2) are constrained. It was our original
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hope that the Landau-Lifshitz assumption of uncorrelated stochastic
transfers (Equation 17) would be approximately correct, because then
the covariance matrix would be nearly diagonal and the system of equa-
tions well conditioned. Unfortunately the opposite is the case; the trans-
fers are highly correlated, so much so that the matrix is very nearly
singular. Such singularities are common in the literature of linear regres-
sion (20) (Equation 19 is essentially a linear regression equation) and are
referred to as “multicollinearity.” This occurs when the transfers are
nearly linearly dependent; i.e., when there is a linear combination of
the transfers that fluctuates much less than the individual transfers do.
One symptom of multicollinearity is that the smallest eigenvalue of the
matrix is much smaller than the diagonal elements; in our case, it is as
low as one tenth of the diagonal elements. We have encountered this
problem previously (14), but it occurred in the covariance matrix of all
history variables, in which its physical significance was not obvious. In
our present formulation we deal with much smaller matrices involving
only transfers at time —M + 1/2. We find that the eigenvectors having
small eigenvalues correspond almost exactly to the sum of the six transfers
into each cell. That is, the nonfluctuating linear combination is the con-
tent change

Ac(l) = c¢(,1) — ¢(1,0) (25)

Some of our numerical results demonstrating these strong correla-
tions are presented in Tables I and II. Table I gives the cumulant mo-
ments of the momentum transfers and content changes in various en-
sembles. It can be seen that the Langevin—Landau-Lifshitz predictions
(Equation 17, labeled LLL in the table) are fairly good for the mean
square fluctuations of the transverse and longitudinal momentum trans-
fers x; and x,. However, the predictions (zero) for their correlations are
quite wrong. We give the largest correlation [x,x;] in the table; the
correlations between two different x, terms or two different x; terms are
smaller. The seriousness of the discrepancy is seen most clearly by com-
paring the first and second columns in Table I. The second column gives
the value that [Ac?] would have if the transfers fluctuated independently
(since Ac is a sum of four x; terms and two x; terms). It is very far from
the actual value of [Ac?] (first column) even in the equilibrium ensemble,
and is wrong by a factor of 10 in the most constrained ensembles. The
latter are precisely the ensembles whose fluctuations should correspond
most closely to the Langevin notion of “stochastic flux”, since non-Mar-
kovian as well as Markovian deterministic effects have been subtracted
out; as described in the section on Discrete Hydrodynamics. (See also
Figure 1.)

One might note that the discrepancy in [Ac?] is less for the smaller
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Table I. Fluctuations of Z-Momentum Transfers and Content Changes

Ensemble (et AP+ [N (N [
T = 0.198
Equilibrium
M= -1) 8.00 35.40 416 9.38 —1.59
M=0 3.40 32.73 400 8.36 -—1.60
M=1 3.05 27.30 3.43 6.78 -—1.21
M=2 2.66 26.87 3.37 6.69 —1.21
Uncertainties® +0.02 +0.42 +0.07 £0.14 =0.05
LLL Predictions? 33.00 33.00 496 6.61 0.00
T = 0.099
Equilibrium
M= -1 6.23 14.08 1.63 3.78 —0.46
M=0 3.52 12.55 1.57 3.14 -0.50
M=1 3.04 10.43 1.3 2.55 —0.33
M=2 2.00 10.24 1.32 247 -0.33
Uncertainties® +0.02 +0.14 +0.02 =£0.05 =*=0.02
LLL Predictions? 16.50 16.50 2.48 3.30 0.00

Note: Content change is Ac = ¢(1) — ¢(0), and x;(1/2) and x1(1/2) are the longitudinal
and transverse transfers across the faces shown in Figure 1. M = 0, 1, and 2 are successively
more constrained ensembles. The top and bottom halves of the table give large-t and
small-7 results respectively. For comparison, the equilibrium mean square content is (c?)
= 3.54 = 0.02.

@ All quoted uncertainties are standard deviations of the mean for several runs.

b The Langevin—Landau-Lifshitz (LLL) prediction is from Equations 11, 12, and 17;
we use = 5.4 (17) and { < q (21).

Table II. Fluctuations of Energy and Number Transfers and Content

Changes

Ensemble [AcgIM 6[xEM [Ac M 6[x%IM

T = 0.198
Equilibrium 24.7 81.9 1.37 1.62
M=0 11.6 70.8 0.87 1.43
M=1 11.2 69.6 0.86 1.32
M=2 11.1 69.2 0.83 1.28
Uncertainties +0.2 +1.0 +0.02 +0.05

T = 0.099
Equilibrium 19.4 35.3 0.98 1.04
M=0 11.2 28.6 0.72 0.94
M=1 10.9 27.1 0.72 0.89
M=2 10.3 26.4 0.71 0.86
Uncertainties +0.2 +0.6 +=0.01 +0.03

Note: Content change Acg is the sum of six transfers xz across the faces of the cell.
In equilibrium ensemble, (%) = 11.5 = 0.2 and {c?) = 0.98 = 0.01l.
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7 used and suggest that our 7’s are simply too large to allow us to identify
the flux with the transfer divided by 7 and the area. Indeed, it is clear
the Langevin-Landau-Lifshitz prediction (Equation 17) for [Ac?] cannot
possibly be right for very large 7, since it is proportional to T while the
actual [Ac?] (which is equal to [c(1)?] if M = 0; i.e., if c(0) is constrained)
is bounded by (c(1)?) independently of T (since constraining a variable
decreases the fluctuations of the others in any Gaussian distribution).
However, we do not believe decreasing T is physically sensible. For the
smaller 1 = 0.099 we have used, the transport of shear momentum out
of a cell ([x], in Figure 2) is already very small, and any smaller T would
make it difficult to extract information on the viscosity (12). Furthermore,
7 = 0.099 is very small by any physical criterion; the distance a particle
moves at the thermal velocity (kT/m)"? during this time is only 0.065
times the cell width W, or 0.092 times the close-packed interparticle
spacing. Even a sound wave moves only half the cell width.

Further evidence that the strong correlations we have found are
unavoidable is provided by work that has been done (3) on the properties
of discrete equations of motion under scale-coarsening transformations.
These are similar to the renormalization—group transformations used in

Z(momentum direction)

Y

Figure 1. The molecular dynamics system (large cube) with one of the
small cells used in analyzing the fluid motion. The cell is labeled c since
Table I refers to its Z-momentum content cp,. The Z-momentum transfer
across the bottom face is x, (longitudinal), and that across the back face
is x1 (transverse). The length unit along the axes is W, the cell width.
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T = 0.198
Y=3/2
[xT]c
0.090 = 0.003 0.032 = 0.001

+
+

0.103 £ 0.003 0.017 + 0.001

[x7], (transverse)

Y=2 Y=1
—0.181 = 0.010( —0.064 = 0.007 —0.046 = 0.007| 0.036 = 0.007
—0.053 = 0.010| —0.027 = 0.010 —0.004 = 0.007| —0.041 = 0.008
0.194 = 0.010| —0.018 = 0.009 —0.059 = 0.007| —0.032 = 0.006
0.043 = 0.010| —0.036 = 0.009 —0.004 = 0.006| 0.009 = 0.010
[x7]; (longitudinal)
Y=3/2, Z=0
0.013 = 0.001 —0.003 = 0.001
0.001 = 0.003 0.011 = 0.002

Figure 2. Discrete equation-of-mo]tion coefficients [x1(1/2)].0.1) and [x(1/
2) x(m,1).
Here x1(1/2) is the transfer of Z-momentum across the face entered at f =
(1/2, 2, 1/12) and labeled x1 in Figure 1; it is xp,(f,1/2) in the notation of
the section on calculations. The four-compartment squares are cross sec-
tions of the system (the large cube in Figure 1) in the plane of the figure.
The first square gives the dependences on the Z-momentum contents, [x1].q.0,
for the four cells whose centers 1 lie on the plane Y = 3/2. The next two
squares give the dependences on previous transverse transfers, [Xrly_12)
(upper number in each compartment) and [xrl.g _ 32 (lower number) for
faces whose centers f lie on the planes Y = 2 and Y = 1. There are only
two inequivalent longitudinal transfers, that labeled x, in Figure 1 (cen-
tered at £ = {1/2, 3/2, 0}) and the one to its right {f = (3/2, 3/2, 0)}. The
effects [xrlm Of these transfers are given in the final two-compartment
rectangle, which may be thought of as lying horizontally on the bottom of
Figure 1.

Continued on next page
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Y=3/2

+0.037

1+

0.001 | +0.006 = 0.002

+

+0.077 + 0.002 | +0.009 * 0.001

[x7], (transverse)

Y=2 Y=1
—-0.124 = 0.020{ —0.035 = 0.005 —0.098 + 0.009] —0.047 = 0.006
—0.050 = 0.010| —0.030 = 0.006 —0.037 = 0.004 | —0.026 = 0.005
0.218 = 0.010{ —0.017 = 0.005 —0.051 = 0.006| —0.022 = 0.044
0.027 + 0.009| —0.001 = 0.004 —0.044 += 0.004( —0.038 = 0.003
[xp1, (longitudinal)
Y=3/2,Z=0
0.009 = 0.001 0.046 + 0.003

—0.011 = 0.002 | —0.004 + 0.003

+

Figure 2. Continued. Discrete equation-of-motion coefficients [x+{(1/2)o))
and [x1(1/2)]yn.n.

the theory of critical phenomena. The ultimate objective of that work is
to see if the equations of continuum hydrodynamics may be understood
as a fixed point of a coarsening transformation; i.e., an equation of motion
that stays the same when the time and space scales are coarsened, and
that various different small-scale discrete equations of motion of real fluids
approach when the scale becomes large. The coarsening behavior has
not yet been investigated for fluids, but work (unpublished) on a two-
dimensional diffusive system indicates that as the time and space scales
increase, the transfer correlations increase in such a way that the ratio
of the mean-square content change to the mean-square transfer becomes
arbitrarily small. This suggests that the small values we have found for
this ratio in our fluid represent generic behavior, and that the violation
of the Langevin-Landau-Lifshitz prediction that it implies becomes more
rather than less severe on larger scales.
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Table II gives data on the fluctuations of energy and number. It can
be seen that the Langevin-Landau-Lifshitz prediction of uncorrelated
transfers again fails for the energy transfers; the content change it predicts
(second column of Table II) is too large by as much as a factor of six. The
transfer correlations are less severe for number transfers, which is con-
sistent with the success of the theory in predicting density fluctuations
measured in inelastic light scattering experiments (21). We do not give
a numerical fluctuating-hydrodynamics prediction for the energy trans-
fer, since Reference 4 does not (a sort of “temperature-flux” is given
instead).

The order-of-magnitude discrepancy in the momentum—content
change fluctuation is particularly distressing because the content (i.e.
momentum density) is more directly physically measurable than the transfer
(i.e. momentum flux). The discrepancy calls into question our decision
to regard the transfer as the primary fluctuating variable (i.e., to use
Equation 14), and then derive the content change fluctuations from it.
This was done (I, 2, 12, 14) for the same reason that the Langevin—
Landau-Lifshitz continuum theory regarded the flux rather than the
density as having the simplest fluctuations; that is, some nonlocal cor-
relations in the content changes are forced by the conservation law
2 Ac(l) = 0. This was particularly awkward in older formulations of
; .

discrete hydrodynamics (1) which parameterized probability distribution
functions directly, but it is not a serious complication when they are
parameterized through moments such as Equation 14. As we mentioned
above, the strongly nonlocal flux correlations are of interest not only in
relation to the Langevin—-Landau-Lifshitz theory, but also for the prac-
tical reason that they make the discrete hydrodynamic equation of motion
very difficult to calculate. They have severely limited the success of
transport coefficient calculations based on this method (2, 12, 14). The
fact that the smallest eigenvalues of the covariance matrix are 10 times
smaller than the diagonal elements has the effect of magnifying small
errors in the matrices by a factor of 10. This increases the number of
terms which must be included in the truncated Equation 19; to reduce
truncation errors below the statistical errors quoted here we had to use
essentially all possible cumulants for M = 0, 1, 2. Fortunately, in a
2 X 2 X 2 cell system there are only about 1000. Clearly, however, it would
be better to work with variables that are more nearly independent. The
content changes are essentially the longitudinal part of the momentum
flux; one can define other linear combinations of transfers that are trans-
verse and do not couple to the density. Hydrodynamic equations based
on such variables would probably be simpler and easier to calculate (the
matrices would not be so singular) and should be considered in future
work in this area.
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Figure 2 gives a few of the coefficients in the deterministic part of
the equation of motion (Equation 15). To save space we give only [x;];,
where x; is a transverse momentum transfer (of Z-momentum in the Y-
direction) and h is a content or transfer of Z-momentum. These are exactly
the coefficients one would need to calculate the viscosity (12-14). How-
ever, the present results do not give a good estimate of the viscosity—
it is lower by a factor of two than that of Ashurst and Hoover (17). This
may be because the numerical problems described above made it im-
possible to go beyond M = 2, or because a 32-particle system is too
small, or (less likely) because 4-particle cells are too small and the viscosity
will renormalize as the cell size is coarsened (3, 8).

In conclusion, it appears from the present work that the Langevin
assumption of uncorrelated flux fluctuations is not valid in a fluid, at least
not for momentum fluxes. Proper calculation of the equation of motion,
and therefore the transport properties, would be greatly facilitated by a
better understanding of the fluctuations.
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Equations of State of Nonspherical
Hard-Body Systems

TOMAS BOUBLIK

Czechoslovak Academy of Sciences, Institute of Chemical Process
Fundamentals, 16502 Prague, Czechoslovakia

Derivation of the hard-body equation of state within the
scaled particle theory for fluids of fused hard-sphere mol-
ecules and hard convex bodies is briefly summarized, and
the modified equations of state are discussed. Computer
data for virial coefficients and the compressibility factor of
fluids assuming hard convex bodies and hard interaction
site models of different types are used to verify the appli-
cability of these equations.

HE EQUILIBRIUM BEHAVIOR OF MOLECULAR FLUIDS, that is, systems
T with spherically unsymmetrical intermolecular forces, has received
increasing interest over the past few years. Because the structure of
liquids is affected largely by the short-range repulsive forces, knowledge
of the behavior of hard nonspherical bodies (with shape and size corre-
sponding to the structure of the molecules considered) forms the basis
of our understanding of the equilibrium behavior of real fluids just as
knowledge of hard spheres does in case of simple fluids.

Repulsive forces of polyatomic molecules have been described es-
sentially in two ways:

1. as a sum of the site-site interactions (dependent on the
respective site—site distances) in the interaction site model
(ISM).

2. by the generalized Kihara potential, in which intermolec-
ular forces are assumed to depend only on the shortest
surface-to-surface distance of hard convex cores, ascribed
to given molecules.

Accordingly, hard interaction site models (HISM) (in effect fused hard
spheres) and hard convex bodies (convex bodies parallel to the cores)
have been considered in theoretical and simulation studies.

In this work we give a brief outline of the derivation of the hard-
body equations of state and of the expression for the contact value of
distribution functions. We then apply two of the discussed equations to

0065-2393/83/0204-0173%06.00/0
© 1983 American Chemical Society
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determine virial coefficients and the compressibility factor of the hard-
convex-body and hard-interaction-site-model systems (pure fluids and
mixtures) for which computer data are at our disposal.

Equation of State from the Extended Scaled Particle Theory

The scaled particle theory (SPT) formulated for simple fluids by Reiss
et al. (I), yielded the first reliable equation of state of hard spheres,
which is identical with the Percus—Yevick (c) [PY(c)] expression obtained
several years later. In this theory a variable diameter is taken as a coupling
parameter (similar to the relationship for the chemical potential) that
makes it possible to express the reversible work connected with the
introduction of a particle into the system under study. Several exact
relations were found for this reversible work (for the particle diameter
equal to zero or infinity) and an expansion in powers of the reciprocal
diameter of the test particle was used for the interpolation. A weak point
of the theory, which was extended also to mixtures, is the fact that it
yields distribution functions only at the closest approach distance.

An extension of the scaled particle theory to a class of molecular
fluids—hard convex bodies—was given first by Gibbons (2, 3) and re-
derived by the present author (4); recently it was shown (5) that the same
formalism can be used also for the HISM systems. It appears that both
the HISM and the hard convex body pair-potentials can be written in
terms of a single variable—the shortest surface-to-surface distance, s,
where

u(s) = oo fors=0 1)

=0 s>0

In the case of HISM, s is equal to a minimum of all the site—site distances,
s = min(r{y — o), where 0" is the characteristic distance. Then, in
general relationships for pressure, the chemical potential, and further
thermodynamic functions of molecular fluids

PVINKT = 1 — (p/6kT) f [R,5(0u/dR},)]g,(R1z, @, ®,)dR,,dw,dw,
@
b
(1~ KT = QRT) || [ uio8)g, (R, ey, a0, &) dBsdo, e
9

and so forth, where R,, is the center-to-center distance, @ = 0¢d stands
for the orientation coordinates, [dw = 1, and & is the coupling parameter
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that scales the test particle size while its shape remains unchanged. It
is possible to express the derivatives with respect to R;, and § in terms
of derivatives with respect to s, and the volume element dR,, in terms
of s and the angle coordinates characterizing the geometry of the given
pair of molecules, 1 and 2. When the coordinate system is fixed in particle
1 it can be written

PVINKT = 1 — (p/6kT) f (R,ov)(0ulds)g>(5)S, 4 5+ 2ds 4)

and

(b — w*/kT = —In(1 — pVy)

= (p/kT) fol f (Ryv)(0ulds)g™ (s, N)Sx1+s+2dsdh  (5)

Here \ is the dilatation coefficient employed as the coupling parameter,
v is the unit vector in the direction of s and g* is the weighted average
(over surface area) correlation function, S, , ., is the mean surface area,
given as a locus of the center of molecule 2 when it moves around
molecule 1 with the given distance s. This surface area is (4-6)

Sirs+2 = Sipg + 8TR o8 + 4ms® (6)
S,.,=S, + 81AJ, + S, @

and
Rive =R, + Ry (8)

where V,, S, and R, stand for volume, surface area, and the (1/4 )
multiple of the mean surface integral, respectively.

Because (du/ds) possesses properties of the Dirac 8-function for hard
body systems, it holds that

1
PVINKT =1 + époavgaV(O) Sii2 9)
and
1
(W — p¥KT = —In(1 — pV) + p fo (Rw)g™(0, N)Sy,.dN  (10)

where 0* = (R{,v) = (Rpwv) + (Rwv).
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To derive the equation of state it is useful to introduce the average
correlation function G(\) weighted over volume elements; then

PVINKT = 1 + éca)v1+2 (11)

The mean volume V,, , of two hard bodies at contact is (3-5)

Viee = Vi + SR, + RS, + V, (12)

Equation 12 holds exactly for hard convex bodies, whereas for HISM
systems a small volume Av,, is neglected; Av,, can be calculated exactly
(in special cases) or approximately (5), but it can not be factored into
contributions of HISM bodies 1 and 2. Because of this, the second virial
coefficient of HISM from the resulting equation of state differs from the
exact one (unless Av,, is added) and the difference indicates the accuracy
of this approximation.

For the chemical potential we have similarly

1
(1~ WOAT = ~Inl — p¥) + | GOV,
+ 2\S, R, + R,S)dN (13)

The knowledge of G(\) in a relatively narrow interval Ae(0, 1) suffices
for the determination of the equation of state and the chemical potential;
instead, the values of G(\) for A = 0 and A = « and (3G/d\) for A = 0
are at our disposal. To make use of these relations a suitable three-
constant interpolation formula (an analogue of the expansion by Reiss et
al.) was considered. After some rearrangement it follows that

1 3a(l + ) y 3a2 y?
G(1) = + + 14
@ 1-y Q1+ 31 —-y? @1+ 31 - y)? (14)
where

y=pV, and o = R;S,/3V, (15)

By substituting Equation 14 into Equation 11

2,,2

PV _ 1 + 3ay + 3ay (16)

NKT 1-y (1-y2 (@1-yp?
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It is obvious that the equation of state depends only on the packing
fraction, y, and the nonsphericity parameter, a. Because of the close
interrelation of G and g* the theory yields also the expression for the
contact value of the latter function

1 3ay 3aly?
() = + +
g0 = 7— v 20 — g | 20 + 4wR/S)L — yp

17

The equation of state, Equation 16, is an analogue of the scaled
particle theory or PY(c) expression for hard spheres; it is known that the
most often used Carnahan-Starling equation of state of a hard-sphere
system can be obtained as a sum of 2/3 of the PY(c) and 1/3 of the PY(v)
expressions, or—as the present author pointed out (7)—by multiplying
the last term of Equation 14 (for a« = 1) by a factor of 2/3. By reducing
this term in the same way in the general relationship we obtained (8)

PV 1 3ay 3ay? — oy’

NkT:l—y+(1—y)2+ 1-y?

(18)

This equation of state, Equation 18, can be considered as an extension
of the Carnahan—Starling relationship to a general case of the nonspherical
hard-body system. The corresponding values of G and g* follow from
Equations 14 and 17 by the above-mentioned reduction; for the reduced
virial coefficients, Bf = B,/V¥~1, it holds that

Bf =1+ 3a
Bf = 1 + 6a + 3a2 (19)
B¥ =1 + 9a + 82

and so forth. Equation 18 was extended also to mixtures of hard non-
spherical bodies:

PV 1 rs qs*(3 — v)
NKkT 1 -v p(l —v? 9p(1l —vp?® (20

where v = p3a,V, is the packing fraction, r = p2ax,R;, s = p3x,S;, and
q = p2x;R?2. [The two-dimensional equation was also derived (9)].
Equations 18 and 20 are generally valid for all the hard-body fluids
and fluid mixtures. As shown below, Equation 18 gives a good prediction
of the P-V-T behavior of the HISM systems; the accuracy of values of
higher virial coefficients and the compressibility factor of hard convex
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bodies for a > 1.2 is less satisfactory. Therefore, modified equations of
state of convex bodies were developed.

Equations of State of Hard Convex Bodies

All the modified equations of state proposed for hard convex body
systems start with Equation 18, which can be written

PV 1 Coy Caqy? + C
= + 21
NkT l—y+(1—y)2 1-y? @

Nezbeda (10) determined C,—C, by fitting the pseudoexperimental data
of virial coefficients and the compressibility factors to simple relationships
in terms of a. Then

PV 1 + 3ay + (@® + 4o — 2> — aba — 4)y°
NkT 1 -y (1-ypP 1-yp@

(22)

Equation 22 and its extension to mixtures by Pavli¢cek et al. (11) yield
very good results even for extreme values of a (and y); however, the
functional dependence of the higher virial coefficients on « is rather
strange. For example

By
Bf

-5 + 25a — 2a2

Similarly, the expressions for the contact values of the correlation function
g* and g2’ and the equation of state of mixtures possess complicated
forms.

In another version Nezbeda et al. (12) proposed to determine the
coefficients C,—C, from the pseudoexperimental data of virial coefficients
by employing the relationships

C, = Bf — 1

C, = Bf — 2B + 1 (24)

C, =B — 3B — Bf) — 1
which follow from the low-density expansion of Equation 21. This method,
as well as a similar variant of Barboy and Gelbart (13), (who considered
an expansion in y/(1 — y), so that the term C,y%/(1 — y)* appeared in

their equation of state) predict the P-V-T behavior of different hard body
systems, which are not necessarily convex, with good accuracy provided
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the values of the second to fourth virial coefficients are available. This
fact limits the applicability of these equations considerably, especially in
the case of mixtures.

Recently (14), on the basis of an inequality proposed by Kihara and
Miyoshi (15) for the third virial coefficient (giving the upper and lower
limits), the present author formulated the following approximations for
B¥ and B¥

Bf =1 + 6a + 3a2 25)

B¥ =1 + l4a + 3a?

From Equations 21 and 24 we can obtain

PV 1 221 — 2y) + S
_ + 3ay 302y} (1 — 2y) + Say (26)
NkT 1-y (1 -yp? 1 -ypP
For mixtures, it holds that
2, —_ + 2
pv. 1 rs qs*(1 — 2v) + Srsv @7

= +
NkT 1 -v p(l — v)? * 3pl — v)®

where the variables r, s, g, and v have the same meaning as in Equation
20. Relatively simple expressions for g* and g&' are available, also (14).

Naumann et al. (16) began with the lower limit of the Kihara—Miyoshi
inequality and introduced a further geometric parameter, 7

T = 4wRYS, (28)

Their equation of state, obtained in a semiempirical way (16, 17) is

pv. 1 + 3ay
NKT 1-y (1 - y)?
+ 1.5a%(1/7 + 1)y* — 0.502(5 — 37y + Ta*(l/r — Ly*
a-ypP

(29)

For 7 = 1 the expression reduces to Equation 18. The corresponding
third and fourth virial coefficients from Equation 29 are

Bf =1+ 6a + L5027 + 1) (30)
B¥ =1+ 9a + o6/t + 2)
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Equation 29 gives theoretical values of the compressibility factor of hard
spherocylinders in good agreement with pseudoexperimental results (16)
and comparable with predictions from Equations 22 or 26. The intro-
duction of the parameter 7 is, however, theoretically unjustified (within
the scaled particle theory), and the known data for higher virial coeffi-
cients and the compressibility factors for different hard-body systems do
not indicate the necessity of introducing a further nonsphericity param-
eter in addition to a.

Equations 18 and 26 fulfill well our claims for the sound theoretical
basis and sufficient generality of the hard-body equations of state. In the
following section their applicability is shown.

Virial Coefficients and Compressibility Factor for Hard Convex
Bodies

In order to test the equation of state of hard convex bodies, Equation
26, we shall first consider the values of the higher virial coefficients.
Computer data of virial coefficients for hard convex body systems are
relatively abundant; in addition to data for prolate spherocylinders, known
in a broad range of length-to-breadth ratios, values for several kinds of
oblate spherocylinders and ellipsoids of revolution are at our disposal.
Thus, the most important types of shape (from the point of view of
structures of real molecules) are included and the comparison of theo-
retical results with pseudoexperimental data gives a stringent test of the
approximations used in Equation 25. Moreover, this test can reveal any
dependence on another parameter by comparing the virial coefficient
data for convex bodies that have different shapes but the same value of
the nonsphericity parameter a.

Hard prolate spherocylinders—convex bodies parallel to rods—were
studied most thoroughly (18-21). Their geometry can be suitably char-
acterized by the length-to-breadth ratio, vy. If ¢/2 is the thickness, it
holds that

R, = (y + 1o/4
S; = ymo? (31)
V.= 3y — )ma¥/12
and
a =y + /@y — 1) (32)

Oblate spherocylinders—convex bodies parallel to circles—can be
characterized by the ratio of the basic circle diameter d and the breadth
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o, ® = d/o (22). Then
R, = (m®/4 + 1)o/2
S, = (®* + wd + 2)me¥2 (33)
V, = (602 + 3nd + 4)wo®/24

and

o= (m® + 4)(®%2 + 7d + 2) (34)
T (1292 + 67D + 8)

Ellipsoids of revolution were studied by Freasier and Bearman (23);
the characteristic parameters are length of axis of revolution, @, and length
of the other axis, b; then m = b/a. The geometric functionals can be
determined from the relationships

R, = [m + arc cos m/\V/1 — m?] a/4 for m<1
R, =[m+Inm+ Vm?2 — 1))\/m2 — 1]a/4 for m>1

1

m2 1+ m a?

S, = q-r[l + \/1_—mzln< - )]—2- for m<1 (35
m? 1) | a®

S, = 1'r|:1 + ﬁarc cos (;)] 3 for m>1

V, = mma®/6

In Table I a comparison of theoretical and pseudoexperimental val-
ues of the third, fourth, and fifth virial coefficients is given for the above
three types of hard convex bodies (the second virial is known exactly).
The standard errors of the pseudoexperimental data are estimated to be
0.2-0.4% for the third, 1-2% for the fourth, and 4% for the fifth virial
coefficient. It is obvious that agreement is very good in all three cases.
For given values of a, no dependence on any further parameter can be
traced.

Simulation studies of hard convex bodies have been performed to
date only in systems of hard prolate spherocylinders (24-29). In Table
IT the values of the compressibility factor calculated from Equation 26
for the spherocylinders of y = 2 and y = 3 are compared with the
simulation data. Full agreement within the estimated errors is found in
all cases except for the highest value of the packing fraction and y = 3,
where the difference exceeds by 0.5% the estimated error of this ex-
perimental point.
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Table I. Viral Coefficients of Hard Convex Bodies
B} B} B}

Prolate Spherocylinders
Monte Monte Monte
v o Theory Carlo Theory Carlo Theory Carlo Refs.

1.0 1.00 10.00 10.00 18.00 18.36 28.00 28.31 20

1.2 1.02 10.19 10.19 18.31 19.47 28.42 — 21

14 105 10.61 10.64 19.01 19.26 29.35 — 18

1.6 1.09 11.16 11.30 19.92 21.35 30.56 — 21

1.8 1.15 11.81 11.84 20.97 21.50 31.93 — 18

2.0 120 1252 12.3¢ 22.12 22.34 33.40 319 10,19
12.54 22.50 20

2.5 135 1451 1430 2528 26.06 3735 — 10,19
3.0 150 16.75 16.20 28.75 28.00 41.50 36.80 10, 19, 20

16.27 29.15
40 1.82 21.83 20.43 36.37 31.90 50.09 39.70 19, 20
20.48
Oblate Spherocylinders
Monte Monte Monte
(o} a Theory Carlo Theory Carlo Theory Carlo
1.0 1.13 11.60 11.66 20.63 21.28 31.48 — 22
1.5 1.23 12,97 13.02 22.85 23.49 34.32 — 22
2.0 1.35 1454 14.62 2532 26.15 37.40 — 22
3.0 1.59 18.11 18.03 30.82 30.14 43.91 — 22
Ellipsoids of Revolution
Monte Monte Monte

a/b o Theory Carlo Theory Carlo Theory Carlo

1.5 106 10.72 10.69 19.20 19.73 29.61 29.88 23
2.0 118 1225 12.09 21.69 21.57 32.85 31.87 23
067 1.06 10.72 10.73 19.20 19.62 29.61 29.51 23
050 1.18 12.25 12.30 21.69 22.81 32.85 33.18 23

Using the Monte Carlo method, studies have been performed of
mixtures of hard convex bodies, i.e., the system of mixed hard spheres
and prolate spherocylinders (y = 2). Monson and Rigby (30) considered
two equimolar mixtures. In the first case (mixture A) the thickness of the
spherocylinder was equal to the radius of the sphere. In the second case
(mixture B) both the hard bodies possessed the same volume. In a sim-
ulation study (31) the system corresponding to mixture A was followed
at three concentrations (mixture C).

It is obvious from Table III that Equation 27 yields the compress-
ibility factor of mixtures in full accord with Monte Carlo data. Good
agreement of the theoretical and pseudoexperimental values of the av-
erage correlation functions at contact was also found (14).
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Table II. Compressibility Factor of Hard Prolate Spherocylinders
vy=2 vy=3
Monte Monte
y  Theory Carlo Theory Carlo Refs.
0.20 2.67 2.65%+0.02(2.69) 3.09 3.07£0.03 24, 27
0.30 4.56 4.48=0.07 5.48 5.40+0.10 24
0.40 8.08 8.20%+0.10(8.10) 9.89 9.60+0.10 24, 25, 27
0.45* 10.71 10.74+0.24 13.44 13.00=0.16 25, 28
0.50 15.20 15.20=0.20 18.50 18.00=0.40 24, 25

¢ Rounded value for y = 2.

Virial Coefficients and Compressibility Factor of Fused Hard

Spheres

A considerable number of computer studies has been devoted to
ISM systems with soft-sphere or Lennard-Jones interactions. From HISM
the linear models have been considered. Virial coefficients are available
for hard homonuclear and heteronuclear dumbbells (21, 32-36). The hard

Table III. Compressibility Factor of Mixtures of Hard Spheres (1) and
Hard Prolate Spherocylinders (2) of y = 2

Mixture A Mixture B
Monte Monte
v Theory Carlo® Theory Carlo®
0.20 2.51 2.50+0.06 2.53 2.52+0.04
0.30 4.19 4.10*+0.05 4.26 4.20+0.05
0.40 7.36 7.31+0.07 7.49 7.39+0.06
0.45 9.97 9.87+0.10 10.16 10.22+0.10
Monte
v Theory Carlo®

Mixture C, x; = 0.20
0.33 5.13 5.17+0.10
0.44 9.68 9.89+0.20
0.50 14.43 14.34 +0.40

Mixture C, x; = 0.50
0.31 4.49 4.52+0.08
0.42 8.11 8.07+0.15
0.48 11.74 11.59+0.23

Mixture C, x; = 0.71
0.30 4.02 4.03+0.07
0.40 6.96 7.02+0.12
0.45 9.81 9.70+0.21

¢ From Ref. 30.
b From Refs. 11, 31.



Published on June 1, 1983 on http://pubs.acs.org | doi: 10.1021/ba-1983-0204.ch008

184 MOLECULAR-BASED STUDY OF FLUIDS

homonuclear dumbbells are characterized by a reduced length I* = Lio;
a volume and a surface area of hard dumbbells can be calculated from
the relationships

3 1
ZJx — Z ]%3
Vv, 1'r<1 + 2l 2l )03/6

(36a)
S, = w(l + [*)a?
while in a method consistent with Equation 18
R, = (2 + *)o/4 (36b)
then
a =1+ ¥ + ¥/ + 3% — [*) (37)

Values of the second to fourth virial coefficients of hard homonuclear
dumbbells are compared with pseudoexperimental data in the first part
of Table IV. In the lower part of the table, virial coefficients of hetero-
nuclear dumbbells are listed. In addition to I* = L/c,, these bodies are
characterized by the ratio o,/a, = <. For the first three models of Table
IV, v equals 1.5; for the fourth, vy equals 1.8; and in the last case, vy
equals 1.2.

Table IV. Virial Coefficients of Fused Hard-Sphere Bodies

B} B} B}
Exact*
(Monte Monte Monte

1* a Theory Carlo) Theory Carlo Theory Carlo Refs.

Homonuclear Dumbbells
0.2 1.02 4.06 4.06 10.22 10.22 18.47 19.43 21
0.4 1.07 4.21 4.21 10.87 10.94 19.83 20.35 18
0.6 1.16 4.48 4.48 12.01 12.11 22.22 22.98 18
0.8 1.30 4.89 4.87 13.82 14.04 26.11 27.61 21
1.0 1.50 5.50 5.44 16.75 16.93 32.50 34.88 33
Heteronuclear Dumbbells
0.75 1.11 4.33 4.40(4.32) 11.37 11.48 20.88 21.61 38
0.5 1.03 4.10 4.13(4.10) 10.40 10.40 18.84 19.31 38
1.0 1.23 4.69 4.80(4.65 12.93 12.92 24.21 24.80 38
(4.25)
(4.35)

0.9 1.09 428 4.34(4.25 11.14 11.12 2040 20.91 38
0.6 112 437 443(4.35) 11.50 11.51 21.16 21.70 38

¢ From Ref. 37.
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Defining (39) the quantity a

we can write

Nonspherical Hard-Body Systems

V, =
1 1
= - — 2
S, ﬂ[y(zy + a+> + <2 + a_)](r
gii=l['y -1+ I*+ (y - 14l* + 2o

4

wll + v° + 3(y2a, + a_) — 4@ + a®)]o¥12

185

and the parameter a follows from Equation 15. The virial coefficients
calculated from the relationships in Equation 15 are again in very good
accord with the pseudoexperimental data.

In Table V theoretical values of the compressibility factor are com-
pared with data (40) for hard homonuclear dumbbells of [* equal to 0.6

Table V. Compressibility Factor of Hard Dumbbells

Homonuclear Dumbbells

I* =06 I*=1.0

Monte Monte

y Theory Carlo® Theory Carlo®

0.105 1.63 1.63 1.80 1.79

0.157 2.11 2.13 2.44 2.46

0.209 2.77 2.78 3.33 3.36

0.262 3.66 3.67 4.57 4.62

0.314 4.89 4.95 6.31 6.40

0.366 6.63 6.69 8.82 8.95

0.419 9.15 9.23 12.49 12.64

0.445 10.82 10.89 14.97 15.12

0.471 12.88 12.87 18.02 18.06

Heteronuclear Dumbbells at y = 0.4084

Monte Monte
Type v o Theory Carlo® Type Yy o Theory Carlo®
VI 0.5 1.30 9.74 10.0 IX 0.5 1.02 7.47 7.8
VII 0.5 1.17 8.65 8.9 X 0.67 1.31 9.88 10.1
VIII 0.5 1.08 7.92 8.3 XI 0.84 1.29 9.73 9.9

2 From Ref. 40.
b From Ref. 41.
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and I* equal to 1.0. The agreement in this case is perfect. Table V brings
also a comparison of theoretical and Monte Carlo values for heteronuclear
dumbells at a constant packing fraction y equal to 0.4084, and <y equal
to 0.5, 0.67, and 0.84. The final Monte Carlo data (41) are estimated to
be accurate only to within about 7%. It is obvious that the theoretical
compressibility factors agree well within this uncertainty with the pseu-
doexperimental compressibility factors. In addition to dumbells, hard
triatomics were studied (42). Three models (related to carbon disulfide)
were considered, all at y equal to 0.4697 and with the reduced distance
of the outside sites I* equal to 0.897. For the three models, the ratios
of diameters of the central and the outside spheres were 0.857,.1.0, and
1.2. The compressibility factors from Equation 18 are 14.36, 13.54, and
12.42. In comparison, the Monte Carlo data are 14.84, 12.84 and 12.88.

The present author has also performed simulations in systems of
linear and nonlinear triatomics (43). Both of the models considered are
formed by equal spheres with the central-to-outside site distance [*/2 =
0.5. In the case of linear triatomics the theoretical compressibility factor
12.69 at y = 0.4533 compares well with the pseudoexperimental one,
12.88. In the case of nonlinear (€ = m/2) triatomics at y = 0.3981, the
theoretical value is 8.19 and the Monte Carlo result is 8.34. Taking into
account the lower accuracy of simulation results for triatomics in com-
parison with dumbells, the agreement can again be considered to be
very good.

Conclusions

In summary, it can be said that the equations of state, Equations
18 and 26, and the corresponding expressions for mixtures, represent an
optimum description of the P-V-T behavior of fused hard-sphere and
hard convex body systems. Both these equations have a sound theoretical
background and reduce in the special case to the Carnahan—Starling
equation (44). They yield reliable prediction of virial coefficients, and
they are sufficiently general and accurate. Their extension to mixtures
possesses a simple form, and comparison with the available pseudoex-
perimental data reveals the reliability of these expressions in the de-
scription of the equilibrium behavior of mixtures. It is believed that these
equations will be useful in the characterization of the molecular fluid
behavior, just as the Carnahan—Starling equation proved to be for simple

fluids.
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A number of simple potential models have been tested for
their usefulness in the simulation of the condensed phases
of nitrogen, carbon dioxide, fluorine, and chlorine. The
properties studied systematically include the lattice energy
and lattice spacing of the crystal, the zone center lattice
vibrational frequencies, thermodynamic properties of the
liquid, and the temperature dependence of the second virial
coefficient. In particular cases, more stringent tests of an
intermolecular potential are also considered, involving the
orientational order of the a-phase and the cubic—tetragonal
phase transition in nitrogen, the librational Griineisen pa-
rameters, and the molecular tilts in the halogen crystals.
For nitrogen and carbon dioxide, models consisting of site—
site Lennard—Jones potentials plus point quadrupolar in-
teractions account moderately well for the properties listed
above. For fluorine and chlorine, these simple models are
adequate for the liquid and gas but fail to describe satis-
factorily the properties of the solid phase.

HE STUDY OF FLUIDS AND SOLIDS BY COMPUTER SIMULATION requires
T as basic input simple and realistic interaction potentials. Ideally, the
interaction potential should account for all observable properties. In
practice, sophisticated potential models that account explicitly for many-
body forces and include large numbers of interaction sites would be
difficult to construct and computationally very expensive to incorporate
into a simulation. The motivation is therefore strong for searching for
pairwise-additive effective potentials that can account for a wide range
of properties.
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For small, nonpolar molecules the most widely used models consist
of short-ranged, Lennard-Jones (usually 6-12) site-site potentials plus
electrostatic interactions based either on a point quadrupole moment or
a set of fractional point charges. We shall refer to such models as nL] + Q
or nLJ + g, respectively, where n denotes the number of sites. In some
cases, Buckingham (6-exponential) rather than Lennard—Jones potentials
have been used. Models of this general type have been used extensively
in lattice dynamics calculations (1-3) and in computer simulations of the
condensed phases (4-7). Until recently, however, little effort had been
made to obtain effective pair potentials that could account for a wide
range of experimental data of both solid and liquid. Reasonably successful
attempts to remedy this situation have been described for nitrogen and
carbon dioxide (8, 9). In this chapter we summarize and extend this work
and also discuss some recent results for fluorine and chlorine. We assess
the adequacy of models proposed by ourselves and others to account for
the structure and lattice energy of the solid, lattice vibrational frequen-
cies, thermodynamic properties of the liquid, and the second virial coef-
ficient of the gas (10).

Our attention is focused mainly on nL]J+Q and nLJ+q models,
with n equal to 2 or 3, though for nitrogen other semiempirical (11) and
ab initio (12, 13) potentials are also discussed. The nL]+Q (or nL] +q)
models are characterized by four parameters: the Lennard-Jones con-
stants € and o, the separation [ of the Lennard-Jones sites, and Q, the
quadrupole moment of the molecule.

Nitrogen and carbon dioxide are conveniently treated together, partly
because the low temperature solids have the same structure (cubic, space
group Pa3). This work is described in the first section below. The results
for fluorine and chlorine are then described, and a summary of our
conclusions follows.

Nitrogen and Carbon Dioxide

Potential Models. Numerous potential models have been pro-
posed both for nitrogen and for carbon dioxide. The characteristic pa-
rameters for a number of these models are given in Table 1. The potentials
listed in the table fall into two groups. The first consists, with the ex-
ception of one ab initio model, of empirical intermolecular potentials
fitted by workers other than ourselves to properties of the phases listed
in the “Source” column in Table I. The second group, MSKM for nitrogen
and the three MSM models for carbon dioxide, were constructed by us
to fit as closely as possible the lattice parameter a of the Pa3 crystal, the
lattice energy W, at 0 K, and the second virial coefficient at a low tem-
perature (75 K for nitrogen, 260 K for carbon dioxide). The experimental
values of W, were estimated from the measured enthalpies of sublima-
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tion. In the fit, account was taken of the zero-point energy and its var-
iation with volume. In cases where this was not done, the potential is
described in the tables as fitted to the lattice rather than to the solid.

Table I includes six models proposed by others for nitrogen. Of
these, the only one that ignores the quadrupole moment of the molecule,
and that hence may be termed a 2LJ model, is the potential RGA (14).
In this case, the parameters were obtained by requiring the spherically
averaged potential to reduce to the isotropic Lennard—Jones potential
derived from gas phase properties. Our own attempts to construct a 2LJ
model led to essentially the same parameter values as those in model
RGA, which are also close to those deduced by Huler and Zunger (15)
from a detailed analysis of static and dynamic properties of the ordered
solid phases (o and vy). Many other 2LJ models have been put forward
as descriptive of nitrogen (16), and in spite of their very different origins,
the parameter values proposed are remarkably similar. We find, how-
ever, that 2LJ models do not successfully reproduce the range of prop-
erties mentioned above. In addition, it is known from lattice dynamics
calculations that 2L] models give rise to lattice mode instabilities in the
y-phase (17). It is also known from molecular dynamics simulations (8)
that they lead to much too great a degree of orientational disorder in the
cubic a-phase. For these reasons, we make no comparison here of their
merits; model RGA is included only as an example of this class of po-
tentials.

Model CP (the authors’ quadrupolar model) (I18) was derived by
fitting to the experimental internal energy and equation of state of the
liquid. Models KD (19) and TC (the authors’ model A) (20) were fitted
to the structure and lattice energy of the Pa3 crystal (the a-phase) and
to the measured lattice vibrational frequencies. In the case of model KD,
the fitted experimental quantities included the intensities of peaks in the
inelastic neutron scattering spectrum. The special feature of these two
models, in contrast to model CP, for example, is that the site-site sep-
aration is about 20% shorter than the internuclear distance. However,
the larger values obtained for o indicate that the overall length of the
molecule is comparable with that deduced from the 0.002 electron den-
sity contour (2I). The results for model RG, and also for models
MSM-A2 and MSM-C for carbon dioxide, show that the introduction of
a third site at the bond center is similar in effect to a shortening of the
site—site separation. The parameters of functions of the exponential type
characterizing the short range repulsions in the several versions of model
RG (11) were obtained by fitting to the experimental PV isotherm from
0 to 3.6 kbar at 4.2 K and to molecular beam data, in addition to the
quantities a and W,

Model BV (the authors’ model 1’, for which the repulsive and at-
tractive sites are coincident with the nuclei) (12), was obtained by fitting
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the results of ab initio calculations to a two-site Buckingham potential
supplemented by point charge interactions.

In the case of carbon dioxide, model STS (6) was parameterized to
liquid-state thermodynamic properties, and model MSB (10) to the sec-
ond virial coefficient and static lattice data.

Thermodynamic Properties of the Liquid. The calculated values
of W, are given in Table 1. Table II contains some results for the con-
figurational internal energy U and pressure P obtained by molecular
dynamics simulations of the two liquids. Overall, the agreement between
calculation and experiment is consistent with the way in which the po-
tentials were parameterized. For example, models RGA and BV were
not based on any experimental solid-state data and the results for W, are
accordingly poor. Models CP (for nitrogen) and STS (for carbon dioxide)
were both derived by fitting to liquid state properties; the fact that model
STS is the less successful is not surprising, given the absence of any
quadrupolar interaction. For nitrogen, liquid phase simulations have also
been reported for one of the RG models (RG-5) (see the discussion in
Reference 8) and for the ab initio potential of Jonsson et al. (13), with
results that are about as good as those obtained for model CP.

The main conclusion to be drawn is the unsurprising one that cal-
culation of thermodynamic properties is not a sensitive test of an inter-
molecular potential. However, it is notable that all the models of Table
I that were fitted to solid-state properties work well for the liquid. How-
ever, the converse is not true, as can be seen in the results for model
CP and, in particular, model STS. These are not isolated examples, and
a body of evidence now exists that suggests that careful parameterization
to the energy and structure of molecular crystals can be expected to yield
a satisfactory potential for the liquid, but that the opposite route is less
likely to be successful.

Lattice Vibrational Frequencies. In previous articles (8, 9) we
have discussed the results of lattice dynamics calculations in the Pa3
structure for several of the models listed in Table I. Here we focus
attention on the seven zone center modes, of which four are translational
and three are librational in character; these are the modes for which
most experimental information is available. Our earlier work has shown
that all potentials considered give generally satisfactory results for the
translational modes. This implies that it is relatively easy to model cor-
rectly the isotropic part of the intermolecular potential. However, the
librational modes, all of which are Raman active, are sensitive to the
anisotropy of the potential and are correspondingly more difficult to fit.
Results for the librational modes are given in Table III. For carbon
dioxide, the best agreement with experiment is provided by model MSM-
C, but it is reasonably good even for those potentials (MSB and STS)
that were parameterized without appeal to any solid-state data. For ni-
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trogen, on the other hand, the situation is much less satisfactory. The
one 2LJ model considered (RGA) yields much too low a frequency for
the upper T, mode, but the quadrupolar models, apart from KD and
TC, all seriously overestimate the librational frequencies. In models KD
and TC, the fit to the frequencies was achieved by reducing both the
site—site separation and the quadrupole moment of the molecule. This
has the consequence, as computer simulations have shown (8), that the
molecules become orientationally disordered at temperatures in the re-
gion of 30 K. Experimentally, there is a transition at 35.6 K to a hexagonal
close-packed structure, the B-phase, in which the molecules undergo
rotational diffusion. In the a-phase, however, although there is a large
amplitude librational motion, orientational order persists up to the a—
transition temperature. The reduction of the effective bond length in
models KD and TC therefore succeeds in resolving the immediate prob-
lem, at the expense of introducing others.

The reason for the difficulty in fitting the librational frequencies in
nitrogen is at present unclear, but it may stem at least in part from the
harmonic approximation used in the lattice dynamics calculations. Some
evidence that this is so is given by the fact that there is apparently no
similar problem for carbon dioxide, in which the librational amplitude
is much smaller than in nitrogen. Estimates (11, 25-27) of the anharmonic
corrections for certain models are included in Table III. The general
effect is to improve the agreement with experiment. However, there are
discrepancies even in sign between the corrections calculated for different
models by different groups, and more work on this interesting question
is clearly needed.

Prediction of the volume dependence of the lattice frequencies,
characterized by the Griineisen parameters (d In v,/d In V), would pro-
vide a good test of a potential model if extensive and accurate experi-
mental data were available. Unfortunately, this is not the case at present.
There have been suggestions in the past that a change from a Lennard-
Jones 6-12 to a 6-9 potential would lead to improved agreement with the
available experimental data on the Griineisen parameters. While this
may be true for a 2L] model (22), there appears to be no case for such
a change when allowance is made for quadrupolar interactions. For car-
bon dioxide, model MSM-C gives results in good agreement with the
recently measured (23) Griineisen parameters for the zone center libra-
tional modes. In the case of nitrogen (24), the Grineisen parameters are
well reproduced by the quadrupolar models of Table I. As we have
already discussed, an acceptable model of nitrogen should also account
for the persistence of orientational order in the a-phase up to the tem-
perature of the plastic crystal transition. In this respect, model MSKM
is much superior to either the KD or TC potentials (8). Overall, we
consider MSKM to be the best of the models we have constructed.
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Second Virial Coefficients. Work reported earlier for nitrogen and
carbon dioxide (8, 9) showed that models that are reasonably satisfactory
for the liquid and solid phases also give good results for the second virial
coefficient, at least at high temperatures where the behavior is deter-
mined by the size of the molecular hard core. At low temperatures, there
are some deviations; the calculated values fall typically about 5% above
the experimental ones. Since the second virial coefficient is a pair prop-
erty, the discrepancies at low temperatures provide some measure of
the importance of many-body forces in the condensed phases, to which
the potentials have been tailored. Monson and Rigby (28, 29) have cal-
culated that the dominant three-body interaction contributes about 6%
to the static lattice energy of nitrogen and carbon dioxide, a percentage
that is comparable with that found for argon (30).

Although the calculation of second virial coefficients provides a useful
check, in practice it may be of limited value in parameterizing a model.
The problem lies in the fact that the anisotropy of the potential, partic-
ularly of the electrostatic interactions, has its effect mainly at very low
temperatures. This is the region where experimental data on molecular
systems are scarcest and, in general, least reliable.

The Gamma Phase of Nitrogen. At least four distinct crystalline
forms of nitrogen are known (16). This poses a considerable challenge in
potential modeling, since a satisfactory model should be capable of ex-
plaining the variety of behavior observed in different phases. For this
reason, there is interest in seeing how far models fitted to properties of
the a-phase are able to describe the structure and dynamics of the or-
dered +y-phase. This has a tetragonal structure and is stable at pressures
greater than about 3.5 kbar; the a—B—y triple point is at P = 4.6 kbar,
T = 46 K.

In Table IV we list the y-phase zone center frequencies for models
that, apart from TC-B, have already been considered in the discussion
of the a-phase. To reproduce the librational frequencies in the y-phase,
Thiéry and Chandrasekharan (20) found it necessary to increase either
the site—site separation or the quadrupole moment adopted in their model
A (model TC in Table I, model TC-A in Table IV); for model TC-B, they
chose e/k = 38.7K, o = 3.300 A, [ = 1.098 A and Q = —0.90 DA.
Thiéry and Chandrasekharan (20) conclude that it is not possible to fit
the librational frequencies in both phases with a single 2LJ + Q model.
They do show that if allowance is made for anharmonic corrections along
the lines of Raich and Gillis (11), model TC-A gives results in satisfactory
agreement with experiment. However, model TC-A was parameterized
in part by fitting to the frequencies of the a-phase without regard for
anharmonicity, so this result may be fortuitous. Until the reliability of
different anharmonic corrections is established, it will be difficult to assess
the merits of models either for the a- or the y-phase.
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Table IV shows that most of the models considered give good agree-
ment with a recent infrared measurement of the translational E, fre-
quency (31). This again suggests that the models describe the isotropic
part of the potential reasonably well.

Filippini et al. (17) have pointed out that although it is possible to
find a 2LJ model that predicts correctly the zone center frequencies,
imaginary frequencies are found elsewhere in the zone, showing the y-
phase to be unstable in such a model. They were able to eliminate this
difficulty empirically by making the repulsive term of the 2L] potential
anisotropic. Even with this refinement, however, it did not prove pos-
sible to explain the occurrence of the a—y transition. Though we have
not found any such instabilities for model MSKM (32), modification of
the potential is again necessary in order to describe the a—y transition.
The same appears to be true of the three-center models of Raich and
Gillis (11) and of the Kihara type of potential (3).

Fluorine and Chlorine

Molecular fluorine and chlorine differ in many respects from nitro-
gen and carbon dioxide, but from the point of view of modeling them
by simple potentials, two facts in particular should be noted: First, the
quadrupole moments of fluorine and chlorine are positive, whereas those
of nitrogen and carbon dioxide are negative. This reflects the fact that
the electron distribution is very different in the two cases. Second, the
stable, low temperature phases of the halogens are not cubic; chlorine
crystallizes in the orthorhombic Cmca (33, 34) structure and a-fluorine
is monoclinic (35), C2/c or C2/m. Molecules are tilted in opposite direc-
tions in alternate layers, towards nearest neighbors in Cmca and C2/c,
or next-nearest neighbors in C2/m. The differences in electron distri-
bution and in crystal structure must, of course, be related.

English and Venables (EV) (36) have made a thorough study of the
most stable crystal structures for a series of diatomic molecular solids
described by models of both the 2LJ and 2LJ + Q type. We have included
their potentials in the present work, partly as a check on our own cal-
culations. Singer et al. (6) have modeled the interactions in fluorine and
chlorine by 2LJ potentials (STS) and used these in molecular dynamics
simulations. In addition, they have reported results for liquid bromine.
Because chlorine has a large quadrupolar moment (37, 38), we have also
developed (39) a 2LJ + Q model by fitting to thermodynamic properties
of the liquid model MS. Kobashi and Klein (40) have used a 2L]J+q
model in a study of the lattice frequencies of a-fluorine (model KK).

We have used the models listed above as starting points in the search
for effective pair potentials. It turns out that none of the models is able
to account for all the main features of the low-temperature solid, namely
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the lattice symmetry, unit cell dimensions, molecular tilts and lattice
frequencies. Our conclusions are similar to those of English and Venables
(36). Details of the potentials are given in Table V; in the case of model
KK, we have made the calculations for a 2LJ + Q potential rather than
the published (40) 2LJ + g version.

The difficulties encountered in modeling noncubic systems are high-
lighted by the results given in Table VI. The table contains results ob-
tained by unconstrained minimization of the energy, and by constraining
either the cell parameters a, b, ¢ and the angle between the a and ¢ axes
(the monoclinic angle B) or the molecular tilts to have the experimental
values. The constraints lead to results that are of interest in their own
right; they are also necessary if the lattice dynamics calculations are to
be performed with the correct lattice structure.

The results for fluorine are shown in Table VI. The 2LJ model STS,
which gives good results for liquid state properties and for the second
virial coeflicient, correctly stabilizes the monoclinic structure and gives
lattice constants which differ by 5-10% from the experimental values.
The calculated lattice energy is also in good agreement with experiment,
but the molecular tilts are too large and the lattice frequencies (40) (not
shown) are also poor. Model KK gives better results for the lattice fre-
quencies, but the molecular tilts are even larger than for model STS.
With constraints on the molecular tilts, model STS gives a good value
for the lattice energy and lattice constants with errors of 5-10% for C2/m,
and gives an equally accurate value for W, and about 5% errors in the
lattice constants for C2/c. The tilt-constrained model KK is marginally
better for C2/c; it gives even better lattice constants but a poor lattice
energy for C2/m. If constraints are placed on the cell dimensions a, b,
and ¢, neither the lattice energy nor the molecular tilts are satisfactorily
predicted by either model. Both potentials give good results for the
monoclinic angle, except in the case of unconstrained minimization for
the C2/m structure with model KK. The results for the EV potentials
are poor, but they show the same general trend: a 2LJ interaction sta-
bilizes the monoclinic structures, whereas a 2L] 4+ Q model favors the
Pa3 structure.

The results reported for chlorine in Table VI are even worse. Un-
constrained minimization does not lead to the correct orthorhombic Cmca
structure for any model, as would be expected on the basis of the results
for fluorine. Nor do constrained minimizations lead to satisfactory results
for the lattice energy, cell dimensions, or molecular tilts. In addition,
one of the translational lattice mode frequencies is imaginary for both
the STS and MS models. The only feature which is mildly encouraging
is the fact that models STS and MS both yield satisfactory results for
liquid-state thermodynamic properties and for the temperature depend-
ence of the second virial coefficient.
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Discussion

Our work indicates that it is advantageous to base the search for
effective condensed-phase potentials on the properties of the low tem-
perature solid. This is economical, because much can be done through
minimization of the lattice energy and by lattice dynamics calculations
before resorting to computationally expensive simulations. More impor-
tant is the fact that potentials that reproduce the low temperature crystal
properties, at least of the simpler molecular systems, work well for the
liquid, while the converse is not, in general, true. This obviously implies
that certain properties of the solid state are much more sensitive to details
of the potential than is the case in the liquid, where substantial averaging
occurs, and that the overall effect of many-body forces is similar in solid
and liquid phases. Calculations of the second virial coefficient are less
useful, but these also are cheap and easy to execute.

Models of the 2LJ+ Q (or 2L] + q) type give a fair description of a
wide range of properties of both nitrogen and carbon dioxide, and are
certainly superior to the 2LJ type. A main reason for their success is that
they correctly stabilize the Pa3 structure found experimentally in these
systems. The difficulties inherent in the use of such simple models be-
come apparent when attention is turned to the noncubic structures. They
are already to be seen in the case of y-nitrogen, but are much more
evident for the halogens; solid chlorine poses a particularly severe prob-
lem. Suggestions have been made in the past that some form of “chem-
ical” bonding characterizes the halogen crystals (36, 41), but this remains
to be convincingly demonstrated. A possible refinement of the simple
models is the introduction of anisotropic dispersion (AD) forces between
molecular centers. The basis for this suggestion lies in lattice dynamics
calculations for solid oxygen and fluorine (2, 40). In the case of chlorine,
the AD +Q type of model has been shown (32) to destabilize the Pa3
lattice relative to the observed Cmca structure, but the problem of un-
stable lattice modes has not yet been overcome. Inclusion of AD forces
has also not been able to explain the a—y transition in nitrogen (42, 32).
Solid acetylene has a low-temperature crystal structure similar to that of
chlorine; it is significant that attempts to develop a simple potential model
for acetylene (52) have so far also been unsuccessful.

We have concentrated here on the empirical route to potential mod-
eling. This is inevitable, since the construction of accurate pair potentials
from ab initio potential energy surfaces is for the present an unrealistic
goal for the type of system we have discussed. However, such calculations
may be helpful in suggesting realistic functional forms (12, 13, 50). Both
points are well illustrated by the recent work of Berns and van der Avoird
on nitrogen (12). They fitted two models to the calculated potential energy
surface; model I contained four and model I’ only two short-range in-
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teraction sites, with the electrostatic interactions represented in each
case by four point charges per molecule. Model I was found to give a
better fit both to the potential energy surface (12) and to the experimental
properties (27, 51) of nitrogen, but neither model is as satisfactory as the
empirical potentials KD and MSKM.

The results described here for nitrogen and carbon dioxide and
elsewhere (7) for carbon disulfide probably bring us close to the limits
of what can be achieved with nLJ+ Q or similar models. Rather than
stressing their deficiencies, it is worth pointing out that these crude
representations of the intermolecular potential are in many respects sur-
prisingly successful. However, even for a molecule as apparently simple
as carbon tetrachloride, recent calculations (53) based on 5L] models
have shown how difficult it is to account for details of the structure and
dynamics of either liquid or solid phase.

Further advances could well rest on the use of more realistic de-
scriptions of the electrostatic interactions. An interesting scheme whereby
this could be achieved has recently been described by Stone (54). It
should be noted that in several of the models detailed in Table I, either
Q or I, or both, are treated as adjustable parameters. Though there is
some theoretical justification for this, the physical meaning of an effective
quadrupole moment or an effective bondlength is obscure. The use of
such concepts has an empirical value, but it may well not be necessary
if more details of the molecular charge distribution were to be incor-
porated into the potential model.

Key to Models Discussed in Text

BV = Ref. 12

Cp = Ref. 5

EV = Ref. 36

KD = Ref. 19

KK = Ref. 40

MS = Ref. 39

MSB = Ref. 10

MSKM = Ref. 8

MSM = Ref. 9

RG = Ref. 11

RGA = Ref. 14

STS = Ref. 6

TC = Ref. 20

nLJ = n-site Lennard—Jones potential
nL] + Q = As nLJ, with point quadrupole
nL] + q = As nL], with point fractional charges
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The effects of molecular anisotropy considered in this chap-
ter are the molecular shape (the anisotropy parameter being
the elongation of two-center Lennard—Jones fluids), the di-
pole moment and the quadrupole moment. An attempt is
made to scale density and temperature of two-center Len-
nard—Jones fluids in such a way that a comparison with the
law of corresponding states is possible. With respect to
electric moments, it is observed that their effect on ther-
modynamic and structural properties is less on two-center
Lennard-Jones fluids than on spherical fluids. This is in-
vestigated in some detail .

LTHOUGH CONSIDERABLE PROGRESS has been achieved in under-
A standing the behavior of molecular liquids (1-4), we are still far from
having a complete picture of the way in which the molecular shape and
electric moments contribute to thermodynamic and structural properties.
For example, our understanding of the deviations from the law of cor-
responding states has not improved since Rowlinson’s work in 1954 (5).

One important difficulty is that of scaling temperature and density
when comparing experimental and theoretical results. While theoreti-
cians use the characteristic parameters of the pair potential for scaling
(e.g., the depth of the potential € and the zero potential separation o),
experimentalists use critical data. At present a sound correlation between
these different approaches exists only for one-center Lennard-Jones lig-
uids. In the first section of this chapter we suggest ways of extending
this correlation to two-center Lennard—Jones liquids.

The next section of this chapter gives a critical review of a
computationally fast thermodynamic perturbation theory treatment of
two-center Lennard-Jones liquids. While the Helmholtz energies are
predicted accurately, some details of the structural properties are still
missing. The subsequent two sections are devoted to the problem of
treating molecules with electric moments within the framework of
perturbation theory. The treatment given is in some respects preliminary

! Current address: University of Maine, Department of Chemistry, Orono, ME 04469
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and the results, for the moment, qualitative. One section deals with the
thermodynamic properties, while the final section deals with those
structural properties that are related to the static dielectric constant. We
hope that the approach outlined in these sections will form the basis for
future work on this topic.

Scaling Parameters for Two-Center Lennard—Jones Fluids

In this section we suggest methods of scaling densities in three
regions—regions of low densities, critical densities and liquid densities.
Low density scaling is considered first. Table I contains second virial
coefficients for various elongations L = l/o. This extends the table given
by Wojcik et al. (6) for a limited temperature range®. In Figure 1, these
results are plotted against the reduced temperature T/Tg, where Ty is
the Boyle temperature. It can be seen that the curves for higher elon-
gations become progressively steeper. A more detailed comparison is
provided by Figure 2, where the second virial coefficients are reduced
by an effective o3¢, in such a way that B/N,g3c,; is the same for all
elongations at T/Ty = 0.3.

This scaling produces a single curve for all elongations in the tem-
perature range 0.3 < T/Ty < 1.05; at lower temperatures the reduced
curves begin to spread (Figure 3), with the higher elongations having
the more negative second virial coefficients. This might at first suggest
that the parameters L and o could be determined separately from such
a plot of experimental second virial coefficients in the low temperature
region (T/Tz < 0.3). However, this is questionable for two reasons: (1)
low-temperature second virial coefficients are in most cases subject to
large errors and (2) the two-center Lennard—Jones model potential cannot
accurately reproduce the low-temperature second virial coefficients of
real substances. Returning to the problem of low density scaling, Table
II shows Ty ocy;/Tp 11y and Figure 4 shows 0,¢p;/0cyy using the values
for effective o obtained by equalizing the reduced second virial coeffi-
cients at T/Tz = 0.3. By chance, the plot in Figure 4 is almost a straight
line. Figure 4 shows a similar plot for hard dumbbells obtained using the
Boublik—Nezbeda equation of state (7), which gives

i 3 1
EWNAO'?CLJ = ENA Ty (1 + 5L - §L3>
3+ L2+ L)
. + l
(1 2 + 3L — L (L)
3 3 1
O'?CLJ/O'chJ =1+ §L + §L2 — §L3

2 Note added in proof: A table listing the second virial coefficients for the elongations
0.1, 0.2, 0.3, 0.4, 0.5, and 0.6 is contained in Maitland, G. C.; Rigby, M.; Smith, E. B.;
Wakeham, W.A. Intermolecular Forces, Clarendon Press, Oxford 1981.
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Table I. Reduced Second Virial Coefficients of Two-Center Lennard-
Jones Fluids

] T+ B . T B
T T% Ny T T% Ny
L = 0.3292 L = 0.505 (continued)
0.8 0.0908 —102.631  6.65 0.9989 ~0.003
0.9 0.1022  —71.376  6.6570 1.0000 0.000
1.0 0.1135  —53.365  6.9813 1.0500 0.140
1.95 0.1419  —31.189 7.0 1.0515 0.148
1.55 0.1759  —19.905
2.0 0.2270  —12.276 L =063
2.6430 0.3000 7404 075 0.1330  —70.251
3.0 0.3405 5871 1.0 0.1774  —33.674
5.9860 0.6000 1745 195 0.2217  —20.856
8.0 0.9081 —0.246 15 0.2661  —14.522
8.75 0.9932 ~0.017  1.6911 0.3000  —11.518
8.8100 1.0000 0.000 2.0 0.3548 —8.326
9.00 1.0216 0.050 2.5 0.4435 —5.305
9.9505 1.0500 0.113  2.81 0.4985 — 4108
3.3823 0.6000 —2.595

L = 0.505 351 0.6227 —2.339
0.8 0.1202  -71.037 595 0.9313 —0.263
0.9 0.1352  —51.371  5.62 0.9970 —0.011
1.0 0.1502  —39.503  5.6371 1.0000 0.000
11 0.1652  —31.692  5.9190 1.0500 0.166
1.2 0.1803  —26.213 6.0 1.0644 0.211
1.3 01953  —22.181
1.4 0.2103  —19.101 L =079
15 0.2953  —16.677 06 0.1271  —113.160
1.6 0.9403  —14724 07 0.1483  —69.746
1.7 0.2554  —13.118 0.8 0.1695  —48.612
1.8 0.2704  —1L775 0.9 0.1907  —36.501
1.9 0.2854  —10.637 1.0 0.2119  —98.773
1.9971 0.3000 —9.686 1.1 0.2330  —23.457
2.1 0.3155 ~8812  1.35 0.2860  —15.458
2.2 0.3305 ~8.071  1.4160 0.3000  —14.059
2.3 0.3455 —7417 15 0.3178  —12.543
2.4 0.3605 —6.835 175 0.3708 ~9.929
2.5 0.3755 —-6.316 2.0 0.4237 ~7.019
2.6 0.3906 _5.848  2.8321 0.6000 —3.097
2.7 0.4056 _542 4.0 0.8474 —0.775
3.98 0.4927 ~3.602 47901 1.0000 0.000
3.9992 0.6000 ~2.924 4755 1.0074 0.031
41 0.6159 —2069  4.9561 1.0500 0.197

6.5 0.9764 —0.074 5.0 1.0593 0.232
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02 0.5 —/lg 10

-20

Figure 1. The reduced second virial coefficients, B/N,a°, of one-center
and two-center Lennard—Jones fluids, plotted against the temperature re-
duced by the Boyle temperature, with the elongation L as parameter.
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Figure 2. Plot similar to Figure 1, but with an adjusted 0,c,; that equal-
izes all BIN,0%,c; at T/Ty = 0.3. The notation of the points corresponds
to Figure 1.
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Figure 3. Plot similar to Figure 2, for low values of T/T.
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Table I1. Boyle Temperatures and Calculated Critical Temperatures of
Two-Center Lennard-Jones Fluids Compared with the “United Atom”

L T§,2c1,1 / T§,1CL1 Tzzcu / T:T,ICL] (T::k.2CL] / szk,zcu)exp
0 1 1 1
0.329 0.644 0.676 0.633
0.505 0.487 0.524 0.525
0.630 0.412 0.451 0.450
0.437
0.793 0.345 0.386 0.358

Note: Critical temperatures are calculated by Equation 3 with @ = 0.15. Experimental
quantities are calculated from experimental critical temperatures of liquids for which
certain parameters L and ¢ have been used successfully.

The agreement between the 2CLJ curves and the hard dumbbell curves
can be improved for large L if the reduced second virial coefficients are
set equal at higher temperatures, T/T; = 0.6 or 1.05 rather than 0.3 (see
Figure 4), but no such improvement can be achieved at small L. This
small discrepancy between two-center Lennard-Jones fluids and hard
dumbbell fluids is probably related to the different temperature de-
pendence of the effective sphere radius for hard spheres and hard dumb-
bells. Figure 5 shows results obtained from the perturbation theory re-
viewed in the next section. We have not been able to scale these results.

Turning now to higher densities, we consider an approximate method
of scaling the critical densities based on the generalized van der Waals
model (8-10)

p _(_p _ap @
kaT kaT Hard Fluid NkT

0 9%
Applying the critical conditions a—p = 0 and 5% = 0, two equations for

the two unknown p, and A, = a/T, are obtained. Using the Carnahan—
Starling equation for the hard sphere fluid and the Boublik-Nezbeda
equation (7) for the hard dumbbell fluid, effective values for oyc;; can
be found, which when used to reduce the critical densities of Table III
make them all equal. Figure 4 shows the resulting values o,c;/0cy -
For densities in the liquid range, we have attempted to scale the
orthobaric density curve (effectively zero pressure densities) given by
Wojcik et al. (6) as a function of elongation. In order to bring them into
a form comparable to the law of corresponding states, we had to assume

T, (T
(F;)zcu - <TB)1CLJ X {1+ al) ®
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0.7 ! | | ! )
0 0.2 0.4 06 - 0.8 10

Figure 4. Various scalings for 0sc;;/0\c1y. Key: X——X, based on

equalization of reduced second virial coefficients at T/Tg = 0.3; . . . ,,

based on equalization of second virial coefficients at T/Ty = 0.6 ([]) and

T/Tg = 1.05 (A); 0——0, based on the relation between hard dumbbells

and hard spheres (Equation 1); ——— , based on critical densities derived

from a generalized van der Waals model (Equation 2); , based on
scaling orthobaric densities.

with a = 0.15 and the 0,¢;;/0,cy; scaling curve given in Figure 4. How-
ever, the results of this scaling, given in Figure 6, are not perfect. Though
we consider only the temperature range given by Wojcik et al. (6), some
of the curves show inconsistent behavior near the ends of the temperature
range. This behavior is such that it is difficult to explain on the basis of
errors in scaling approximations. Further, from the known deviations
from the law of corresponding states, the reduced density should be
highest for the largest elongation at low temperatures, which is not the
case so far. It could be achieved by making the parameter a in Equation
3 larger, which would in turn lead to a 0yc;;/0c1y curve a little lower
than that in Figure 4. It would be impossible, however, to make a so
large that the o,cp;/0¢;; curves would be coincident with the results
from lower densities. It is probable that the scaling procedures described
here require data of a higher accuracy than are presently available.
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Table III. Critical Densities of the Generalized van der Waals Model

L Ye

0.2 0.12929
0.4 0.12612
0.6 0.12116
0.8 0.11443
1.0 0.10577

Note: Critical densities are reduced by the volume of the hard body. Generalized
van der Waals model is given by Equation 2.

With the same scaling factors that we have applied for the orthobaric
densities; i.e., the values of T¥,c ;/T#,c; from Equation 3, shown in
Table II, and the curve of 0,c;;/0,c;; shown as the upper curve in Figure
4, we plot in Figure 7 the results of residual Helmholtz energies derived
by Fischer (11) on the basis of perturbation theory discussed below. As
Figure 7 shows, the scaling is quite good, but not perfect. Curves for
higher elongations are steeper at high densities, and the two lowest
curves are a bit too far apart. However, the results indicate that our
scaling factors are not far from the best values. We hope that this dis-
cussion, enabling better comparisons, will induce more accurate calcu-
lations on two-center Lennard—Jones fluids.

A short concluding remark should be made on the physical sense
of Equation 3. The work of Rowlinson (5) has clearly shown that T,/Tg
of anisotropic molecules is increased in comparison with the same ratio
for spherical molecules. Furthermore, for carbon dioxide, (T,/Tg)co, =
0.427 (12), which is 1.16 times that of argon, (T,/Tg),, = 0.367 (13). The
comparison with real substances is, of course, hindered partly by ex-
perimental uncertainties and partly by the unknown effects of the quad-
rupole moments of real substances. Therefore, it would be of much
interest to extend the computation of critical points from one-center (14)
to two-center Lennard-Jones liquids. Some work in this direction, al-
though primarily concerned with the coexistence line, has been reported
recently (15).

Perturbation Expansions for Two-Center Lennard—Jones
Liquids

The perturbation expansion is a generalization to molecular liquids
of the Weeks—Chandler-Andersen (WCA) (16) expansion for atomic lig-
uids. This procedure assumes that the structure of the dense liquid is
primarily determined by the repulsive forces. Those parts of the pair
potential responsible for repulsive forces are separated out and used as
a reference potential. The properties of the reference fluid interacting
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Figure 7. The residual Helmholtz energies of two-center Lennard—Jones

liquids plotted against reduced densities. Reduced temperatures are given

as parameter. Scaling of densities and temperatures as in Figure 6. Key:
--—-, L =0.329: , L =063 ———— L = 0.793.

by the reference potential are obtained as those of an equivalent hard-
body fluid. Earlier attempts (17-19) at a generalization of the WCA
approach were hindered by the lack of a suitable hard reference fluid.
Current work has been made possible by the advent of an analytic expres-
sion for the thermodynamic properties of hard convex bodies and hard
dumbbells (7). Two versions of the generalized WCA expansion for two-
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center Lennard—Jones liquids have been developed, one based on the
molecular potential (11, 20) and another on the site-site potential (21).
In the molecular approach two developments combine to increase the
speed of the calculations. The simplified solution of the Percus—Yevick
equation for potentials of finite range introduced by Baxter (22), and an
analytical expression for part of the Boltzmann factor of the hard dumbbell
potential (23).

In the treatment based upon the molecular potential, the first stage
is to perform the WCA division of the potential. This is carried out for
each orientation (), €, of the molecular pair, as illustrated in Figure 8.

Denoting the minimum coordinates at each orientation r,, (}, ,)
and u,,;,(Q2, Q,), we have then for the reference potential

uref(r’ Ql’ 92) = u(r) Ql) 92) — Upim T = T i (Q QZ) (4)
uref(r) Ql’ 92) =0 mm(Q Q )

and for the perturbation

upert<r’ Ql’ 92) - mm(Q Q ) r= rmin(Ql 92) (5)
upert(r) Ql’ 92) = u(r, Ql’ QZ) r> rmin<Ql 92)

The perturbation expansion leads to the following expression for the
Helmholtz energy of the molecular liquid

A= Aref + 21Tp ITZ dr <yrefe—B“ref upex't)!)LQ2 (6)

\ Uref( r Q1 2)
\ r
\

X/ upert(r Q1 Qz)

Figure 8. Decomposition of the molecular potential for different orien-
tations in the molecular perturbation theory (after Kohler, Ref. 4).
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where the brackets denote angle-averaging and y is the background cor-
relation function y = g/eP*. The next problem is to obtain the properties
of the reference fluid in terms of the adjusted hard-body fluid. In a fashion
completely analogous to the WCA treatment of atomic liquids to first
order we obtain,

A=Ay + 2mp f r2 dr (y (e Puret — e~ Pud)) (7)

where the subscript d refers to a hard dumbbell fluid with diameter d.
This implies that A, = A; when

Jrz dr (y e Pt — e=Pud)) = 0 8

and is the prescription for adjusting the hard dumbbell diameter ac-
cording to Kohler, Quirke, and Perram (20). The second hard dumbbell
parameter, the elongation, has been kept equal to the elongation [, of
the molecular liquid in all calculations to date. Now we come to a crucial
assumption, which makes Equations 6 and 8 tractable and which has
proved to be a reasonable approximation for some previous cases (24,
25), that the background correlation function is effectively angle inde-
pendent and equal to its angle average

y(r, Qy, Qo) = (y(r, Ly, Qy)) = Yooo (1) )

(For an early recognition of some cases where this approximation is poor,
see Ref. 26. A more thorough investigation of this approximation, giving
methods of improvement, is in progress by W. A. Steele.)

This assumption takes y, out of the angle-averaging bracket in Equa-
tion 8, y; = y,sbeing the background correlation function for an assembly
with interaction potential u(r) = —kT In (¢e~P“). The function y, is
obtained by solving the Percus—Yevick equation for u(r) (20), giving the
final result (cf Equation 6)

A=A, + 2mp f 2 dr y, (r) (Uper €7 P (10)

An alternative formulation is to expand the hard dumbbell Helmholtz
energy about that of the reference fluid (11)

Aa= A+ 2mp [ 12dr guals) (0 — o9 (1)
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with y,.; determined from (e ~#*=), which leads to

A= Ad + 21Tp J '.2 dr Yref (T) <upert e_B“ref> (12)

These two formulations give essentially the same results. Pressures cal-
culated by differentiating the theoretical Helmholtz energy have been
found to be in very good agreement with computer simulation results
for elongations from L = 0.33 (simulating nitrogen) to L = 0.793 (sim-
ulating carbon dioxide) (1I). A more direct test is the comparison of the
Helmbholtz energy with results from computer simulations. This has be-
come possible because fast and economical Monte Carlo methods (work-
ing with a small number of particles) have been developed for obtaining
differences in Helmholtz energy between a reference system and the
system in question (27, 28). In Table IV, we have collected all the results
for the Helmholtz energy of one state of the nitrogen simulation (10, 29,
30). This extends a similar table given previously (10). Different computer
methods, starting from different reference states, agree remarkably well
with each other and with results from different perturbation theories.
This good agreement extends also to other temperatures and densities
typical for simulated liquid nitrogen (30).

We have included in Table IV the results of the perturbation method
for two-center Lennard—Jones liquids developed by Tildesley (21) in the
site—site coordinate frame, which is again a generalization of the WCA
approach. Instead of dividing the full molecular potential at each ori-

Table IV. Configurational Helmholtz Energy of Simulated Liquid
Nitrogen at T* = 3.0, p* = 0.70

Method A*/NKT Reference Fluid Reference

Theory

Equation 10 —3.00 Hard dumbbell 20

Equation 12 —3.06 Hard dumbbell 11

Tildesley -3.11 Hard dumbbell 32
Simulation

Bennett (32)° —-3.07 Argon 10

Virtual Overlap (32) -3.03 Hard dumbbell 29

Marquee (32) —3.06 Hard dumbbell 29

Bennett (32) —3.09 Hard dumbbell 30

Marquee (32) —3.09 Hard dumbbell 30

Bennett (108) —3.04 Hard dumbbell 30

¢ Numbers in parentheses are the numbers of particles used in the computer simu-
lations.
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entation into repulsive and attractive components, the site—site potential
is divided as in the case of the spherical Lennard—Jones potential along
the site—site distances (R,;). Then the four site-site repulsive Lennard—
Jones potentials are recombined to produce the two-center Len-
nard-Jones reference system.

Equation 6 now separates into four equivalent terms, each contain-
ing one of the truncated site-site potentials and a y,.¢ (R,,) term. This is
the sitesite background correlation function defined by

Yref (Rss) = eBuref(RSS) Eref (Rss) (13)

The properties of the repulsive two-center Lennard—Jones reference fluid
are expressed, as before, in terms of a hard dumbbell fluid, the structure
of which is given by a solution of a RISM (reference interaction site
model) equation (2). This theory predicts the Helmholtz energy and site—
site distribution function for a two-center Lennard—Jones liquid. The
pressures obtained using this expansion are also in a good agreement
with simulation (21).

Considering now the structural predictions of the perturbation meth-
ods, the centers correlation functions predicted by the molecular ap-
proach (Equation 9)

Zooo () = Yooo (€™ B (14)

are in good agreement (11, 20) with the corresponding computer sim-
ulation results. However, higher spherical harmonic radial coefficients,
i.e., averages of g(12) over spherical harmonics (I # 0), which are cal-
culated using the assumption of an angle independent y

_ (em Py () Y™ ()
Bu'm (1) = (g~ Purety

(15)

are found to be erroneous at large separations (r). This is because the
reference potential is zero for all orientations r > [ + 2V%¢ and therefore
g(r, ,, Q,) is angle independent outside this range. The true g(r, Q,,
Q,) is angle dependent well beyond this separation. The short range
angle dependence of g(r, Q,, Q,) from Equation 15 means that it cannot
be used to calculate structural properties of the molecular liquid, such
as the sitesite correlation function, which even for small R,, depend on
the value of g(r, Q,, Q,) over a range of center—center separations r,
including those where the angle dependence is erroneous. The angle
dependence of g (12) can be somewhat improved by using the exponential
of the full molecular potential (25). The alternative formulation of the
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perturbation theory in terms of sitesite functions just discussed yields
2.(R,,) as its only structural prediction. These are in very good agreement
with simulation (21). Part of the angle dependence of g(12) can be
obtained from g (R,,) using simple site superposition approximations of
a type proposed recently (31). This enables properties such as the pres-
sure and mean squared torque, which depend upon integrals of the
angular variation of g(r, Q,, (,), to be calculated from a knowledge of
g.(R,,) alone. Not all the angular information can be reconstructed in
this manner, for example, the light scattering factor G, is not predicted
accurately (31).

In conclusion, the thermodynamic properties of two-center Len-
nard-Jones liquids are predicted accurately by generalizations of the
WCA perturbation expansion using a hard dumbbell reference fluid. The
structural predictions are limited to the unweighted angle average of the
angular correlation function g(r, Q,, Q,) in the coordinate frame em-
ployed. Using the molecular approach, we obtain the centers correlation
function, and using the site—site approach, the site-site correlation func-
tion. These structural predictions can be extended to include part, but
not all, of the angle dependence of g(12) by the use of further approx-
imations.

Thermodynamic Effects of Adding Electric Moments to Two-
Center Lennard—Jones Liquids

In this section we consider a rapid method of calculating the ther-
modynamic effects of electric moments, within the framework of the
perturbation theory outlined in the section above. The aim is to obtain
qualitative trends rather than accurate numerical results.

The problems involved in treating the long range multipole forces
have usually been considered for the case where the molecular shape is
spherical. Two perturbation expansions, relating the properties of the
fluid with electric moments to a reference fluid interacting with a spher-
ical potential, have been tried. The first (33, 34) obtains a reference
potential from the angle averaged potential

Uper (1) = (u (r, Qy, D)) (16)
The second (35-37) angle-averages the Boltzmann factor

g~ Bursil) = (g~ Bulr, 01.0) 17)
In both cases the resulting reference fluid has then to be treated by the

usual WCA (16) perturbation method. The reference potential of Equa-
tion 17, unlike that of Equation 16, contains contributions from the
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electric moments and is therefore somewhat closer to the full potential.
However, it still gives Helmholtz energies that are far too negative,
whereas Equation 16 gives Helmholtz energies that are far too positive.
The calculation of higher terms in the expansions requires a knowledge
of three-body and higher correlation functions of the reference fluid,
which have to be obtained from simulation or by superposition approx-
imation. For moderate to large electric moments, the expansion series
have very poor convergence. However, the expansion based on Equation
16, when combined with the use of a Padé approximant, works well (38,
39), except for short-range force cases noted in Ref. 34. The Padé ap-
proximant procedure is impractical for two-center Lennard—Jones liquids
and in this section we seek another method in the reference fluid. From
the methods discussed above we obtain an effective dipole potential of

%Bpf‘/ 76 for small values of p2r2. The same result can be obtained, within

the framework of the perturbation theory of the last section, by splitting
the dipole-dipole interaction into upp, for attractive pair configurations
and uppe~P“op for repulsive pair configurations. However, for small dis-
tances r, the Boltzmann factor e ~#“P? cuts out too much of the repulsive
potential, making the resulting reference potential too negative, in a
similar fashion to u,.; of Equation 17 or the first perturbation term of the
expansion based on Equation 16. It is then necessary to replace the
Boltzmann factor by a function that does not tend to zero for large values
of Bupp. A convenient choice is the Langevin function L(Bupp),
which is linear for small Bupp, and approaches a constant for large values
of Bupp. For spherical molecules with electric moments we have tried
the following reference potential,

Uper (1, 1, §d) = w1y (1) + upp e~ 32HERu0D) & (Buoo) (18)

The step function 6 (Bupp) indicates that the exponential is applied only
for positive values of Bupp. We have postponed a detailed analysis of
the perturbation expansion about the reference potential of Equation 18,
and have calculated the Helmholtz energies for the reference fluid only.
We compared these results with those for two-center Lennard—Jones
liquids with electric moments using the analogous reference potential

Uer = Ugcry (1, Oy, Qo) + upp (1, ), Q) g~ ¥2L@BupD) 6 (Bupp)  (]19)

A reference potential for quadrupole two-center Lennard—Jones lig-
uids can be obtained by replacing upp by uge. The properties of these
nonspherical reference fluids can now be calculated using the pertur-
bation theory outlined in the section above. Because our results apply
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only to the reference fluid for liquids containing electric moments, and
no detailed analysis has justified the neglect of higher order terms, the
results must be considered to be preliminary.

Table V presents the residual Helmholtz energies reduced by N/B.
Table VI gives the differences between BA/N values for liquids with and
without moments. The results for L = 0 and p*?> = 0.8696 and 3.478
are slightly more negative than those of Verlet and Weis (40), who have
BA/N = — 0.535 and —4.40. This indicates that not all of the effects of
the electric moments are incorporated into the reference fluids defined
by Equations 18 and 19. From Table VI we see that the contribution of
the dipole moments is reduced in going from L = 0 to L = 0.5, as
explained later, after which it remains approximately fixed. The effects
of elongation on the contribution of quadrupole moments are more com-
plicated. The quadrupole moments have been chosen so that the mul-
tipole potential has approximately the same effective influence in the
dipolar and quadrupolar liquids. This is achieved by requiring that the
potentials obtained from the angle-averaged Boltzmann factor for the
dipole—dipole and quadrupole—quadrupole potentials have the same value
at contact (r = o)

—é W kT = —%Q*‘* kT (20)

Table VI shows that the effect of elongation is to reduce considerably
the contribution of the quadrupolar energy to BA/N at L = 0.5, but that
there is a much smaller reduction for L = 0.8. We also note that the
interference between elongation and electric moment is much more de-
pendent upon the size of the quadrupole moment than of the dipole
moment. The origin of this difference between dipole and quadrupole

Table V. Values of the Residual Reduced Helmholtz Energies A*/NkT
for One-Center and Two-Center Lennard-Jones Liquids with Added
Dipole or Quadrupole Moments

Without With With With With
L T* po® Moment w*? = 08696 p** = 3478 Q* = 04243 Q*? = 1.697
0 1.15 0.85 -1.70 -2.30 —6.83 —2.39 -5.21
0.5 2.3 0.4517 —2.08 —2.60 —6.56 —2.44 —4.90
0.8 1.587 0.3068 —2.08 —2.60 —6.45 —2.60 —5.56

Note: T* equals kT/e\cry or kT/escr;. T* and po? are varied according to the low-
density scaling factors described earlier in order to make the values of A*/NkT without

p2
oo 24 0 =

moments comparable. The reduced moments are defined by p*? =
2

o'?kT with a/A = 3.4
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Table VI. Contribution of the Electric Moments to A*/NkT
L p*2 = 08696 p*2 = 3478 Q*2 = 04243 Q*2 = 1.697

0.0 -0.60 -5.13 -0.69 —3.51
0.5 —0.52 (—29%)° —4.48 (—29%) —0.36 (—51%) —2.82 (—34%)
0.8 —0.52 (—29%) —4.37(—30%) —0.52(—38%) —3.48 (—19%)

Note: Calculated for the states given in Table V.
¢ Values in parentheses indicate the percentage reduction compared with the con-
tribution in the L = 0 case, referred to A*/NkT without moment.

contributions to BA/N probably lies in the different symmetry of the two
potentials. The quadrupolar potential, like the two-center Lennard—Jones
potential, is invariant to a reflection of a molecule about the normal to
the molecular axis, whereas the dipole—dipole interaction changes sign.
For each allowed pair configuration of the molecules, the dipole—dipole
potential can be attractive or repulsive while the quadrupole—quadrupole
potential must be one or the other. The total contribution of the quad-
rupolar potential is therefore very dependent on the range of separations
for which certain strongly attractive (T-shaped) or repulsive (parallel or
end-to-end) orientations are allowed by the shape of the two-center Len-
nard-Jones molecules. This range will be different for different elonga-
tions, making the quadrupole contribution more elongation dependent
than that of the dipole, as we see in Table VI. The above discussion can
also be used to explain the variation of the quadrupolar contributions to
BA/N shown in Table VI. The two elongations are L = 0.5and L = 0.8,
where for scaling reasons (discussed earlier) we have set 6, _o5 = 2.754
Aand o,_o5 = 2421 A (0,_, = 3.4 A). For L = 0.5, the attractive
T-shaped configuration and the repulsive end-to-end configuration be-
come important for 7+ > 3.355 A and ry > 4.131 A, respectively. For L
= 0.8 we have r; > 3.187 A and ry > 4.357 A. The range of r for which
the T-shaped configuration will predominate is larger for L = 0.8. In
changing from L = Oto L = 0.5, in the presence of quadrupole moments,
the quadrupole—quadrupole potential is forced to assume the repulsive
parallel orientation near contact, causing the total quadrupolar contri-
bution to the Helmholtz energy to fall. Increasing the elongation to L
= 0.8 for the scaled two-center Lennard—Jones potential considered here
has the effect of increasing the range for which attractive T-shaped ori-
entations are allowed. The quadrupolar contribution to BA/N is therefore
increased again, as shown in Table VI.

Effects of Elongation and Quadrupole Moments on the Static
Dielectric Constant and Related Structural Properties

In this section we present qualitative results for the effect of elon-
gation and the quadrupole moment on the dielectric constant (g), Kirk-
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wood g-factor (gg) and the structural correlation functions h, and f (r, A)
of dipolar two-center Lennard-Jones liquids. Our results are based on
the assumption that the background correlation function y (r, Q,, () is
angle independent, as discussed in an earlier section.

The static dielectric constant of a liquid can be obtained from the
Kirkwood gi-factor using the relationship

e — 1)2e + 1 47
( L(s ) - 3 P e @1

where
p*
gK=l+41'r§JhA(r)r2dr (22)

The function h, (r) gives the average value of the cosine of the angle
between the axis of molecules 1 and 2, A, in the liquid, at each separa-
tion r

ha (r) = (A4, Q,) g (r, Oy, Q) (23)

In order to elucidate the various effects of elongation and electric moment
we introduce a new function f (r, A), which gives the probability density
for finding a pair of molecules whose axes are inclined at an angle arc
cos A to each other, at the separation r

hy (r) = f dA A f (r, A) (24)
In order to obtain h, (r) we use the approximation

g (r, y, Q) = y (r) e~ Pun02 (25)

where y (r) is calculated by solving the Percus-Yevick equation for the
reference potential

a() = —kT In (g~ Pulr01.02)) (26)

as discussed in the section on perturbation expansions. The potential
u (r, Q,, Q,) is the full molecular potential containing the two-center
Lennard-Jones term plus dipole—dipole, dipole-quadrupole, and quad-
rupole—quadrupole interactions. Equation 25 has been found to give ¢
and h, (r) in good agreement with simulation for hard-sphere dipoles
(41). For the moderate dipole moments considered here (see Table VII),
the predicted dielectric constants for the Stockmayer fluid (spherical
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Table VII. Reduced Parameters for 2CLJ Liquids with Electric

Moments
State T* L p* T Q*2 gk €
A 0.75 0.0 0.72 0.75 — 1.03 4.13
B 0.75 0.0 0.72 0.75 0.37 0.73 3.13
C 2.46 0.2 0.58 0.75 — 0.64 2.44
D 2.46 0.2 0.58 0.75 0.37 0.46 1.99
E 1.74 0.4 0.45 0.75 — 0.22 1.34

Note: Temperatures, densities, and electric moments were selected according to the
same principles as in Table V.

Lennard-Jones plus dipole) are about 15% too low compared to simu-
lation results (42). Although we do not expect to obtain exact numerical
results from Equation 25, we believe that the qualitative trends predicted
will be reliable. This is especially useful because computer simulation
results are not yet available for two-center Lennard—Jones liquids con-
taining dipoles and quadrupoles. Results are becoming available for di-
polar hard dumbbells, and these will be referred to below (43, 44). Table
VII shows the states considered, chosen so as to make the liquids roughly
comparable. Figure 9 shows the behavior of & with respect to that of an

1.0+
ele, !
+
0.5 °
+
I !
0 0.2 0.4 L

Figure 9. Dielectric constants for 2CLJ liquids with dipole moment p*?
= 0.75, relative to the Stockmayer fluid (state A of Table VII). Key: +,
with zero quadrupole moment; O, with Q™ = 0.37.
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equivalent Stockmayer fluid as the elongation is increased. The trend is
clearly to reduce € as L is increased. The effect of the quadrupole is to
reduce €, but by a smaller amount for L = 0.2 than for L = 0. The
effect on gy is similar, as can be seen in Table VII. As far as the dielectric
constant is concerned, a quadrupole moment has the same effect as
increasing elongation. In order to understand these trends it is useful to
plot h, (r) as is done in Figure 10. We see that the Stockmayer fluid has
a peak, increasing the elongation or imposing a quadrupole moment
produces a trough, which becomes deeper and wider as L increases. For
L # 0 and Q* = 0, small positive peaks occur around R* >1 + L. In
this region the orientation of molecules is no longer hampered by the
shape of the molecule and the curves show the expected Stockmayer
fluid behavior. In the presence of the quadrupole, these small peaks
disappear. The reduction in gx and hence € with increasing elongation
shown in Figure 9 can therefore be traced back to the increasing depth
of the trough in h, (r), as has been pointed out previously for dipolar
hard dumbbells (24). Recent simulation results for h, (r) of dipolar hard
dumbbells also show this trend, but the positive peaks were found to be
much larger than those of Figure 10 (44). This quantitative error is a

0.5
ha(B¥)

0.25
scale tenfold enlarged)

0.0

—-0.25

—-0.50

—-0.75

Figure 10. The correlation function h, (r) for the five states of Table VII
(all with p*2 = 0.75). Key , without quadrupole moment; --- and
———, with Q" = 0.37. The scale for the top curve is enlarged tenfold.
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feature of Equation 25. We expect therefore that computer simulation
of the liquids studied in this section would produce higher dielectric
constants and gg values, but show the same trends with L as given in
Figure 9.

Figure 11 shows the function f (r, A) normalized by the centers
correlation function g (r) = (g(r, Q,, Q,)) for a separation of /o, _, ~
1.1. This corresponds to the center of the troughs in Figure 10. In the
absence of a dipole, f (r, A) is symmetrical about A = 0 and h, (r) = 0.
If a dipole is placed at the center of a spherical Lennard—Jones molecule,
f (r, A) becomes asymmetrical. Two orientations are favored, the anti-
parallel and the head-to-tail, giving A = —1and A = +1 respectively.
In Figure 11, f (r, A) has small peaks at these values. The head-to-tail
orientation has a more negative potential energy and therefore the peak

[ f(r,N)
-1.6

———

L

1 {
-1 -05 0 05

Figure 11. The function f' (r, A) = f (r, A)/ (g (r, Q;, Q) at /o ¢y ~
1.1 for the five states of Table VII. Curves correspond to those in
Figure 10.

1

—_—e A
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in f (r, A) is somewhat larger on the A = +1 side, leading to a positive
peak in h, (r). Increasing the elongation to L = 0.2 leads to a much
larger value of f (r, A) at A = —1 and a much reduced value of f (r, A)
at A = +1. This is due to the shape of the two-center Lennard—Jones
molecule reducing the probability of head-to-tail orientations and favor-
ing antiparallel orientations which are much easier to pack in the dense
liquid. The peak in f (r, A) is now on the negative side and as a conse-
quence h, (r) is negative around contact for all L # 0. Increasing L to
0.4 produces an even higher value for f (r, —1) but also increases f (r,
+1) above the result for L = 0.2; this is due to the two-center Lennard-
Jones potential forcing some of the molecules to adapt the parallel ori-
entation (A = +1) even though it is unfavorable for the dipoles. (In the
absence of a dipole the two-center Lennard—Jones f (r, A) curve is sym-
metrical about A = 0 with two equal peaks at A = n *1.) The effect
of the quadrupole, like that of elongation, is to reduce the probability
of head-to-tail orientations for the dipole moments. The increase near f
(r, —1) is because of the existence of a range of antiparallel orientations
which are favorable to each of the three multipole interactions present.
(Note that there are many possible orientations corresponding to a fixed
value of A). This again leads to a negative h, (r) around contact.
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The RAM perturbation theory for molecular fluids is based
on an expansion about a simple fluid whose Mayer function
is the angular average of the Mayer function of the molec-
ular fluid. It is one of the few theories that potentially can
compute the full angular-dependent pair correlation func-
tion, g(12), of a wide range of molecular fluid models. The
basis of the theory is reviewed as well as its accuracy in
predicting the structural and thermodynamic properties of
a number of molecular fluid models, including hard and
soft diatomics, hard convex-body models, multipolar simple
fluids, and hard triatomics. The results are compared with
those obtained from computer simulations of these fluids.
The RAM theory, especially when used to compute reduced
correlation functions, g(12)/geo(r12), produces quantita-
tively accurate results for a wide range of fluid models,
even in cases of relatively large anisotropy. It is somewhat
less satisfactory for the centers pair correlation junction,
Zooo» but still quite accurate.

N SIMPLE FLUIDS composed of molecules whose pair potentials are
I spherically symmetric (i.e., atoms), the two most successful classes of
theoretical approaches to date are perturbation theories and theories
based on the use of integral equations. (This statement views computer
simulations as “experiments” on model fluids with specified pair poten-
tials, with which theoretical results are to be compared.) In the case of
molecular fluids, whose pair potentials depend on intermolecular ori-
entation as well as on distance, there is no general consensus as to which
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type of theoretical approach is to be preferred. Indeed, a widespread
view seems to be that each different type of fluid model dictates the use
of an associated special type of theoretical approach, and the organization
of this volume reflects that viewpoint. However, in this review, we will
discuss a general theoretical approach that can be applied in principle
to any molecular fluid model. Thus, the present chapter could logically
have appeared as part of a number of chapters of this book.

Perturbation theories have been successfully employed for about the
last 15 years to calculate the structural and thermodynamic properties
of simple fluids and their mixtures. The basic theoretical developments
occurred in the late 1960s (1) and early 1970s (2) and the topic has been
reviewed several times (3-5). The application of integral equation theories
to simple fluids began prior to 1970, with the derivations of the Born—
Green-Yvon (BGY) (6), hypernetted-chain (HNC) (7), Percus-Yevick (PY)
(8), and mean spherical approximation (MSA) (9) approaches. Develop-
ments in the last decade have concentrated on determining the general
characteristics of the pair potential which favor a particular form of in-
tegral equation theory, as well as refinements of the basic approaches
(10).

In the case of molecular fluids, direct extensions of the forms of
perturbation theory successfully used for simple fluids have been only
moderately successful, and only for restricted classes of fluid models (11).
(The use of perturbation theory for molecular fluids actually predates its
use for simple fluids (12), but it has only been in the past decade that
detailed numerical calculations have been possible.) Integral equation
approaches are very unwieldy numerically for general models, but for
suitably restricted classes of models can even be solved analytically (13).

A less direct extension of the simple-fluid integral equation ap-
proaches is the RISM theory (14), which applies to models consisting of
atomic sites. Originally proposed as a type of extension of the Percus—
Yevick theory for hard spheres, RISM is at best qualitatively accurate
(15), and furnishes only partial information concerning the fluid structure
(the pair correlation function for the atomic sites).

The RAM (reference average Mayer-function) theory, discussed in
this review, is a general approach that applies to any molecular fluid
model. Itis a perturbation theory approach, and has its origins in attempts
to unify the different types of perturbation theory approaches for simple
fluids (16). We will demonstrate in this review that quite accurate struc-
tural and thermodynamic predictions are possible using this theory, even
in cases of relatively large anisotropy. The models considered to date
using this theory include atoms with imbedded point multipoles (hard-
sphere or Lennard—Jones atoms with imbedded point dipoles or quad-
rupoles), site-interaction models (hard-sphere and Lennard-Jones dia-
tomics, and linear hard-sphere triatomics), and hard-body convex models
(hard spherocylinders).
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In this chapter, we first discuss the theoretical basis and relevant
equations for the RAM theory in the section on general theory, wherein
certain more general theoretical aspects of molecular fluids are also dis-
cussed. We then describe in detail the numerical results that have been
obtained to date in the application of the theory. Finally, we discuss the
accuracy of the results and the underlying reasons, as well as the pos-
sibilities for future research.

General Theory

RAM Theory. Any perturbation theory involves a choice of two
main ingredients: the reference system and the form of the expansion.
These choices are dictated both by convergence and by practical nu-
merical considerations. Thus, the properties of the reference system
should be “close to” those of the system of interest, and the calculatio